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Abstract
Background/Aims: To isolate key genes and pathways in renal cell carcinoma (RCC), which 
might reveal more evidences on the regulation network and contribute to pathogenic 
mechanisms of RCC. Methods: Microarray data of GSE34676, GSE23926 and GSE48008 were 
downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) and 
differentially expressed miRNAs were respectively screened using Limma package, followed by 
the selection of CNV associated genes and miRNAs. A multi-molecular regulation interaction 
network was constructed, and significant modules were subsequently isolated from the network 
by Molecular Complex Detection (Mcode) of Cytoscape. Finally, GO terms and KEGG pathways 
of these genes and miRNAs in significant modules were enriched using DAVID. Results: Total 
403 DEGs and 231 differentially expressed miRNAs were screened in RCC samples and normal 
group. Moreover, 1369 genes and 68 miRNAs were isolated by CNV analysis. Besides, a total 
of 59 miRNAs and 209 genes that related to 340 interaction pairs were analyzed and used to 
construct the network and 2 significant modules were identified. In the modules, CAV1 and 
CAV2 were shown to correlate with RCC. GNAI1, GPSM2 and GNAO1 were likely involved 
in the regulation of RCC through G protein signal transduction. Besides, G-protein coupled 
receptor protein signaling pathway, focal adhesion, MAPK signaling pathway and neuroactive 
ligand receptor interaction were enriched. Conclusion: Our study suggests that several crucial 
genes including CAV1,CAV2, GNAI1, GPSM2, and GNAO1 and pathways may play key roles in 
RCC progression. 
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Introduction

Renal cell carcinoma (RCC) is one of the most common cancers in urinary system. The 
annual incidence of RCC represents 3% of all malignancies in 2010 in the United States [1, 2]. 
Moreover, the incidence of RCC continues to be steadily rising over the past two decades [3]. 
In the treatment of RCC, it is still complicated due to different morphological characteristics 
and clinical phenotype, such as clear-cell RCC (82%), type 1 or 2 papillary tumors (11%), 
chromophobe tumors (5%), and collecting duct carcinoma (1%) [2, 4]. RCC is known to be 
resistant to all chemotherapeutic and radiation therapies, and surgical resection remains the 
mainstay of curative treatment to data [5]. However, studies have found that RCC partially 
responds to targeted therapies or immunotherapy [6, 7]. Exploring new therapeutic 
strategies for the treatment of this disease is imperative. 

RCC is a disease with complex etiologies, which may be caused by the combined effect 
of multiple genes. Extensive efforts have been made to explore the underlying molecular 
pathogenesis of it. VHL (von Hippel-Lindau), p53, p16, p21 and p27 were shown as the main 
tumor suppressor genes in RCC, in which VHL and p53 were clearly certified to result in the 
development of RCC [8]. Dysfunction of VHL will lead to constitutively aberrant activation of 
the hypoxic response, like upregulation of vascular endothelial growth factor (VEGF), which 
is considered to play important roles in tumor development and angiogenesis [5, 9]. p53 
is shown to suppress tumor growth and induce cell apoptosis in RCC [10, 11]. Moreover, 
miRNA-21 (miR-21) can post-transcriptionally downregulate the expression of programmed 
cell death 4 (PDCD4) and consequently promotes the proliferation and metastasis in RCC 
[12]. Besides, some factors involved in relevant biological pathways have been demonstrated 
as potential therapeutic targets, such as small-molecule multikinase inhibitors that target 
VEGF receptors (sunitinib and sorafenib) [13], the anti-VEGF antibody bevacizumab [14], 
and a mammalian target of rapamycin inhibitor temsirolimus [15]. Despite these great 
progresses in pathogenesis of RCC, the molecular mechanisms underlying this disease have 
not been fully elucidated. 

Recently, microarray profiling of human RCC has increasingly been used to identify 
the potential genes and critical pathways involved in RCC [16]. In this study, expression 
profiles of gene, miRNA and SNP from RCC and normal group were respectively used to 
isolate differentially expressed genes (DEGs) and differentially expressed miRNAs. A multi-
molecular regulation interaction network that related to RCC was constructed and significant 
modules were subsequently identified. Moreover, functional enrichment analyses of these 
genes and miRNAs were performed. This study aimed to select several key genes and 
significant pathways that associated with RCC progression. These key genes and pathways 
might reveal some regulatory mechanisms and provide a new therapy approach in RCC.

