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Abstract
The Heinz mean for every nonnegative real numbers a, b and every 0 ≤ ν ≤ 1 is
Hν (a,b) = aνb1–ν+a1–νbν

2 . In this paper we present tracial Heinz mean-type inequalities
for positive definite matrices and apply it to prove a majorisation version of the Heinz
mean inequality.
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1 Introduction
The arithmetic-geometric mean inequality for two positive real numbers a, b is

√
ab ≤

a+b
 , where equality holds if and only if a = b. Heinz means, introduced in [], are means

that interpolate in a certain way between the arithmetic and geometric mean. For every
nonnegative real numbers a, b and  ≤ ν ≤ , the Heinz mean is defined as

Hν(a, b) =
aνb–ν + a–νbν


.

The function Hν is symmetric about the point ν = 
 . Note that H(a, b) = H(a, b) = a+b

 ,
H 


(a, b) =

√
ab, and

H 


(a, b) ≤ Hν(a, b) ≤ H(a, b) ()

for every  ≤ ν ≤ , and equality holds if and only if a = b.
Let Mn(C) denote the space of all n × n matrices. We shall denote the eigenvalues and

singular values of a matrix A ∈ Mn(C) by λj(A) and σj(A), respectively. We assume that sin-
gular values are sorted in non-increasing order. For two Hermitian matrices A, B ∈ Mn(C),
A ≥ B means that A – B is positive semi-definite. In particular, A ≥  means A is positive
semi-definite. Let us write A >  when A is positive definite. |A| shall denote the modulus
|A| = (A∗A) 

 and tr(A) =
∑n

j= λj(A).
The basic properties of singular values and trace function that some of them are used to

establish the matrix inequalities in this paper are collected in the following theorems.

Theorem . Assume that X, Y ∈ Mn(C), A, B ∈ Mn(C)+, α ∈ C, and j = , , . . . , n.
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() σj(X) = σj(X∗) = σj(|X|) = and σj(αX) = |α|σj(X).
() If A ≤ B, then σj(A) ≤ σj(B).
() σj(Xr) = (σj(X))r , for every positive real number r.
() σj(XY ∗) = σj(YX∗).
() σj(XY ) ≤ ‖X‖σj(Y ).
() σj(YXY ∗) ≤ ‖Y‖σj(X).

Theorem . Assume that X, Y ∈ Mn(C), α ∈C.
() tr(X + Y ) = tr(X) + tr(Y ).
() tr(XY ) = tr(YX).
() tr(X) ≥ , and for A ∈ Mn(C)+, tr(A) =  only if A = .

The absolute value for matrices does not satisfy |XY | = |X| · |Y |; however, a weaker ver-
sion of this is the following:

If Y = U|Y | is the polar decomposition of Y , with unitary U , then

∣
∣XY ∗∣∣ = U

∣
∣
(|X| · |Y |)∣∣U∗ ()

and

λj
(∣
∣XY ∗∣∣) = σj

(|X| · |Y |). ()

The Young inequality is among the most important inequalities in matrix theory. We
present here the following theorem from [, ].

Theorem . Let A, B ∈ Mn(C) be positive semi-definite. If p, q >  with 
p + 

p = , then

σj(AB) ≤ σj

(

p

Ap +

q

Bq
)

for j = , , . . . , n, ()

where equality holds if and only if Ap = Bq.

Corollary . Let A, B ∈ Mn(C) be positive semi-definite. If p, q >  with 
p + 

p = , then

tr
(|AB|) ≤ 

p
tr
(
Ap) +


q

tr
(
Bq), ()

where equality holds if and only if Ap = Bq.

Another interesting inequality is the following version of the triangle inequality for the
matrix absolute value [, ].

Theorem . Let X and Y be n × n matrices, then there exist unitaries U , V such that

|X + Y | ≤ U|X|U∗ + V |Y |V ∗. ()
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We are interested to find what types of inequalities () hold for positive semi-definite
matrices A, B? For example, do we have

√|AB| ≤ ∣
∣Hν(A, B)

∣
∣ ≤ H(A, B)? ()

Or do we have

√
σj(AB) ≤ σj

(
Hν(A, B)

) ≤ λj
(
H(A, B)

)
? ()

Here

Hν(A, B) =
AνB–ν + A–νBν


.

