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This paper addresses the𝐻
∞
fusion filtering problem for networked dynamical systems, where measurements may arrive at fusion

center in four different scenes and the fusion center could receive none, one, ormultiple measurements in a fusion period. A unified
𝐻
∞
performance criterion function, which is suitable for different measurement arrival scenes, is designed for the filtering process

of networked dynamical systems. Then, the𝐻
∞
performance criterion function is described as an indefinite quadratic inequality

and solved by a novel noise projectionmethod inKrein space.On this basis, a unified finite horizon𝐻
∞
filteringmethod is proposed

for networked dynamical systems. Simulation results are provided to illustrate the correctness and the effectiveness of the theoretical
analysis.

1. Introduction

The filtering methods are widely utilized in the fields of
signal processing and automatic control for dynamical sys-
tems. With the development of computer and information
technology, researchers begin to paymore andmore attention
on networked dynamical systems, such as the open channel
networks and networked control systems [1–3]. However, it
is inevitable that the measurement data is transmitted in the
networked dynamical systems with different time delay.

In networked dynamical systems, the targets of interest
are (remotely) observed by various sensors. The sampled
measurements may arrive at information processing centers
(especially refer to fusion filters, as in this paper) in different
scenes through the transport network. Scene 1: the measure-
ment arrives at the fusion filter in time, which is abbreviated
to “ITM” in this paper. Scene 2: the measurement which
arrives at the fusion filter with some time delay, but still in
the sampled sequence, is abbreviated to “ISDM.” Scene 3:
the delay measurement arrives at the fusion filter out of the
sampled sequence, which is abbreviated to “OOSM.” Scene 4:
the sampled measurement is missing in the transmitting pro-
cess, which is also named as “packet dropout” (abbreviated to

“PD”).The traditional filters are mainly proposed for systems
with all measurements in Scene 1, such as Kalman filter,𝐻

∞

filter. For the system with measurements arriving at fusion
filter in other scenes, several effective filtering methods have
also been proposed, recently.

(1) For systemswithmeasurement in Scene 2, some novel
filteringmethods are proposed based onKalman filter
[4, 5]. And the developed𝐻

∞
filtering approaches are

also deduced for this kind of systems with bounded
energy noises [6, 7].

(2) For systems with measurement in Scene 3, several
OOSM filtering problems are investigated with the
help of such technologies as nonstandard smoothing
[8], Kalman filter with measurement weighted sum-
mation [9, 10], and reorganized innovation [11, 12].

(3) For systems with measurement in Scene 4, several
filtering approaches are developed based on the
traditional Kalman filter [13–15] or 𝐻

∞
filter [16],

based on different descriptions of the packet dropout
phenomenon, such as the Markovian jump approach
[13] and the binary Bernoulli distribution approach
[14–16].
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Although some recent approaches have considered the
systems in multiple measurement arrival scenes [17, 18],
most results of them are deduced for the system with single
sensor. Few papers address the filtering problems for the
networked dynamical system with multiple sensors. In [19,
20], the fusion filtering methods for networked multisensor
systems are deduced based on Kalman filter, which requires
the system noise to satisfy zero mean Gaussian distribution
with known variance, which, however, is usually not available.
To the best of the author’s knowledge, the filtering problem
for the networkedmultisensor systemwith unknown statistic
noises has not been fully investigated and still remains
challenging.

Motivated by the above discussion, a unified finite hori-
zon 𝐻

∞
filtering method is proposed for the networked

dynamical system in this paper in which four different kinds
of measurement arrival scenes are dealt with in a unified
manner. Because of the complex arrival scenes of networked
measurements, the fusion filter for the networked dynamical
system could receive none, one, or multiple measurements
in a fusion period. The 𝐻

∞
filtering algorithm should be

deduced to achieve a𝐻
∞

performance criterion function. In
the traditional 𝐻

∞
performance criterion function, an ideal

assumption condition is that themeasurement sampling time
is the same as the measurement arrival time and the filtering
time. However, in networked dynamical systems, the arrival
time of a networked measurement mostly is not equal to its
sampling time. And the fusion filter deals with the sampled
measurement at its arrival time, rather than its sampling
time. It means that the traditional𝐻

