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This paper constructs a Sparre Andersen risk model with a constant dividend barrier in which the claim interarrival distribution is
a mixture of an exponential distribution and an Erlang(n) distribution. We derive the integro-differential equation satisfied by the
Gerber-Shiu discounted penalty function of this risk model. Finally, we provide a numerical example.

1. The Risk Model

Consider a Sparre Andersen risk model,

𝑈 (𝑡) = 𝑢 + 𝑐𝑡 −

𝑁(𝑡)

∑

𝑖=1

𝑋
𝑖

for 𝑡 ≥ 0, (1)

where 𝑢 ≥ 0 represents the initial capital, 𝑐 is the insurer’s
rate of premium income per unit time, and {𝑁(𝑡), 𝑡 ≥ 0} is
the claim number process representing the number of claims
up to time 𝑡. {𝑋

𝑖
, 𝑖 ≥ 1} is a sequence of i.i.d. random variables

representing the individual claim amounts with distribution
function 𝐹(𝑥) and density function 𝑓(𝑥) with mean 𝜇. We
assume that {𝑁(𝑡), 𝑡 ≥ 0} and {𝑋

𝑖
, 𝑖 ≥ 1} are independent.

Let {𝑇
𝑖
, 𝑖 ≥ 1} be sequence i.i.d. random variables, which

represent the claim interarrival times, and 𝑇
𝑖
has a density

function𝐾(𝑡),

𝐾 (𝑡) = 𝛽
1
𝜆𝑒
−𝜆𝑡

+ 𝛽
2
𝑒
−𝜆𝑡 𝜆
𝑛
𝑡
𝑛−1

(𝑛 − 1)!
, 𝑡 ≥ 0, (2)

where 𝑛 ≥ 1 is a positive integer, 𝜆 ≥ 0, 𝛽
1
, 𝛽
2
≥ 0, and 𝛽

1
+

𝛽
2
= 1. We further assume that 𝑐𝐸[𝑇

𝑖
] > 𝐸[𝑋

𝑖
] for all 𝑖, which

ensure that lim
𝑡→∞

𝑈(𝑡) = ∞ almost surely. Throughout the
paper we use the convention that ∑0

𝑖=1
𝑋
𝑖
= 0.

In recent years the Sparre Andersen model has been
studied extensively. Ruin probabilities and many ruin related

quantities such as the marginal and joint defective distri-
butions of the time to ruin, the deficit at ruin, the surplus
prior to ruin, and the claim size causing ruin have received
considerable attention. Some related results can be found in
Cai and Dickson [1], Sun and Yang [2], Gerber and Shiu
[3], and Ko [4]. Li and Garrido [5] consider a compound
renewal (Sparre Andersen) risk process in the presence of a
constant dividend barrier in which the claim waiting times
are generalized Erlang(n) distributed. The Sparre Andersen
model with phase-type interclaim times has been studied by
Ren [6]. Ng and Yang [7] study the ruin probability and the
distribution of the severity of ruin in risk models with phase-
type claims. Landriault and Willmot [8] study the Gerber-
Shiu function in a Sparre Andersen model with general
interclaim times. Yang and Zhang [9] study a Sparre Ander-
sen model in which the interclaim times are generalized
Erlang(n) distributed. They assume that the premium rate is
a step function depending on the current surplus level. Lan-
driault and Sendova [10] generalize the Sparre Andersen dual
risk model with Erlang(n) interinnovation times by adding
a budget-restriction strategy. Shi and Landriault [11] utilize
the multivariate version of Lagrange expansion theorem to
obtain a series expansion for the density of the time to ruin
under a more general distribution assumption, namely, the
combination of 𝑛 exponentials. Yang and Sendova [12] study
the Sparre Andersen dual risk model in which the times
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between positive gains are independently and identically
distributed and have a generalized Erlang(n) distribution.

The barrier strategy was initially proposed by De Finetti
[13] for a binomial model. From then on, barrier strategies
have been studied in a number of papers and books, including
Lin et al. [14], Dickson andWaters [15], Li and Lu [16], Yu [17–
19], Yao et al. [20], Zhu [21], Tan et al. [22], and references
therein for details. The purpose of this paper is to extend
some results in Li and Garrido [5] and Yang and Zhang [9].
We study the Sparre Andersen risk model with a constant
dividend barrier and the claim interarrival distribution is
a mixture of an exponential distribution and an Erlang(n)
distribution.

The contents of this paper are organized as follows.
Section 2 introduces the risk model. In Section 3, we derive
the higher-order integro-differential equation for the Gerber-
Shiu discounted penalty function. Finally, in the special case
we provide the numerical example in Section 4.