Bhatia and Davis [] extended inequality () to the matrix case, they showed that it holds
for positive semi-definite matrices, in the following form:

∥
∥
∣
∣A


 B



∥
∥
∣
∣ ≤ ∥

∥
∣
∣Hν(A, B)

∥
∥
∣
∣ ≤

∥
∥
∥
∥

∣
∣
∣
∣
A + B



∥
∥
∥
∥

∣
∣
∣
∣, ()

where ‖| ·‖| is any invariant unitary norm. An example shows that the first inequality in (),
to singular values, does not hold []. One of the results in the present article is a version
of Heinz mean-type inequalities for matrices in the following theorem.

Theorem . Let A, B be two positive semi-definite matrices in Mn(C). Then

tr
(√|AB|) ≤ tr

(
H

(∣
∣AνB–ν

∣
∣,

∣
∣A–νBν

∣
∣
)) ≤ tr

(
H(A, B)

)
.

Equality holds if and only if A = B.

For a real vector X = (x, x, . . . , xn), let X↓ = (x↓
 , x↓

 , . . . , x↓
n ) be the decreasing rearrange-

ment of X. Let X and Y are two vectors in R
n, we say X is (weakly) submajorised by Y , in

symbols X ≺w Y , if

k∑

j=

x↓
j ≤

k∑

j=

y↓
j ,  ≤ k ≤ n.

X is majorised by Y , in symbols X ≺ Y , if X is submajorised by Y and

n∑

j=

x↓
j =

n∑

j=

y↓
j .

Definition . If A, B ∈ Mn(C), then we write A ≺w B to denote that A is weakly majorised
by B, meaning that

k∑

j=

σj(A) ≤
k∑

j=

σj(B), for all  ≤ k ≤ n.
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If A ≺w B and

tr
(|A|) = tr

(|B|),

then we say that A is majorised by B, in symbols A ≺ B.

Let S(A) denote the n-vector whose coordinates are the singular values of A. Then we
write A ≺w B (A ≺ B) when S(A) ≺w S(B) (S(A) ≺ S(B)) .

The following theorem has been proved in [].

Theorem . If X and Y are two matrices in Mn(C), then

Sr(XY ) ≺w Sr(X)Sr(Y ) for all r > . ()

2 Main results
We present here the matrix inequalities that we will use in the proof of our main results.
The next theorem has been proved in [].

Theorem . For positive semi-definite matrices A and B and for all j = , , . . . , n

σj
(
Hν(A, B)

) ≤ σj
(
H(A, B)

)
,

for every ν ∈ [, ].

Thus, this proves that the second inequality in () holds. The arithmetic-geometric mean
inequality

√
ab ≤ a + b



is used in the matrix setting, much of this is associated with Bhatia and Kittaneh. They
established the next inequality in []:

σj
(
A∗B

) ≤ λj

(
AA∗ + BB∗



)

, ()

where A and B are two matrices in Mn(C). They also studied many possible versions of this
inequality in [], and put a lot of emphasis on what they described as level three inequali-
ties []. Drury [] answered to the key question in this area in the following theorem.

Theorem . For positive semi-definite matrices A and B in Mn(C) and for all j = , , . . . , n

√
σj(AB) ≤ λj

(
H(A, B)

)
.

We will show that in both Theorems . and . equality holds if and only if A = B. It is
still unknown whether

√
σj(AB) ≤ σj

(
Hν(A, B)

)
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for every ν ∈ (, ). However, by using Theorems . and ., we present a different version
of this inequality.

Lemma . For positive semi-definite matrices A and B in Mn(C) and for all j = , , . . . , n

√
σj(AB) ≤ λj

(
H

(∣
∣AνB–ν

∣
∣,

∣
∣A–νBν

∣
∣
))

()

for every ν ∈ (, ).

Proof We first aim to show that

σj(AB) ≤ σj
(
A–νAνB–νBν

)
.

We have

σj(AB) = σj
(
A–νAνB–νBνA–νAν–)

≤ ‖A‖–νσj
(
AνB–νBνA–ν

)‖A‖ν– (
by part () Theorem .

)
. ()

As ν –  < , the matrix Aν– exists only if A is invertible. Therefore, to prove () we shall
assume that A is invertible. This assumption entails no loss in generality, for if A were
not invertible, then we could replace A by A + εI , which is invertible and which satisfies
σj((A + εI)B) → σj(AB) for every B ∈ Mn(C) and j = , , . . . , n. Thus, () is achieved for
noninvertible A as a limiting case of () using the invertibility of A.

By using equation (), we get

σj
(
AνB–νBνA–ν

)
= σj

(∣
∣AνB–ν

∣
∣ · ∣∣A–νBν

∣
∣
)
.