∞
performance criterion

function cannot be applied to networked dynamical systems.
In this paper, a novel unified 𝐻

∞
performance criterion

function is built for the different measurement arrival scenes
in networked dynamical systems, firstly. Secondly, the 𝐻

∞

performance criterion function is described as an indefi-
nite quadratic inequality. The stationary point of indefinite
quadratic form in Hilbert space corresponds to a projection
in Krein space. In this paper, the stationary point of the indef-
inite quadratic inequality is obtained by solving a projection
in Krein space. However, because of the random delay of
networked measurements, the process of solving the projec-
tion with the delay measurement becomes more complex.
Thirdly, a noise projection approach in Krein space is pro-
posed to solve the projection corresponding to the stationary
point. Then, a unified 𝐻

∞
filtering method is proposed for

the networked dynamical system. Finally, the validity and
effectiveness of the proposed method are verified in the final
simulation.

The remainder of this paper is organized as follows. The
problem of the fusion filtering for the networked dynamical
system is formulated in Section 2. In Section 3, a unified finite
horizon 𝐻

∞
filter is deduced based on a novel performance

criterion function for the networked dynamical system in
various measurement arrival scenes. An example for illus-
tration is given in Section 4, and we conclude this paper in
Section 5.

Notation. The elements in Hilbert space are denoted by bold
face letters, such as “x, x̂,” and the elements in Krein space are

denoted by the bold face letters with bar, such as “x, ̂x.” The
superscripts “T” and “−1” mean the transposed matrix and
inverse matrix, respectively. 𝜃(𝑘) ∈ 𝑙

2
[1,𝑁) is the Euclidean

norm; that is, ∑𝑁
𝑘=1

𝜃
𝑇

(𝑘)𝜃(𝑘) < ∞.

2. Problem Formulation

Consider the following discrete networkeddynamical system,
which is observed by𝑁 sensors

x (𝑘) = F (𝑘, 𝑘 − 1) x (𝑘 − 1) + w (𝑘, 𝑘 − 1) ,

y
𝑙
(𝑘) = H

𝑙
(𝑘) x (𝑘) + v

𝑙
(𝑘) , 𝑙 = 1, 2, . . . , 𝑁,

z (𝑘) = L (𝑘) x (𝑘) ,

(1)

where x(𝑘) ∈ R𝑛 is the state vector. y
𝑙
(𝑘) ∈ R𝑞 is the

measurement output of sensor 𝑙. z(𝑘) is the signal to be
estimated. F(𝑘, 𝑘−1),H

𝑙
(𝑘), and L(𝑘) are the systemmatrices

with compatible dimensions. w(𝑘, 𝑘 − 1) ∈ 𝑙
2
[1,𝑁) is the

process noise and v
𝑙
(𝑘) ∈ 𝑙

2
[1,𝑁) is the corresponding

measurement noise of sensor 𝑙.
According to the traditional finite horizon 𝐻

∞
filter for

single-sensor system, for a given scalar 𝛾 > 0, ẑ(𝑘 | 𝑘)

can be obtained as an approximation of z(𝑘) based on the
received measurements {y(𝑖) | 𝑖 = 1, 2, . . . 𝑘} to guarantee the
following𝐻

∞
performance criterion function:

sup
w,k∈𝑙
2[1,𝑁)

((

𝑘

∑

𝑖=1

e𝑇 (𝑖) e (𝑖))

× (

𝑘

∑

𝑖=1

k𝑇 (𝑖) k (𝑖) +
𝑘

∑

𝑖=1

w𝑇 (𝑖, 𝑖 − 1)w (𝑖, 𝑖 − 1)

+ x̃𝑇
0
P−1
0
x̃
0
)

−1

) < 𝛾
2

,

(2)

where e
𝑧
(𝑘) = z(𝑘) − ẑ(𝑘 | 𝑘), x̃

0
= x(0) − x̂

0
, and x̂

0
is an

initial estimate of x(0). P
0
is a given positive definite matrix

with compatible dimension.

Remark 1. In the above performance criterion function, the
filtering time of the fusion filter is the same as the sampling
time of measurements, which, however, is not this case in
networked dynamical systems.