2. The Risk Model

Let𝑈
𝑏
(𝑡) be the surplus process with initial surplus𝑈

𝑏
(0) = 𝑢

under the barrier strategy. Thus, it can be expressed as

𝑑𝑈
𝑏 (𝑡) = {

𝑐𝑑𝑡 − 𝑑𝑆 (𝑡) 𝑈
𝑏 (𝑡) < 𝑏

−𝑑𝑆 (𝑡) 𝑈
𝑏 (𝑡) ≥ 𝑏,

(3)

where 𝑆(𝑡) = ∑
𝑁(𝑡)

𝑖=1
𝑋
𝑖
. Define 𝑇

𝑏
= inf{𝑡 : 𝑈

𝑏
(𝑡) < 0} to be

the first time that the surplus becomes negative.The stopping
time 𝑇

𝑏
is referred to as the time of ruin. Let 𝜓

𝑏
(𝑢) = Pr(𝑇

𝑏
<

∞) be the ruin probability.
In this paper, we will study the time of ruin 𝑇

𝑏
and its

related functions such as the surplus before ruin 𝑈
𝑏
(𝑇
𝑏
−)

and the deficit at ruin |𝑈
𝑏
(𝑇
𝑏
)|. By using a renewal equation

approach, we will be able to get a number of analytic and
probabilistic properties of these quantities. Our analysis will
involve the Gerber-Shiu discounted penalty function that is
defined below.

Let 𝜔(𝑥, 𝑦), 0 ≤ 𝑥, 𝑦 < ∞, be a nonnegative function. For
𝛿 ≥ 0, define

𝑚
𝑏 (𝑢) = 𝐸 [𝑒

−𝛿𝑇𝑏𝜔 (𝑈 (𝑇
𝑏
−) ,

𝑈 (𝑇
𝑏
)
)

𝐼 (𝑇
𝑏
< ∞) | 𝑈 (0) = 𝑢] ,

(4)

where 𝐼(⋅) is the indicator function, 𝐼(𝑇
𝑏
< ∞) = 1 if 𝑇

𝑏
<

∞, and 𝐼(𝑇
𝑏
< ∞) = 0 otherwise. The function 𝑚

𝑏
(𝑢) in

(4) is useful for deriving results in connection with joint and
marginal distributions of 𝑇

𝑏
, 𝑈
𝑏
(𝑇
𝑏
−) and |𝑈

𝑏
(𝑇
𝑏
)|. While 𝛿

may be interpreted as a force of interest, function (4)may also
be viewed in terms of a Laplace transform with 𝛿 serving as
the argument. In particular, if we let 𝜔(𝑥, 𝑦) = 1, (4) is the
Laplace transform of the time of ruin 𝑇

𝑏
. If we let 𝛿 = 0 and

𝜔(𝑥, 𝑦) = 1, then𝑚
𝑏
(𝑢) becomes the ruin probability 𝜓(𝑢). If

we let 𝛿 = 0 and 𝜔(𝑥, 𝑦) = 𝐼(𝑥 ≤ 𝑧
1
)𝐼(𝑦 ≤ 𝑧

2
), (4) becomes

the joint df of the surplus before ruin and the deficit at ruin.
Furthermore, if 𝛿 = 0 and 𝜔(𝑥, 𝑦) = 𝑥

𝑛

1
, we obtain the 𝑛th

moment of the surplus before ruin. Likewise, if 𝛿 = 0 and
𝜔(𝑥, 𝑦) = 𝑥

𝑛

2
, we obtain the 𝑛th moment of the deficit at ruin.

For other functions of interest, see Gerber and Shiu [23] and
Lin and Willmot [24]. Let 𝑓∗ denote the Laplace transform
of the function 𝑓, that is, 𝑓∗(𝑠) = ∫

∞

0
𝑒
−𝑠𝑥

𝑓(𝑥)𝑑𝑥.

3. An Integro-Differential Equation

In this section, we show 𝑚
𝑏
(𝑢) satisfies a higher-order

integro-differential equation.

Lemma 1. Assume 𝑠 > 𝑢; then 𝐻(𝑢, 𝑠) = 𝐾((𝑠 −

𝑢)/𝑐)𝑒
−𝛿((𝑠−𝑢)/𝑐) satisfies the following differential equation:

𝑛−1

∑

𝑗=0

𝐶
𝑗

𝑛−1
𝑐
𝑗
(−𝜆 − 𝛿)

𝑛−1−𝑗 𝜕
𝑗
𝐻(𝑢, 𝑠)

𝜕𝑢𝑗

= (−1)
𝑛−1

𝛽
2
𝜆
𝑛
𝑒
−(𝜆+𝛿)((𝑠−𝑢)/𝑐)

,

(5)

with the boundary conditions when 𝑠 = 𝑢,

𝜕
𝑘
𝐻(𝑢, 𝑠)

𝜕𝑢𝑘
= 𝛽
1
𝜆(

𝜆 + 𝛿

𝑐
)

𝑘

, 𝑘 = 0, 1, 2, . . . , 𝑛 − 2,

𝜕
𝑛−1

𝐻(𝑢, 𝑠)

𝜕𝑢𝑛−1
= 𝛽
1
𝜆(

𝜆 + 𝛿

𝑐
)

𝑛−1

+ 𝛽
2
𝜆
𝑛
(−

1

𝑐
)

𝑛−1

.