Hence, by using Theorem .,

√
σj(AB) ≤

√
σj

(∣
∣AνB–ν

∣
∣ · ∣∣A–νBν

∣
∣
) ≤ λj

(
H

(∣
∣AνB–ν

∣
∣,

∣
∣A–νBν

∣
∣
))

. �

Remark . Note that Lemma . generalizes Theorem ., in fact, it is the special case
with ν =  of Lemma ..

Theorem . Let A, B be two positive semi-definite matrices in Mn(C). Then

tr
(√|AB|) ≤ tr

(
H

(∣
∣AνB–ν

∣
∣,

∣
∣A–νBν

∣
∣
)) ≤ tr

(
H(A, B)

)
.

Proof By the definition of the trace, we have

tr
(√|AB|) =

n∑

j=

λj
√|AB|

=
n∑

j=

√
σj(AB)

(
by part () Theorem .

)

≤
n∑

j=

λj
(
H

(∣
∣AνB–ν

∣
∣,

∣
∣A–νBν

∣
∣
))
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= tr
(
H

(∣
∣AνB–ν

∣
∣,

∣
∣A–νBν

∣
∣
)) (

using inequality ()
)

=



tr
(
AνB–ν

)
+




tr
(
A–νBν

)

≤ 

(
tr
(
νA + ( – ν)B

)
+ tr

(
νB + ( – ν)A

))
.

We applied (.) with p = 
ν

and q = 
–ν

for the first summand, and q = 
ν

and p = 
–ν

for
the second one.

Therefore,

tr
(√|AB|) ≤ tr

(
H

(∣
∣AνB–ν

∣
∣,

∣
∣A–νBν

∣
∣
))

≤ 

(
ν tr(A) + ( – ν) tr(B) + ( – ν) tr(A) + ν tr(B)

)

=



tr(A + B) = tr
(
H(A, B)

)
. �

Theorem . If A, B ∈ Mn(C) are two positive semi-definite matrices and  ≤ ν ≤ . Then
the following conditions are equivalent:

() tr(
√|AB|) = tr(H(A, B)).

() tr(H(|AνB–ν |, |A–νBν |)) = tr(H(A, B)).
() tr(|Hν(A, B)|) = tr(H(A, B)).
() A = B.

Proof We shall show that () �⇒ () �⇒ () �⇒ () and () �⇒ () �⇒ () �⇒ ().
Let tr(

√|AB|) = tr(H(A, B)). Then the arguments of the proof of the above theorem im-
plies

tr
(
H

(∣
∣AνB–ν

∣
∣,

∣
∣A–νBν

∣
∣
))

= tr
(
H(A, B)

)
.

If the equation in part () holds, then from what was proved in the last theorem we con-
clude that

tr
(
H(A, B)

)
= tr

(
H

(∣
∣AνB–ν

∣
∣,

∣
∣A–νBν

∣
∣
))

=



tr
(∣
∣AνB–ν

∣
∣ +

∣
∣A–νBν

∣
∣
)

≤ 

(
tr
(
νA + ( – ν)B

)
+ tr

(
νB + ( – ν)A

))
= tr

(
H(A, B)

)
.

Thus,

tr
(∣
∣AνB–ν

∣
∣
)

+ tr
(∣
∣A–νBν

∣
∣
)

= tr
(
νA + ( – ν)B

)
+ tr

(
νB + ( – ν)A

)
. ()

By Corollary ., this equality holds if and only if

tr
(∣
∣AνB–ν

∣
∣
)

= tr
(
νA + ( – ν)B

)
and tr

(∣
∣A–νBν

∣
∣
)

= tr
(
νB + ( – ν)A

)
,

and therefore A–ν = Bν , B–ν = Aν , which implies A = B. It is clear that () �⇒ ().
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Now, we try to show that () �⇒ () �⇒ () �⇒ (). Therefore assume (): tr(|Hν(A, B)|) =
tr(H(A, B)). Then

tr
(
H(A, B)

)
= tr

(∣
∣Hν(A, B)

∣
∣
)

=



tr
(∣
∣AνB–ν + A–νBν

∣
∣
)

≤ 

[
tr
(
U

∣
∣AνB–ν

∣
∣U∗) + tr

(
V ∗∣∣A–νBν

∣
∣V

)] (
by the triangle inequality()

)

for some unitaries U and V ∈ Mn(C).
Thus,

tr
(
H(A, B)

) ≤ 


tr
(∣
∣AνB–ν

∣
∣ +

∣
∣A–νBν

∣
∣
)

= tr
(
H

(∣
∣AνB–ν

∣
∣,

∣
∣A–νBν

∣
∣
))

≤ tr
(
H(A, B)

)
(by Theorem .),

thereby proving (). () �⇒ () was shown in the first part. It is clear that () �⇒ (). �

The following two corollaries are almost immediate from Theorem ..