In a fusion period, the networked measurement could
arrive at the fusion filter in four different scenes considered
in this paper; namely, the measurement could be ITM,
ISDM, or OOSM.The unified filter for networked dynamical
systems would deal with variousmeasurement arrival scenes.
The filtering time of networked measurement is its arrival
time, rather than its sampling time. This means that the
performance criterion function shown in (2) cannot be
directly extended to the unified filtering process of networked
dynamical systems. In the next section, a novel performance
criterion function is built for various measurement arrival
scenes in the networked dynamical system, firstly. On this
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basis, a unified finite horizon 𝐻
∞

fusion filtering method is
deduced.

3. Unified Finite Horizon 𝐻
∞

Fusion Filtering
for Networked Dynamical System

3.1. Performance Criterion Function. Let 𝜅(𝑖) be a counter,
which counts for the number of the measurements received
by the fusion filter in the fusion period [𝑖, 𝑖 + 1). At the start
of the period, 𝜅(𝑖) = 0. Whenever a measurement arrives at
the fusion filter, 𝜅(𝑖) = 𝜅(𝑖) + 1. Denote the 𝑗th measurement
received by the fusion filter in the period [𝑖, 𝑖 + 1) as y

𝛼
𝑖

𝑗

(𝛽
𝑖

𝑗
),

in which the notations 𝑗, 𝛼𝑖
𝑗
, 𝛽
𝑖

𝑗
mean that y

𝛼
𝑖

𝑗

(𝛽
𝑖

𝑗
) is sampled

by sensor 𝛼
𝑖

𝑗
at the sampled time 𝛽

𝑖

𝑗
. Here 𝛽

𝑖

𝑗
≤ 𝑖, 𝛼

𝑖

𝑗
≤

𝑁, and 𝑗 ≤ 𝑖𝑁 are all positive integers.
According to the measurement arrival scenes, for a given

𝛾 > 0, a novel finite horizon𝐻
∞
fusion filtering performance

criterion function could be given as follows in the fusion
period [𝑘, 𝑘 + 1) to obtain ẑ(𝑘 | 𝑘) based on the received
measurement space {y

𝛼
𝑖

𝑗

(𝛽
𝑖

𝑗
) | 1 ≤ 𝑖 ≤ 𝑘 and 𝜅(𝑖) ̸= 0, 𝑗 =

1, . . . , 𝜅(𝑖)}. Consider

sup
w,k∈𝑙
2[1,𝑁)

((

𝑘

∑

𝑖=1

𝜅(𝑖) ̸= 0

𝜅(𝑘)

∑

𝑗=1

e𝑇
𝑧,𝑗

(𝑖) e
𝑧,𝑗

(𝑖))

×(

𝑘

∑

𝑖=1

𝜅(𝑖) ̸= 0

𝜅(𝑘)

∑

𝑗=1

k𝑇
𝛼
𝑖

𝑗

(𝛽
𝑖

𝑗
) k
𝛼
𝑖

𝑗

(𝛽
𝑖

𝑗
)

+

𝑘

∑

𝑖=1

w𝑇 (𝑖, 𝑖 − 1)w (𝑖, 𝑖 − 1)

+x̃𝑇
0
P−1
0
x̃
0
)

−1

) < 𝛾
2

,

(3)

where e
𝑧,𝑗
(𝑖) = ẑ

𝑗
(𝑖 | 𝑖) − z(𝑖). ẑ

𝑗
(𝑖 | 𝑖) is the 𝑗th estimate of

z(𝑖), updated with the measurement y
𝛼
𝑖

𝑗

(𝛽
𝑖

𝑗
).

Remark 2. The performance criterion function shown in (3)
can be utilized for the finite horizon 𝐻

∞
fusion filtering

processes of the dynamical system withmeasurements which
could arrive at fusion filter in the aforementioned four kinds
of arrival scenes.

(1) When none measurement arrives at the fusion filter
in the period [𝑘, 𝑘 + 1), 𝜅(𝑘) = 0.

(2) When ameasurement firstly arrives at the fusion filter
in [𝑘, 𝑘 + 1), 𝜅(𝑘) = 1. If 𝛽𝑘

1
= 𝑘, the measurement is

an ITM y
𝛼
𝑘

1

(𝑘). If 𝛽𝑘
1
< 𝑘, this measurement is a delay

measurement (an ISDM or a OOSM) sampled at 𝛽𝑘
1

by sensor 𝛼𝑘
1
.