(6)

Proof. Note that 𝐻(𝑢, 𝑠) = [𝛽
1
𝜆 + (𝜆

𝑛
𝛽
2
/(𝑛 −

1)!)((𝜆 + 𝛿)/𝑐)
𝑛−1

]𝑒
−(𝜆+𝛿)((𝑠−𝑢)/𝑐). Taking derivative with

respect to variable 𝑢 for 𝑘 times and by induction, we can
obtain

𝜕
𝑘
𝐻(𝑢, 𝑠)

𝜕𝑢𝑘

= −

𝑘−1

∑

𝑗=0

𝐶
𝑗

𝑘
(−

𝜆 + 𝛿

𝑐
)

𝑘−𝑗
𝜕
𝑗
𝐻(𝑢, 𝑠)

𝜕𝑢𝑗

+
𝛽
2
𝜆
𝑛

(𝑛 − 1 − 𝑘)!
(
𝑠 − 𝑢

𝑐
)

𝑛−1−𝑘

(−
1

𝑐
)

𝑘

𝑒
−(𝜆+𝛿)((𝑠−𝑢)/𝑐)

,

0 ≤ 𝑘 ≤ 𝑛 − 1.

(7)

When 𝑘 = 𝑛 − 1, one gets (5). On substituting 𝑠 = 𝑢 in (7), we
get the boundary conditions.

Theorem 2. The Gerber-Shiu discounted penalty function
𝑚
𝑏
(𝑢) satisfies the higher-order integro-differential equation

𝑛

∑

𝑘=0

𝐶
𝑘

𝑛
𝑐
𝑘
(−𝜆 − 𝛿)

𝑛−𝑘 𝑑
𝑘
𝑚
𝑏 (𝑢)

𝑑𝑢𝑘

= [𝛽
2(−𝜆)
𝑛
+ 𝛽
1 (−𝜆) (−𝜆 − 𝛿)

𝑛−1
]

× ∫

∞

0

𝑚
𝑏 (𝑢 − 𝑥) 𝑑𝐹 (𝑥)

− 𝛽
1
𝜆

𝑛−1

∑

𝑘=1

𝐶
𝑘

𝑛−1
𝑐
𝑘
(−𝜆 − 𝛿)

𝑛−𝑘−1 𝑑
𝑘

𝑑𝑢𝑘

× (∫

∞

0

𝑚
𝑏 (𝑢 − 𝑥) 𝑑𝐹 (𝑥)) .

(8)
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Proof. Let 𝑡 be the time of the first claim and let 𝑥 be the
amount of the claim. There are two possibilities. First, 𝑡 <

(𝑏−𝑢)/𝑐 and the surplus has not yet reached the barrier. In this
case, the surplus immediately before time 𝑡 is 𝑢 + 𝑐𝑡. Second,
𝑡 ≥ (𝑏 − 𝑢)/𝑐 and the surplus immediately before time 𝑡 is 𝑏.
And since the “probability” that the claim occurs at time 𝑡 is
𝐾(𝑡)𝑑𝑡 and the “probability” of the claim amount being 𝑥 is
𝑑𝐹(𝑥), we have, for 0 ≤ 𝑢 ≤ 𝑏,

𝑚
𝑏 (𝑢) = ∫

(𝑏−𝑢)/𝑐

0

𝐾 (𝑡) 𝑒
−𝛿𝑡

× [∫

𝑢+𝑐𝑡

0

𝑚
𝑏 (𝑢 + 𝑐𝑡 − 𝑥) 𝑑𝐹 (𝑥)

+∫

∞

𝑢+𝑐𝑡

𝑤 (𝑢 + 𝑐𝑡, 𝑥 − 𝑢 − 𝑐𝑡) 𝑑𝐹 (𝑥)] 𝑑𝑡

+ ∫

∞

((𝑏−𝑢)/𝑐)

𝐾 (𝑡) 𝑒
−𝛿𝑡

× [∫

𝑏

0

𝑚
𝑏 (𝑏 − 𝑥) 𝑑𝐹 (𝑥)

+∫

∞

𝑏

𝑤 (𝑏, 𝑥 − 𝑏) 𝑑𝐹 (𝑥)] 𝑑𝑡.

(9)

Using the substitution 𝑠 = 𝑢 + 𝑐𝑡, we have

𝑚
𝑏 (𝑢) = ∫

𝑏

𝑢

𝐾(
𝑠 − 𝑢

𝑐
) 𝑒
−𝛿((𝑠−𝑢)/𝑐)

× [∫

𝑠

0

𝑚
𝑏 (𝑠 − 𝑥) 𝑑𝐹 (𝑥)

+∫

∞

𝑠

𝑤 (𝑠, 𝑥 − 𝑠) 𝑑𝐹 (𝑥)]
1

𝑐
𝑑𝑠

+ ∫

∞

𝑏

𝐾(
𝑠 − 𝑢

𝑐
) 𝑒
−𝛿((𝑠−𝑢)/𝑐)