Materials and Methods

Microarray data and data preprocessing
The gene expression profile of GSE23926 deposited by Gan et al. [17], miRNA expression profile of 

GSE48008 deposited by Zaravinos et al. [18], and SNP profile of GSE34676 deposited by Krill-Burger et al. 
[19] were downloaded from Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/), which 
were based on the platforms of 

GPL570: [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array, 
GPL11434: miRCURY LNA microRNA Array, 6th generation - hsa, mmu & rno, and 
GPL6801: [GenomeWideSNP_6] Affymetrix Genome-Wide Human SNP 6.0 Array, respectively.

The information of patients in different samples from the three selected microarrays were shown in Tab-
le 1. The gene expression profile and miRNA expression profile was preprocessed using R language (v.2.13.0) 
[20]. CEL source files from all conditions were performed background correction and quartile data norma-
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gene or miRNA. However, if a probe was mapped to multiple genes or miRNAs, the probe was considered 
unspecific and was then removed 

In addition, APT (apt-probeset-genotype program in Affymetrix Power Tools) was used to analyze 
original CEL source files to obtain genotyping data and isolate SNP signal intensities of A, B allele [22]. 
Standard genotype clustering files were generated by genotyping data and signal intensities of normal 
samples. Finally, the signal intensities of A, B allele in cancer samples were consulted with standard 
genotype clustering files in order to evaluate Log R Ratio (LRR) and B Allele Frequency (BAF) of every locus 
in cancer samples. 

Identification of DEGs and differentially expressed miRNAs 
The T test in Limma package [23] was used to select the DEGs in RCC samples from GSE23926 and the 

differentially expressed miRNAs from GSE48008 compared with the normal samples. Fold change (FC) of 
the gene expression was also observed for differential expression test. The p-value < 0.05 and |log2 FC| > 1 
were considered as the threshold. 

Copy number variation analysis 
PennCNV [24] and Hidden Markov model (HMM) [25] were used to deduce the CNV (Copy number 

variation) regments in the genomes of microarray data GSE34676 based on the LRR and BAF of RCC samples. 
Then the occurrence of a same CNV sessions was counted in RCC samples. Sessions were retained which 
appeared in more than 7 samples. Finally, CNV sessions were annotated to select the genes or miRNAs 
related to CNV.

Prediction of miRNA target genes 
In order to improve the accuracy and reduce false positive, the target genes of differentally expressed 

miRNAs were predicted by 6 prediction algorithm, including PicTar [26], DIANA-microT [27], miRanda [28], 
RNAhybrid [29], RNA22 [30] and TargetScan [31]. The target genes which were appeared in at least three 
algorithms were identified as the truly target genes for the differentially expressed miRNAs.

Network analysis and module mining
The selected DEGs and differentially expressed miRNAs associated with CNV, and the target genes for 

miRNAs were used to construct the regulatory network of RCC using Mocde (Molecular Complex Detection) 
in Cytoscape [32]. Key biomoleculars were isolated in this network and significant modules with degree 
cutoff to 2 (degree > 2) from the constructed network were analyzed.

Functional enrichment analysis of the genes in modules
Gene Ontology (GO) [33] and KEGG pathway [34] enrichment analysis for the selected DEGs in the mo-

dules were performed to explore significant biological processes and pathways using the DAVID (Database 

Table 1. Information of patients used in the three selected microarrayslization using 
RMA (Robust 
M u l t i - a r r ay 
Average) al-
gorithm [21]. 
Midpoint of 
the probe set 
signal was 
considered as 
the expressi-
on levels of 
gene or miR-
NA if mutiple 
probe sets 
corresponded 
to the same 
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Fig. 1. Network constructed by regulation and protein-protein interactions. Circle represents related genes 
of RCC; triangle represents related miRNAs of RCC; green represents DEGs and miRNAs; red represent CNV 
related genes and miRNAs; blue represents both differentially expressed and CNV related genes and miR-
NAs.
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Fig. 2. Two modules in specific RCC regulatory 
network. Green represents DEGs; red represents 
CNV related genes.

for Annotation, Visualization and Integrated Discovery) software [35], respectively. Genes were enriched in 
biological process, cell composition and molecular function through GO enrichment analysis. Each item with 
gene count > 2 and p-value < 0.01 were chosen as the criterion. 