(3) When a second (third,. . ., etc.) measurement arrives
in [𝑘, 𝑘 + 1), then let 𝜅(𝑘) = 𝜅(𝑘) + 1. The new

measurement would also be an ITM or a delay
measurement.

3.2. Unified Finite Horizon 𝐻
∞

Filter Design. The perfor-
mance criterion function shown in (3) can also be described
as the following indefinite quadratic inequality:

𝐽
𝜅(𝑘)

=

𝑘

∑

𝑖=1

𝜅(𝑖) ̸= 0

𝜅(𝑘)

∑

𝑗=1

(v𝑇
𝛼
𝑖

𝑗

(𝛽
𝑖

𝑗
) v
𝛼
𝑖

𝑗

(𝛽
𝑖

𝑗
) − 𝛾
−2e𝑇
𝑧,𝑗

(𝑖) e
𝑧,𝑗

(𝑖))

+

𝑘

∑

𝑖=1

w𝑇 (𝑖, 𝑖 − 1)w (𝑖, 𝑖 − 1) + x̃𝑇
0
P−1
0
x̃
0
> 0.

(4)

Remark 3. The quadratic form 𝐽
𝜅(𝑘)

satisfies the indefinite
quadratic inequality above if and only if (1) 𝐽

𝜅(𝑘)
has a

stationary point, (2) the value of 𝐽
𝜅(𝑘)

at the stationary point
is a minimum, and (3) the minimum is positive.

The stationary point of an indefinite quadratic form in
Hilbert space corresponds to a projection in Krein space
which is solved to obtain the stationary point of 𝐽

𝜅(𝑘)
in this

paper. A Krein space state-space model associated with the
system shown in (1) is introduced as

x (𝑖) = F (𝑖, 𝑖 − 1) x (𝑖 − 1) + w (𝑖, 𝑖 − 1) , 𝑖 = 1, . . . , 𝑘,

y
𝛼
𝑖

𝑗

(𝛽
𝑖

𝑗
) = H

𝛼
𝑖

𝑗

(𝛽
𝑖

𝑗
) x (𝛽𝑖

𝑗
) + v
𝑦,𝛼
𝑖

𝑗

(𝛽
𝑖

𝑗
) ,

1 ≤ 𝑖 ≤ 𝑘, 𝜅 (𝑖) ̸= 0, 0 < 𝑗 ≤ 𝜅 (𝑖) ,

̆z (𝑖) = L (𝑖) x (𝑖) + v
𝑧,𝑗

(𝑖) ,

1 ≤ 𝑖 ≤ 𝑘, 𝜅 (𝑖) ̸= 0, 0 < 𝑗 ≤ 𝜅 (𝑖) ,

(5)

with

⟨

[

[

[

[

[

[

[

x (0) − ̂x
0

w (𝑗
1
, 𝑗
1
− 1)

v
𝑦,𝑗
3

(𝛽
𝑙
1

𝑗
3

)

v
𝑧,𝑗
3

(𝑙
1
)

]

]

]

]

]

]

]

,

[

[

[

[

[

[

[

x (0) − ̂x
0

w (𝑗
2
, 𝑗
2
− 1)

v
𝑦,𝑗
4

(𝛽
𝑙
2

𝑗
4

)

v
𝑧,𝑗
4

(𝑙
2
)

]

]

]

]

]

]

]

⟩

=

[

[

[

[

P
0

0 0 0
0 I𝛿
𝑗
1
,𝑗
2

0 0
0 0 I𝛿

𝑗
3
,𝑗
4

𝛿
𝑙
1
,𝑙
2

0
0 0 0 −𝛾

2I𝛿
𝑗
3
,𝑗
4

𝛿
𝑙
1
,𝑙
2

]

]

]

]

,

1 ≤ 𝑗
1
, 𝑗
2
≤ 𝑘,

1 ≤ 𝑗
3
, 𝑗
4
≤ 𝑘, 𝜅 (𝑗

3
) > 1,

0 < 𝑙
1
≤ 𝜅 (𝑗

3
) , 0 < 𝑙

2
≤ 𝜅 (𝑗

4
) .