× [∫

𝑏

0

𝑚
𝑏 (𝑏 − 𝑥) 𝑑𝐹 (𝑥)

+∫

∞

𝑏

𝑤 (𝑏, 𝑥 − 𝑏) 𝑑𝐹 (𝑥)]
1

𝑐
𝑑𝑠

(10)

which implies that

𝑐𝑚
𝑏 (𝑢) = ∫

𝑏

𝑢

𝐻(𝑢, 𝑠) ∫

∞

0

𝑚
𝑏 (𝑠 − 𝑥) 𝑑𝐹 (𝑥) 𝑑𝑠

+ ∫

∞

𝑏

𝐻(𝑢, 𝑠) ∫

∞

0

𝑚
𝑏 (𝑏 − 𝑥) 𝑑𝐹 (𝑥) 𝑑𝑠,

(11)

where 𝐻(𝑢, 𝑠) is defined in Lemma 1. Differentiating the
above equation 𝑘 times and using condition (6) yield

𝑐
𝑑
𝑘
𝑚
𝑏 (𝑢)

𝑑𝑢𝑘

= −𝛽
1
𝜆

𝑘−1

∑

𝑖=0

(
𝜆 + 𝛿

𝑐
)

𝑘−1−𝑖
𝑑
𝑖

𝑑𝑢𝑖
∫

∞

0

𝑚
𝑏 (𝑢 − 𝑥) 𝑑𝐹 (𝑥)

+ ∫

𝑏

𝑢

𝜕
𝑘
𝐻(𝑢, 𝑠)

𝜕𝑢𝑘
∫

∞

0

𝑚
𝑏 (𝑠 − 𝑥) 𝑑𝐹 (𝑥) 𝑑𝑠

+ ∫

∞

𝑏

𝜕
𝑘
𝐻(𝑢, 𝑠)

𝜕𝑢𝑘
∫

∞

0

𝑚
𝑏 (𝑏 − 𝑥) 𝑑𝐹 (𝑥) 𝑑𝑠.

(12)

Multiplying (12) by 𝑐𝑘(−𝜆−𝛿)𝑛−1−𝑘𝐶𝑘
𝑛−1

for 𝑘 = 0, 1, 2, . . . , 𝑛−

1, then adding up these equations, and using (5), we obtain

𝑛−1

∑

𝑘=0

𝐶
𝑘

𝑛−1
(−𝜆 − 𝛿)

𝑛−1−𝑘
𝑐
𝑘+1 𝑑
𝑘
𝑚
𝑏 (𝑢)

𝑑𝑢𝑘

= 𝛽
2
𝜆
𝑛
(−1)
𝑛−1

∫

𝑏

𝑢

𝑒
−(𝜆+𝛿)((𝑠−𝑢)/𝑐)

× ∫

∞

0

𝑚
𝑏 (𝑠 − 𝑥) 𝑑𝐹 (𝑥) 𝑑𝑠

+ 𝛽
2
𝜆
𝑛
(−1)
𝑛−1

∫

∞

𝑏

𝑒
−(𝜆+𝛿)((𝑠−𝑢)/𝑐)

× ∫

∞

0

𝑚
𝑏 (𝑏 − 𝑥) 𝑑𝐹 (𝑥) 𝑑𝑠

− 𝛽
1
𝜆

𝑛−1

∑

𝑘=1

𝐶
𝑘

𝑛−1
(−𝜆 − 𝛿)

𝑛−1−𝑘
𝑐
𝑘

× [

𝑘−1

∑

𝑖=0

(
𝜆 + 𝛿

𝑐
)

𝑘−1−𝑖
𝑑
𝑖

𝑑𝑢𝑖
(∫

∞

0

𝑚
𝑏 (𝑢 − 𝑥) 𝑑𝐹 (𝑥))] .

(13)

Differentiating (13) again, we have

𝑛−1

∑

𝑘=0

𝐶
𝑘

𝑛−1
(−𝜆 − 𝛿)

𝑛−1−𝑘
𝑐
𝑘+1 𝑑
𝑘+1

𝑚
𝑏 (𝑢)

𝑑𝑢𝑘+1

= (−1)
𝑛
𝛽
2
𝜆
𝑛
∫

∞

0

𝑚
𝑏 (𝑢 − 𝑥) 𝑑𝐹 (𝑥)

− 𝛽
1
𝜆

𝑛−1

∑

𝑘=1

𝐶
𝑘

𝑛−1
(−𝜆 − 𝛿)

𝑛−1−𝑘
𝑐
𝑘
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× [

𝑘−1

∑

𝑖=0

(
𝜆 + 𝛿

𝑐
)

𝑘−1−𝑖
𝑑
𝑖+1

𝑑𝑢𝑖+1
(∫

∞

0

𝑚
𝑏 (𝑢 − 𝑥) 𝑑𝐹 (𝑥))]

+
𝜆 + 𝛿

𝑐
𝛽
2
𝜆
𝑛
(−1)
𝑛−1

× [∫

𝑏

𝑢

𝑒
−(𝜆+𝛿)((𝑠−𝑢)/𝑐)