Results

Screening of DEGs and differentially expressed miRNAs
Totally, 403 DEGs and 231 differentially expressed miRNAs were identified in RCC  

samples compared with normal controls with the p-value < 0.05 and |log2 FC| > 1, respec-
tively. Besides, the results of CNV analysis showed that 1369 genes and 68 miRNAs were 
isolated from the genome regments with CNV. 

Network construction and functional modules
A total of 209 target genes related to 59 differentially expressed miRNAs that associated 

with RCC was selected based on the 6 miRNA prediction algorithm. Finally, 340 interaction 
pairs among these CNV related genes and miRNAs were predicted to construct the network 
(Fig. 1). As a result, a high level of connectivity is shown in the network. All these nodes were 
related to RCC and several nodes were highly in degrees in the network. 

In addition, 2 significant modules with degree > 2 in specific RCC regulatory network 
were isolated. As shown in Fig. 2, CNV related genes caveolin 1 (CAV1) and caveolin 2 (CAV2) 
were linked with DEG mal-T-cell differentiation protein (MALL). Notably, MALL was down-
regulated genes. Besides, guanine nucleotide binding protein (G protein)-alpha inhibiting 
activity polypeptide 1 (GNAI1), G-protein signaling modulator 2 (GPSM2), opioid receptor-
delta 1(OPRD1) and guanine nucleotide binding protein-alpha O (GNAO1) were also closely 
correlated.

Functional annotation of GO and pathway 
The functional enrichment analysis of all the selected genes showed that several 

important GO terms in biological process, such as regulation of transcription and DNA-
dependent (GO: 0006355), G-protein coupled receptor protein signaling pathway (GO: 
0007186), oxidation reduction (GO: 0055114) and cell adhesion (GO: 0007155) were 
enriched (Table 2). Besides, genes were also enriched in cell composition and molecular 

Table 2. GO functional enrichment in biological 
process (Top 10)
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function, and the most significant GO terms were nucleus (GO:0005634) and protein binding 
(GO:0005515), respectively (Table 3 and 4). On the other hand, the top 10 pathways of these 
genes were also enriched (Table 5). The results showed that the most significant pathway 
was neuroactive ligand-receptor interaction. In addition, the other significant pathways such 
as Cytokine-cytokine receptor interaction, Focal adhesion, Tight junction, MAPK signaling 
pathway, Olfactory transduction, Insulin signaling pathway, ErbB signaling pathway, 
Regulation of actin cytoskeleton and Glioma were also enriched.

Discussion

RCC is a common cancer with complex mechanism by the combination of multiple genes. 
In this study, we utilized comprehensive bioinformatics methods to explore the potential 
molecular mechanism of RCC. The DEGs, differentially expressed miRNAs, CNV related 

Table 5. Pathway enrichment in RCC (Top 10)

Table 3. GO func-
tional enrichment 
in cell composition 
(Top 10)

Table 4. GO functi-
onal enrichment in 
molecular function 
(Top 10)
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genes and miRNAs, and target genes for miRNAs that associated with RCC were analyzed 
based on three microarrays. Moreover, we selected 2 significnat modules with several key 
DEGs (like CAV1, CAV2, GNAI1, GPSM2 and GNAO1) in RCC regulatory network. Besides, 
functional enrichment analyses showed that some of the GO terms and pathways, such as 
signal transduction, G-protein coupled receptor protein signaling pathway, focal adhesion, 
MAPK signaling pathway and neuroactive ligand-receptor interaction, were also involved 
with the regulation of RCC.