(6)

Denote W(𝑘) := [w𝑇(1, 0), . . . ,w𝑇(𝑘, 𝑘 − 1)]

𝑇, 𝜉(𝑘) :=

[x𝑇(0),W𝑇(𝑘)]
𝑇

. The stationary point of the indefinite
quadratic form shown in (4) corresponds to the projec-
tion of 𝜉(𝑘) into the Krein subspace Γ

𝜅(𝑘)
(𝑘) spanned by

{y
𝛼
𝑖

𝑗

(𝛽
𝑖

𝑗
),

̆z
𝑗
(𝑖) | 1 ≤ 𝑖 ≤ 𝑘 and 𝜅(𝑖) ̸= 0, 𝑗 = 1, . . . , 𝜅(𝑖)}.
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According to the Krein space state equation shown in (5),
we have x(𝑖 − 1) = F(𝑖 − 1, 𝑖)(x(𝑖) − w(𝑖, 𝑖 − 1)), and thus

y
𝛼
𝑖

𝑗

(𝛽
𝑖

𝑗
) = H

𝛼
𝑖

𝑗

(𝛽
𝑖

𝑗
) x (𝛽𝑖

𝑗
) + v
𝑦,𝛼
𝑖

𝑗

(𝛽
𝑖

𝑗
)

= H
𝛼
𝑖

𝑗

(𝛽
𝑖

𝑗
) F (𝛽𝑖

𝑗
, 𝑖) x (𝑖) + v

𝑦,𝛼
𝑖

𝑗

(𝛽
𝑖

𝑗
)

−H
𝛼
𝑖

𝑗

(𝛽
𝑖

𝑗
) F (𝛽𝑖

𝑗
, 𝑖)w (𝑖, 𝛽

𝑖

𝑗
) .

(7)

Let y∗
𝑗
(𝑖) = y

𝛼
𝑖

𝑗

(𝛽
𝑖

𝑗
); H∗
𝑗
(𝑖) = H

𝛼
𝑖

𝑗

(𝛽
𝑖

𝑗
)F(𝛽𝑖
𝑗
, 𝑖); v∗
𝑦,𝑗
(𝑖) =

v
𝑦,𝛼
𝑖

𝑗

(𝛽
𝑖

𝑗
) −H
𝛼
𝑖

𝑗

(𝛽
𝑖

𝑗
)F(𝛽𝑖
𝑗
, 𝑖)w(𝑖, 𝛽𝑖

𝑗
); we have

y∗
𝑗
(𝑖) = H∗

𝑗
(𝑖) x (𝑖) + v∗

𝑦,𝑗
(𝑖) , (8)

with the Gramian matrixes

⟨w (𝑙, 𝑙 − 1) , v∗
𝑦,𝑗

(𝑖)⟩

= Q (𝑙, 𝑙 − 1) F𝑇 (𝑖, 𝑙 + 1) (H∗
𝑗
(𝑖))

𝑇

,

𝛽
𝑖

𝑗
≤ 𝑙 ≤ 𝑖 − 1,

P∗V𝑦𝑦,𝑗 (𝑖) = ⟨v∗
𝑦,𝑗

(𝑖) , v∗
𝑦,𝑗

(𝑖)⟩

= I +H∗
𝑗
(𝑖)(

𝑖

∑

𝑙=𝛽
𝑖

𝑗
+1

F (𝑖, 𝑙) F𝑇 (𝑖, 𝑙)) (H∗
𝑗
(𝑖))

𝑇

,

𝛽
𝑖

𝑗
< 𝑖,

(9)

where F(𝑖, 𝑖) = I.
Denote the Krein subspace spanned by {y

𝑙
(𝛽
𝜏

𝑙
),

̆z
𝑙
(𝜏) | 1 ≤

𝜏 ≤ 𝑖 − 1 and 𝜅(𝜏) ̸= 0, 𝑙 = 1, . . . , 𝜅(𝜏)} and {y
𝑙
(𝛽
𝑖

𝑙
),

̆z
𝑙
(𝑖) | 𝑙 =

1, . . . , 𝑗 − 1} by Γ
𝑗−1

(𝑖). The projection of y∗
𝑗
(𝑖) into Γ

𝑗−1
(𝑖) is

given by

̂y∗
𝑗
(𝑖 | 𝑖 − 1) = H∗

𝑗
(𝑖)