∫

∞

0

𝑚
𝑏 (𝑠 − 𝑥) 𝑑𝐹 (𝑥) 𝑑𝑠

+∫

∞

𝑏

𝑒
−(𝜆+𝛿)((𝑠−𝑢)/𝑐)

∫

∞

0

𝑚
𝑏 (𝑏 − 𝑥) 𝑑𝐹 (𝑥) 𝑑𝑠]

(14)

which, together with (13), implies

𝑛−1

∑

𝑘=0

𝐶
𝑘

𝑛−1
𝑐
𝑘+1

(−𝜆 − 𝛿)
𝑛−1−𝑘 𝑑

𝑘+1
𝑚
𝑏 (𝑢)

𝑑𝑢𝑘+1

+

𝑛−1

∑

𝑘=0

𝐶
𝑘

𝑛−1
𝑐
𝑘
(−𝜆 − 𝛿)

𝑛−𝑘 𝑑
𝑘
𝑚
𝑏 (𝑢)

𝑑𝑢𝑘

= −𝛽
1
𝜆

𝑛−1

∑

𝑘=1

𝐶
𝑘

𝑛−1
(−𝜆 − 𝛿)

𝑛−1−𝑘
𝑐
𝑘

× [

𝑘−1

∑

𝑖=0

(
𝜆 + 𝛿

𝑐
)

𝑘−1−𝑖
𝑑
𝑖+1

𝑑𝑢𝑖+1
(∫

∞

0

𝑚
𝑏 (𝑢 − 𝑥) 𝑑𝐹 (𝑥))]

− 𝛽
1
𝜆

𝑛−1

∑

𝑘=1

𝐶
𝑘

𝑛−1
(−𝜆 − 𝛿)

𝑛−𝑘
𝑐
𝑘−1

× [

𝑘−1

∑

𝑖=0

(
𝜆 + 𝛿

𝑐
)

𝑘−1−𝑖
𝑑
𝑖

𝑑𝑢𝑖
(∫

∞

0

𝑚
𝑏 (𝑢 − 𝑥) 𝑑𝐹 (𝑥))]

+ (−1)
𝑛
𝛽
2
𝜆
𝑛
∫

∞

0

𝑚
𝑏 (𝑢 − 𝑥) 𝑑𝐹 (𝑥) .

(15)

Moreover, note that

𝑛−1

∑

𝑘=0

𝐶
𝑘

𝑛−1
𝑐
𝑘+1

(−𝜆 − 𝛿)
𝑛−1−𝑘 𝑑

𝑘+1
𝑚
𝑏 (𝑢)

𝑑𝑢𝑘+1

= 𝑐
𝑛 𝑑
𝑛
𝑚
𝑏 (𝑢)

𝑑𝑢𝑛
+

𝑛−1

∑

𝑘=1

𝐶
𝑘−1

𝑛−1
𝑐
𝑘
(−𝜆 − 𝛿)

𝑛−𝑘 𝑑
𝑘
𝑚
𝑏 (𝑢)

𝑑𝑢𝑘
,

𝑛−1

∑

𝑘=0

𝐶
𝑘

𝑛−1
𝑐
𝑘
(−𝜆 − 𝛿)

𝑛−𝑘 𝑑
𝑘
𝑚
𝑏 (𝑢)

𝑑𝑢𝑘

= (−𝜆 − 𝛿)
𝑛
𝑚
𝑏 (𝑢) +

𝑛−1

∑

𝑘=1

𝐶
𝑘

𝑛−1
𝑐
𝑘
(−𝜆 − 𝛿)

𝑛−𝑘 𝑑
𝑘
𝑚
𝑏 (𝑢)

𝑑𝑢𝑘
.

(16)

So, it follows from (16) that
𝑛−1

∑

𝑘=0

𝐶
𝑘

𝑛−1
𝑐
𝑘+1

(−𝜆 − 𝛿)
𝑛−1−𝑘 𝑑

𝑘+1
𝑚
𝑏 (𝑢)

𝑑𝑢𝑘+1

+

𝑛−1

∑

𝑘=0

𝐶
𝑘

𝑛−1
𝑐
𝑘
(−𝜆 − 𝛿)

𝑛−𝑘 𝑑
𝑘
𝑚
𝑏 (𝑢)

𝑑𝑢𝑘

=

𝑛

∑

𝑘=0

𝐶
𝑘

𝑛
𝑐
𝑘
(−𝜆 − 𝛿)

𝑛−𝑘 𝑑
𝑘
𝑚
𝑏 (𝑢)

𝑑𝑢𝑘

(17)

and thus the result follows from (15) and (17).

Remark 3. Letting 𝛽
1
= 0, 𝛽

2
= 1, 𝑛 = 2 in (8), we get the

integro-differential equation for Erlang (2) risk model with a
constant dividend barrier of Li and Garrido [5].