Our data showed that several key genes had close relationships with RCC from the 2 
significant modules. CAV1 is a tumor suppressor candidate and is a negative regulator of the 
Ras-p42/44 mitogen-activated kinase cascade. Loss of CAV1 in the tumour microenvironment 
contributes to the metastatic behaviour of tumour cells by up-regulation of TGF-β1 and SNCG 
through Akt activation [36]. Its expression is down-regulated in some tumors, however, many 
studies demonstrates that elevated expression of CAV1 is associated with tumor metastasis 
and a worse prognosis in several neoplasms, such as colon and urinary bladder cancer [37, 
38]. In the kidney, one study verified that overexpression of CAV1 in RCC correlated with a 
poor prognosis [39]. Holger et al. proved that abbrevant expression of CAV1 was related to 
the metastasis formation and cytogenetic abnormalities of kidney cancer [40]. Also, Zucchini 
et al. demonstrated that up-regulation of CAV1 that involved with cell-cell adhesion and cell 
growth was observed in kidney cancer cells [41]. Besides, CAV1 can be used in differentiating 
chromophobe RCC from oncocytoma and the effects are superior to CK7 [42]. Therefore, we 
speculate that CAV1 overexpression may contribute to RCC progression and correlate with a 
poor prognosis. Meanwhile, CAV2 belongs to the same family of CAV1, which also functions 
as a tumor suppressor. A silencing study of CAV2 revealed significant inhibition of cell 
proliferation, migration and invasion through dysregulation of the focal adhesion pathway, 
and its expression was significantly up-regulated in RCC clinical specimens [43].

On the other hand, GNAI1, GPSM2 and GNAO1 were members of the G protein signal 
transduction family. G-protein coupled receptor protein signaling pathway is frequently 
associated with tumorigenesis. It has been reported that there were 4.2% of tumours carry 
activating mutations in GNAS and nearly 20% of human tumours harbour mutations in G 
proteins and G-protein-coupled receptors (GPCRs). Besides, many human cancer-associated 
viruses also express constitutively active viral GPCRs [44]. As previous reported, GNAI1 can 
suppresses tumor cell migration and invasion [45], GPSM2 may influence the cell division 
in cancer [46], and GNAO1 is demonstrated to play an important role in oncogenesis [47]. 
Combination with these findings, we speculate that G-protein coupled receptor protein 
signaling pathway may play an important role in RCC initiation, and these genes are suspected 
to participate in the process of RCC through involved in this pathway.

Besides, RCC is shown to produce particular extracellular matrix components and 
expresses a characteristic repertoire of cell adhesion molecules. The expression of the alpha 
nu beta 3 integrin subunit is differentially expressed in all types of renal cell tumors [48]. 
Zucchini et al. demonstrated that up-regulation of CAV1 was involved with cell-cell adhesion 
in kidney cancer cells [41]. Therefore, focal adhesion factors are also certified to participate 
in the process of RCC. In polycystic kidney disease (PKD), MAPK signaling pathway and 
neuroactive ligand receptor interaction were enriched. The expression of genes involved in 
MAPK pathway is significantly higher in PKD, indicating the activation of MAPK signalling 
pathway [49]. Based on our results, we speculate that changes in the former pathways may 
cause tissue lesions and even lead to the generation of RCC.

No experimental validation is a limitation of our study, further experimental studies are 
still needed. Moreover, there are some sub-types of cancers with distinct phenotypes and 
control samples in the three datasets in this study, separate sub-analyses of the different 
sub-types of cancers versus the controls should be considered to validate these genes and 
pathways.
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Conclusion

To sum up, CAV1 may contibute to the progerssion of RCC and correlate with a poor 
prognosis. Loss of CAV2 may reveal significant inhibition of cell proliferation, migration and 
invasion. GNAI1, GPSM2 and GNAO1 are likely involved in the regulation of RCC through G 
protein signal transduction. Besides, G-protein coupled receptor protein signaling pathway, 
focal adhesion, MAPK signaling pathway and neuroactive ligand receptor interaction are 
enriched in the development of RCC and may result in the development of this disease. Our 
study may provide theirotical basis for the future study of RCC diagnosis or treatment. 
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