̂x
𝑗
(𝑖 | 𝑖 − 1) +

̂v∗
𝑦,𝑗

(𝑖 | 𝑖 − 1) , (10)

in which

̂x
𝑗
(𝑖 | 𝑖 − 1) =

̂x
𝑗−1

(𝑖 | 𝑖) , 𝑗 > 1,

̂x
1
(𝑖 | 𝑖 − 1) = F (𝑖, 𝑖 − 1)

̂x
𝜅(𝑖−1)

(𝑖 − 1 | 𝑖 − 1) ,

(11)

̂v∗
𝑦,𝑗

(𝑖 | 𝑖 − 1) = −H∗
𝑗
(𝑖)

̂w (𝑖, 𝛽
𝑖

𝑗
| 𝑖 − 1) , (12)

̂z
𝑗
(𝑖 | 𝑖 − 1) = L (𝑖) ̂x

𝑗
(𝑖 | 𝑖 − 1) . (13)

Let e∗
𝑦𝑧,𝑗

(𝑖) := [

y∗
𝑗
(𝑖)−
̂y
∗

𝑗
(𝑖|𝑖−1)

̆z
𝑗
(𝑖)−
̂z
𝑗
(𝑖|𝑖−1)

] = [
H∗
𝑗
(𝑖)

L(𝑖) ]
̃x
𝑗
(𝑖 | 𝑖 − 1) +

[

̃v
∗

𝑦,𝑗
(𝑖|𝑖−1)

v
𝑧,𝑗
(𝑖)

] ,R
𝑤𝑦𝑧,𝑙

(𝑖, 𝛽
𝑖

𝑗
, 𝑘) := ⟨w(𝑖, 𝛽𝑖

𝑗
), e∗
𝑦𝑧,𝑙

(𝑘)⟩, R∗
𝑒𝑦𝑧,𝑗

(𝑖) :=

⟨e∗
𝑦𝑧,𝑗

(𝑖), e∗
𝑦𝑧,𝑗

(𝑖)⟩. It is obvious that e∗
𝑦𝑧,𝑗−1

(𝑖 | 𝑖 − 1) ⊥ Γ
𝑗−1

(𝑖),
and {e∗

𝑦𝑧,𝑗
(𝑖 | 𝑖 − 1) | 1 ≤ 𝑖 ≤ 𝑘 and 𝜅(𝑖) ̸= 0, 𝑗 = 1, . . . , 𝜅(𝑖)}

is an orthogonal basis of Γ
𝜅(𝑘)

(𝑘). The projection of 𝜉(𝑘) into
Γ
𝜅(𝑘)

(𝑘) is given by

̂
𝜉
𝜅(𝑘)

(𝑘 | 𝑘) =

𝑘

∑

𝑖=1,

𝜅(𝑖) ̸= 0

𝜅(𝑖)

∑

𝑗=1

⟨𝜉 (𝑘) , e∗
𝑦𝑧,𝑗

(𝑖)⟩ (R∗
𝑒𝑦𝑧,𝑗

(𝑖))

−1

e∗
𝑦𝑧,𝑗

(𝑖) .

(14)

The projection of x(𝑘) into Γ
𝜅(𝑘)

(𝑘) is

̂x
𝜅(𝑘)

(𝑘 | 𝑘) =

𝑘

∑

𝑖=1,

𝜅(𝑖) ̸= 0

𝜅(𝑖)

∑

𝑗=1

⟨x (𝑘) , e∗
𝑦𝑧,𝑗

(𝑖)⟩ (R∗
𝑒𝑦𝑧,𝑗

(𝑖))

−1

e∗
𝑦𝑧,𝑗

(𝑖)

=

𝑘

∑

𝑖=1,

𝜅(𝑖) ̸= 0

𝜅(𝑖)

∑

𝑗=1

⟨x (𝑘) , e∗
𝑦𝑧,𝑗

(𝑖)⟩ (R∗
𝑒𝑦𝑧,𝑗

(𝑖))