Remark 4. Letting 𝛽
1
= 0, 𝛽

2
= 1, 𝑛 = 2, 𝑏 = ∞ in (8),

we obtain the integro-differential equation for Erlang (2) risk
model with no dividend barrier, which has been considered
in Dickson and Hipp [25].

Remark 5. Letting 𝑛 = 1, 𝑏 = ∞ in (8), we derive the integro-
differential equation for classical risk model. For details, see
Gerber and Shiu [23].

Remark 6. Letting 𝑛 = 1, the case has been studied in Lin
et al. [14].

Remark 7. Letting 𝑏 = ∞, the case has been studied in Zhao
and Yin [26].

Theorem 8. The Laplace transform of𝑚
𝑏
(𝑢) is

𝑚
∗

𝑏
(𝑠)

=

𝐴∫
∞

0
𝑒
−𝑠𝑢

∫
∞

𝑢
𝜔 (𝑢, 𝑥 − 𝑢) 𝑑𝐹 (𝑥) 𝑑𝑢 + 𝐺 (𝑠) + 𝐷 (𝑠)

(𝑠𝑐 − 𝜆 − 𝛿)
𝑛
− [𝛽
2(−𝜆)
𝑛
− 𝜆𝛽
1(𝑠𝑐 − 𝜆 − 𝛿)

𝑛−1
] 𝑓∗ (𝑠)

,

(18)

where

𝐴 = 𝛽
2(−𝜆)
𝑛
+ 𝛽
1 (−𝜆) (−𝜆 − 𝛿)

𝑛−1
,

𝐺 (𝑠) =

𝑛−1

∑

𝑘=1

𝑘−1

∑

𝑗=0

𝐶
𝑘

𝑛
(−𝜆 − 𝛿)

𝑛−𝑘
𝑐
𝑘
𝑠
𝑘−1−𝑗

𝑚
(𝑗)

𝑏
(0) ,

𝐷 (𝑠) = 𝛽
1
𝜆

𝑛−1

∑

𝑘=2

𝐶
𝑘

𝑛−1
(−𝜆 − 𝛿)

𝑛−1−𝑘
𝑐
𝑘

×

𝑘−1

∑

𝑗=1

𝑠
𝑘−1−𝑗

𝑗−1

∑

𝑙=0

𝑚
(𝑙)

𝑏
(0) 𝑓
(𝑗−1−𝑙)

(0)

− 𝛽
1
𝜆

𝑛−1

∑

𝑘=1

𝐶
𝑘

𝑛−1
(−𝜆 − 𝛿)

𝑛−1−𝑘
𝑐
𝑘

× ∫

∞

0

𝑒
−𝑠𝑢

[
𝑑
𝑘

𝑑𝑢𝑘
∫

∞

𝑢

𝜔 (𝑢, 𝑥 − 𝑢) 𝑑𝐹 (𝑥)] 𝑑𝑢.

(19)
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Proof. It is easy to see that

∫

∞

0

𝑒
−𝑠𝑢 𝑑
𝑘
𝑚
𝑏 (𝑢)

𝑑𝑢𝑘
𝑑𝑢 = 𝑠

𝑘
𝑚
∗

𝑏
(𝑠) −

𝑘−1

∑

𝑗=0

𝑠
𝑘−1−𝑗

𝑚
(𝑗)

𝑏
(0) , (20)

∫

∞

0

𝑒
−𝑠𝑢

∫

∞

0

𝑚
𝑏 (𝑢 − 𝑥) 𝑑𝐹 (𝑥) 𝑑𝑢

= ∫

∞

0

𝑒
−𝑠𝑢

∫

𝑢

0

𝑚
𝑏 (𝑢 − 𝑥) 𝑑𝐹 (𝑥) 𝑑𝑢

+ ∫

∞

0

𝑒
−𝑠𝑢

∫

∞

𝑢

𝜔 (𝑢, 𝑥 − 𝑢) 𝑑𝐹 (𝑥) 𝑑𝑢

= 𝑠𝑚
∗

𝑏
(𝑠) 𝑓
∗
(𝑠) + ∫

∞

0

𝑒
−𝑠𝑢

∫

∞

𝑢

𝜔 (𝑢, 𝑥 − 𝑢) 𝑑𝐹 (𝑥) 𝑑𝑢,

(21)

∫

∞

0

𝑒
−𝑠𝑢 𝑑
𝑘

𝑑𝑢𝑘
(∫

∞

0

𝑚
𝑏 (𝑢 − 𝑥) 𝑑𝐹 (𝑥)) 𝑑𝑢

= ∫

∞

0

𝑒
−𝑠𝑢 𝑑
𝑘

𝑑𝑢𝑘
(∫

𝑢

0

𝑚
𝑏 (𝑢 − 𝑥) 𝑑𝐹 (𝑥)) 𝑑𝑢

+ ∫

∞

0

𝑒
−𝑠𝑢 𝑑
𝑘

𝑑𝑢𝑘
(∫

∞

𝑢

𝜔 (𝑢, 𝑥 − 𝑢) 𝑑𝐹 (𝑥)) 𝑑𝑢

= 𝑠
𝑘
𝑚
∗

𝑏
(𝑠) 𝑓
∗
(𝑠) −

𝑘−1

∑

𝑗=1

𝑠
𝑘−1−𝑗

𝑗−1

∑

𝑙=0

𝑚
(𝑙)

𝑏
(0) 𝑓
(𝑗−1−𝑙)

(0)

+ ∫

∞

0

𝑒
−𝑠𝑢 𝑑
𝑘

𝑑𝑢𝑘
(∫

∞

𝑢

𝜔 (𝑢, 𝑥 − 𝑢) 𝑑𝐹 (𝑥)) 𝑑𝑢.