Corollary . For positive semi-definite matrices A and B in Mn(C) and for all j =
, , . . . , n

√
σj(AB) = λj

(
H(A, B)

)
,

if and only if A = B.

Corollary . For positive semi-definite matrices A and B in Mn(C) and for all j =
, , . . . , n

σj
(
Hν(A, B)

)
= λj

(
H(A, B)

)
,

for ν ∈ [, ] if and only if A = B.

We do not know whether

√
σj(AB) ≤ σj

(
Hν(A, B)

) ≤ λj
(
H(A, B)

)

for every ν ∈ [, ].
To answer this question, just we need to know whether

√
σj(AB) ≤ σj

(
Hν(A, B)

)

for every ν ∈ [, ].
In the rest of this paper, we apply the results of singular value inequalities for the means

to present a new majorisation version of the means.
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Lemma . Let A and B be two positive semi-definite matrices. Then

S

 (AB) ≺w



(
S(A) + S(B)

)
.

Proof By Theorem .,

k∑

j=

σj(AB)

 ≤

k∑

j=

λj(A)

 λj(B)


 for every  ≤ k ≤ n.

By using an arithmetic-geometric mean inequality for singular values of A and B,

k∑

j=

σj(AB)

 ≤

k∑

j=



λj(A) +

k∑

j=



λj(B) for every  ≤ k ≤ n.

Thus,

k∑

j=

σj(AB)

 ≤

k∑

j=




(λj(A) + λj(B) for every  ≤ k ≤ n,

which implies S 
 (AB) ≺w


 (S(A) + S(B)). �

Lemma . If A and B ∈ Mn(C), then

√|AB| ≺w H(A, B).

Proof It is direct result of the definition of the majorisation and Theorem .. �

Lemma . If A and B are positive semi-definite ∈ Mn(C), then

Hν(A, B) ≺w H(A, B).

Proof It is direct result of definition of the majorisation and Theorem .. �

It is interesting to know whether

√|AB| ≺w Hj(A, B).

Lemma . If A and B are positive semi-definite ∈ Mn(C), then

√|AB| ≺w H
(∣
∣AνB–ν

∣
∣,

∣
∣A–νBν

∣
∣
)
.

Proof It is direct result of definition of the majorisation and Lemma .. �

The results to this point lead to the following theorem about majorisation for positive
definite matrices.
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Theorem . For every two positive matrices A and B in Mn(C), the following conditions
are equivalent:

() S 
 (AB) ≺ 

 (S(A) + S(B)).
()

√|AB| ≺ (H(A, B)).
() Hν(A, B) ≺ H(A, B).
()

√|AB| ≺w H(|AνB–ν |, |A–νBν |).
() A = B.

Competing interests
The author declares that he has no competing interests.

Acknowledgements
This work was supported by the Department of Mathematical Sciences at Isfahan University of Technology, Iran.

Received: 14 November 2015 Accepted: 7 January 2016

References
1. Bhatia, R: Matrix Analysis. Springer, New York (1997)
2. Ando, T: Matrix Young inequalities. Oper. Theory, Adv. Appl. 75, 33-38 (1995)
3. Hirzallah, O, Kittaneh, F: Matrix Young inequalities for the Hilbert-Schmidt norm. Linear Algebra Appl. 308, 77-84

(2000)
4. Thompson, RC: Convex and concave functions of singular values of matrix sums. Pac. J. Math. 66, 285-290 (1976)
5. Bhatia, R, Davis, C: More matrix forms of the arithmetic-geometric mean inequality. SIAM J. Matrix Anal. Appl. 14,

132-136 (1993)
6. Audenaert, KMR: A singular value inequality for Heinz mean. Linear Algebra Appl. 422, 279-283 (2007)
7. Bhatia, R, Kittaneh, F: On the singular values of a product of operators. SIAM J. Matrix Anal. Appl. 11, 272-277 (1990)
8. Bhatia, R, Kittaneh, F: Notes on matrix arithmetic-geometric mean inequalities. Linear Algebra Appl. 308, 203-211

(2000)
9. Bhatia, R, Kittaneh, F: On the singular values of a product of operators. Linear Algebra Appl. 428, 2177-2191 (2008)
10. Drury, SW: On a question of Bhatia and Kittaneh. Linear Algebra Appl. 437, 1955-1960 (2012)


	Tracial and majorisation Heinz mean-type inequalities for matrices
	Abstract
	MSC
	Keywords

	Introduction
	Main results
	Competing interests
	Acknowledgements
	References