−1

e∗
𝑦𝑧,𝑗

(𝑖)

=
̂x
𝜅(𝑘)−1

(𝑘 | 𝑘) + ⟨x (𝑘) , e∗
𝑦𝑧,𝜅(𝑘)

(𝑘)⟩

× (R∗
𝑒𝑦𝑧,𝜅(𝑘)

(𝑘))

−1

e∗
𝑦𝑧,𝜅(𝑘)

(𝑘)

=
̂x
𝜅(𝑘)

(𝑘 | 𝑘 − 1) + ⟨x (𝑘) , e∗
𝑦𝑧,𝜅(𝑘)

(𝑘)⟩

× (R∗
𝑒𝑦𝑧,𝜅(𝑘)

(𝑘))

−1

e∗
𝑦𝑧,𝜅(𝑘)

(𝑘)

̂x
0
(𝑘 | 𝑘) = F (𝑘, 𝑘 − 1)

̂x
𝜅(𝑘−1)

(𝑘 − 1 | 𝑘 − 1) ,

(15)

and the noise projection ̂w(𝑖, 𝛽𝑖
𝑗
| 𝑖 − 1) in (12) is given by

̂w
𝑗
(𝑖, 𝛽
𝑖

𝑗
| 𝑖 − 1) =

̂w
𝑗−1

(𝑖, 𝛽
𝑖

𝑗
, 𝑖 − 1)

+ R
𝑤𝑦𝑧,𝑗−1

(𝑖, 𝛽
𝑖

𝑗
, 𝑖) (R∗

𝑒𝑦𝑧,𝑗−1
(𝑖))

−1

× e∗
𝑦𝑧,𝑗−1

(𝑖) ,

̂w
1
(𝑖, 𝛽
𝑖

𝑗
| 𝑖 − 1) =

̂w
𝜅(𝑖−1)

(𝑖, 𝛽
𝑖

𝑗
| 𝑖 − 2)

+ R
𝑤𝑦𝑧,𝜅(𝑖−1)

(𝑖, 𝛽
𝑖

𝑗
, 𝑖 − 1)

× (R∗
𝑒𝑦𝑧,𝜅(𝑖−1)

(𝑖 − 1))

−1

× e∗
𝑦𝑧,𝜅(𝑖−1)

(𝑖 − 1) ,

̂w
𝜅(𝑖−1)

(𝑖, 𝛽
𝑖

𝑗
| 𝑖 − 2) = F (𝑖, 𝑖 − 1)

̂w
𝜅(𝑖−1)

(𝑖 − 1, 𝛽
𝑖

𝑗
| 𝑖 − 2) ,

(16)
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where

K
𝜅(𝑘)

(𝑘) := ⟨x (𝑘) , e∗
𝑦𝑧,𝜅(𝑘)

(𝑘)⟩ (R∗
𝑒𝑦𝑧,𝜅(𝑘)

(𝑘))

−1

:= R
𝑥𝑦𝑧,𝜅(𝑘)

(𝑘) (R∗
𝑒𝑦𝑧,𝜅(𝑘)

(𝑘))

−1

,

(17)

R
𝑥𝑦𝑧,𝜅(𝑘)

(𝑘)

= ⟨x (𝑘) , e∗
𝑦𝑧,𝜅(𝑘)

(𝑘)⟩

= ⟨x (𝑘) , ̃x
𝜅(𝑘)

(𝑘 | 𝑘 − 1)⟩ [(H∗
𝜅(𝑘)

(𝑘))

𝑇

L𝑇 (𝑘)]

− [⟨x (𝑘) , ̃w
𝜅(𝑘)

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1)⟩ (H∗

𝜅(𝑘)
(𝑘))

𝑇

0]

:= P
𝜅(𝑘)

(𝑘) [(H∗
𝜅(𝑘)

(𝑘))

𝑇

L𝑇 (𝑘)]

− [R
𝑥𝑤,𝜅(𝑘)

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1) (H∗

𝜅(𝑘)
(𝑘))

𝑇

0]

:= [R
𝑥𝑦,𝜅(𝑘)

(𝑘) R
𝑥𝑧,𝜅(𝑘)