(22)

Taking the Laplace transform on both sides of (8), and
together with (20), (21), and (22), we have
𝑛

∑

𝑘=0

𝐶
𝑘

𝑛
𝑐
𝑘
(−𝜆 − 𝛿)

𝑛−𝑘
(𝑠
𝑘
𝑚
∗

𝑏
(𝑠) −

𝑘−1

∑

𝑗=0

𝑠
𝑘−1−𝑗

𝑚
(𝑗)

𝑏
(0))

= [𝛽
2(−𝜆)
𝑛
+ 𝛽
1 (−𝜆) (−𝜆 − 𝛿)

𝑛−1
]

× [𝑚
∗

𝑏
(𝑠) 𝑓
∗
(𝑠) + ∫

∞

0

𝑒
−𝑠𝑢

∫

∞

𝑢

𝜔 (𝑢, 𝑥 − 𝑢) 𝑑𝐹 (𝑥) 𝑑𝑢]

− 𝛽
1
𝜆 [(𝑠𝑐 − 𝜆 − 𝛿)

𝑛−1
− (−𝜆 − 𝛿)

𝑛−1
]𝑚
∗

𝑏
(𝑠) 𝑓
∗
(𝑠)

+ 𝛽
1
𝜆

𝑛−1

∑

𝑘=2

𝐶
𝑘

𝑛−1
𝑐
𝑘
(−𝜆 − 𝛿)

𝑛−1−𝑘

×

𝑘−1

∑

𝑗=1

𝑠
𝑘−1−𝑗

𝑗−1

∑

𝑙=0

𝑚
(𝑙)

𝑏
(0) 𝑓
(𝑗−1−𝑙)

(0)

− 𝛽
1
𝜆

𝑛−1

∑

𝑘=1

𝐶
𝑘

𝑛−1
𝑐
𝑘
(−𝜆 − 𝛿)

𝑛−1−𝑘

× ∫

∞

0

𝑒
−𝑠𝑢

[
𝑑
𝑘

𝑑𝑢𝑘
∫

∞

𝑢

𝜔 (𝑢, 𝑥 − 𝑢) 𝑑𝐹 (𝑥)] 𝑑𝑢

(23)

which implies (8).

Lemma 9. Let 𝛿 be strictly positive and 𝑛 is a positive integer;
then the equation

(𝑠𝑐 − 𝜆 − 𝛿)
𝑛
= 𝑓
∗
(𝑠) [𝛽2(−𝜆)

𝑛
+ 𝛽
1 (−𝜆) (−𝜆 − 𝛿)

𝑛−1
]

− 𝑓
∗
(𝑠) 𝜆𝛽1 [(𝑠𝑐 − 𝜆 − 𝛿)

𝑛−1
− (−𝜆 − 𝛿)

𝑛−1
]

(24)

has exact 𝑛 roots 𝑠
𝑙
(𝛿) with Re(𝑠

𝑙
(𝛿)) > 0 (𝑙 = 1, 2, 3, . . . , 𝑛).

Proof. When 𝑠 = 0,we have

[𝛽
2(−𝜆)
𝑛
+ 𝛽
1 (−𝜆) (−𝜆 − 𝛿)

𝑛−1
] 𝑓
∗
(0)


<
(−𝜆 − 𝛿)

𝑛 .

(25)

So for 𝜌 > 0 sufficiently big, the inequality
(𝑠𝑐 − 𝜆 − 𝛿)

𝑛

>

[𝛽
2(−𝜆)
𝑛
+ 𝛽
1 (−𝜆) (−𝜆 − 𝛿)

𝑛−1

−𝜆𝛽
1(𝑠𝑐 − 𝜆 − 𝛿)

𝑛−1
+ 𝜆𝛽
1(−𝜆 − 𝛿)

𝑛−1
] 𝑓
∗
(𝑠)



(26)

holds on the imaginary axis and on the semicircle {𝑠 ∈

£, Re(𝑠) > 0, |𝑠| = 𝜌}. By Rouches theorem (20) has exact
𝑛 roots on the right-half plane.

4. Numerical Illustration for Ruin Probability

In this section, we give the numerical illustration for 𝑚
𝑏
(𝑢)

when the claim number process has Erlang (2) process (𝛽
1
=

0, 𝛽
2
= 1, 𝑛 = 2), 𝛿 = 0 and 𝑤(𝑥, 𝑦) = 1. At this time,𝑚

𝑏
(𝑢)

turns to ruin probability 𝜓
𝑏
(𝑢). By conditioning on the time

of the first claim we have, for 0 ≤ 𝑢 ≤ 𝑏,

𝑚
𝑏 (𝑢) = ∫

((𝑏−𝑢)/𝑐)

0

𝐾
1 (𝑡) 𝛾𝑏 (𝑢 + 𝑐𝑡) 𝑑𝑡

+ ∫

∞

((𝑏−𝑢)/𝑐)

𝐾
1 (𝑡) 𝛾𝑏 (𝑏) 𝑑𝑡,

(27)

where

𝛾
𝑏 (𝑡) = ∫

𝑡

0

𝑚
𝑏 (𝑡 − 𝑥) 𝑑𝐹 (𝑥) + 1 − 𝐹 (𝑡) . (28)

Substituting𝐾
1
(𝑡) = 𝜆

2
𝑡𝑒
−𝜆𝑡 into (27), we obtain

𝑚
𝑏 (𝑢) = (

𝜆

𝑐
)

2

∫

𝑏

𝑢

(𝑡 − 𝑢) 𝑒
−(𝜆/𝑐)(𝑡−𝑢)

𝛾
𝑏 (𝑡) 𝑑𝑡

+ 𝛾
𝑏 (𝑏) 𝑒

−(𝜆/𝑐)(𝑡−𝑢)
[1 +

𝜆

𝑐
(𝑏 − 𝑢)] .

(29)

Differentiating (29) with respect to 𝑢, we have, for 0 ≤ 𝑢 ≤ 𝑏,

𝑚


𝑏
(𝑢) =

𝜆

𝑐
𝑚
𝑏 (𝑢) − (

𝜆

𝑐
)

2

∫

𝑏

𝑢

𝑒
−(𝜆/𝑐)(𝑡−𝑢)

𝛾
𝑏 (𝑡) 𝑑𝑡

−
𝜆𝛾
𝑏 (𝑏)

𝑐
𝑒
−(𝜆/𝑐)(𝑏−𝑢)

.

(30)
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Differentiating (30) again with respect to 𝑢, we have

𝑚


𝑏
(𝑢) =

𝜆

𝑐
𝑚


𝑏
(𝑢)

−
𝜆

𝑐
[(

𝜆

𝑐
)

2

∫

𝑏

𝑢

𝑒
−(𝜆/𝑐)(𝑡−𝑢)

𝛾
𝑏 (𝑡) 𝑑𝑡

+
𝜆

𝑐
𝛾
𝑏 (𝑏) 𝑒

−(𝜆/𝑐)(𝑏−𝑢)
]

+ (
𝜆

𝑐
)

2

𝛾
𝑏 (𝑢) .

(31)

Suppose the claim size distribution is exponential. Let 𝐹(𝑥) =
1 − 𝑒
−𝛼𝑥, 𝛼 > 0; then substituting (30) into (31), we have

𝑚


𝑏
(𝑢) =

2𝜆

𝑐
𝑚


𝑏
(𝑢) − (

𝜆

𝑐
)

2

𝑚
𝑏 (𝑢)

+ (
𝜆

𝑐
)

2

𝛼𝑒
−𝛼𝑢

∫

𝑢

0

𝑚
𝑏 (𝑡) 𝑒
−𝛼𝑡

𝑑𝑡 + (
𝜆

𝑐
)

2

𝑒
−𝛼𝑢

.

(32)

Differentiating (32) with respect to 𝑢, we have

𝑚


𝑏
(𝑢) =

2𝜆

𝑐
𝑚


𝑏
(𝑢) − (

𝜆

𝑐
)

2

𝑚


𝑏
(𝑢)

− (
𝜆

𝑐
)

2

𝛼
2
𝑒
−𝛼𝑢

∫

𝑢

0

𝑚
𝑏 (𝑡) 𝑒
−𝛼𝑡

𝑑𝑡

+ (
𝜆

𝑐
)

2

𝛼𝑚
𝑏 (𝑢) − (

𝜆

𝑐
)

2

𝛼𝑒
−𝛼𝑢

.

(33)

(32) × 𝛼+ (33) implies

𝑚


𝑏
(𝑢) + (𝛼 −

2𝜆

𝑐
)𝑚


𝑏
(𝑢) +

𝜆
2
− 2𝛼𝑐𝜆

𝑐2
𝑚


𝑏
(𝑢) = 0. (34)

This is a three-order differential equation with constant
coefficients, so we can carry on the numerical solution.
Suppose 𝛼 = 10000, 𝑐 = 200, 𝜆 = 0.0001, 𝑏 = 20;
then by the Matlab, we obtain the curve of ruin probability
(see Figure 1). As is known to all ruin must occur under
the constant dividend barrier. From Figure 1, we know that
ruin probability 𝜓

𝑏
(𝑢) is an increasing function of the initial

surplus 𝑢 (convex function) and the function value of 1 is its
asymptote.
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