(𝑘)] ,

R∗
𝑒𝑦𝑧,𝜅(𝑘)

(𝑘)

:= [

H∗
𝜅(𝑘)

(𝑘)

L (𝑘) ]P
𝜅(𝑘)

(𝑘) [(H∗
𝜅(𝑘)

(𝑘))

𝑇

L𝑇 (𝑘)]+R∗V𝑦𝑧,𝜅(𝑘) (𝑘)

− [

H∗
𝜅(𝑘)
(𝑘)R𝑇
𝑥𝑤,𝜅(𝑘)
(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1) (H∗

𝜅(𝑘)
(𝑘))

𝑇

0

0

0
]

−[

H∗
𝜅(𝑘)
(𝑘)R𝑇
𝑥𝑤,𝜅(𝑘)
(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1) (H∗

𝜅(𝑘)
(𝑘))

𝑇

0

0

0
]

𝑇

,

R∗V𝑦𝑧,𝜅(𝑘) (𝑘) = [

R∗V𝑦𝑦,𝜅(𝑘) (𝑘) 0
0 −𝛾

2I]

R
𝑥𝑤,𝜅(𝑘)

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1)

= ⟨x (𝑘) , ̃w
𝜅(𝑘)

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1)⟩

= ⟨x (𝑘) ,w (𝑘, 𝛽
𝑘

𝜅(𝑘)
)⟩

− ⟨x (𝑘) , ̂w
𝜅(𝑘)

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1)⟩

:= Q (𝑘, 𝛽
𝑘

𝜅(𝑘)
)

− P
𝑥𝑤,𝜅(𝑘)

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1) ,

R∗V𝑦𝑦,𝜅(𝑘) (𝑘)

= ⟨
̃v∗
𝑦,𝜅(𝑘)−1

(𝑘 | 𝑘 − 1) ,
̃v∗
𝑦,𝜅(𝑘)−1

(𝑘 | 𝑘 − 1)⟩

= ⟨v∗
𝑦,𝜅(𝑘)−1

(𝑘 | 𝑘 − 1) , v∗
𝑦,𝜅(𝑘)−1

(𝑘 | 𝑘 − 1)⟩

− ⟨
̃v∗
𝑦,𝜅(𝑘)−1

(𝑘 | 𝑘 − 1) ,
̂v∗
𝑦,𝜅(𝑘)−1

(𝑘 | 𝑘 − 1)⟩

= P∗V𝑦𝑦,𝜅(𝑘) (𝑘) −H∗
𝜅(𝑘)

(𝑘)R𝑇
𝑤𝑤,𝜅(𝑘)

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1)

× (H∗
𝜅(𝑘)

(𝑘))

𝑇

,

P
𝑥𝑤,𝜅(𝑘)

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1)

= ⟨x (𝑘) , ̂w
𝜅(𝑘)

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1)⟩

= ⟨x (𝑘) , ̂w
𝜅(𝑘)−1

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1)⟩

+ ⟨x (𝑘) , e∗
𝑦𝑧,𝜅(𝑘)−1

(𝑘)⟩ (R∗
𝑒𝑦𝑧,𝜅(𝑘)−1

(𝑘))

−1

× R𝑇
𝑤𝑦𝑧,𝜅(𝑘)−1

(𝑘, 𝛽
𝑘

𝜅(𝑘)
, 𝑘)

= P
𝑥𝑤,𝜅(𝑘)−1

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1) + R

𝑥𝑦𝑧,𝜅(𝑘)−1
(𝑘)

× (R∗
𝑒𝑦𝑧,𝜅(𝑘)−1

(𝑘))

−1

R𝑇
𝑤𝑦𝑧,𝜅(𝑘)−1

(𝑘, 𝛽
𝑘

𝜅(𝑘)
, 𝑘) , 𝜅 (𝑘) > 1,

P
𝑥𝑤,1

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1)

= ⟨x (𝑘) , ̂w
1
(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1)⟩

= F (𝑘, 𝑘 − 1) ⟨x (𝑘 − 1) ,
̂w
𝜅(𝑘−1)

(𝑘 − 1, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 2)⟩

× F𝑇 (𝑘, 𝑘 − 1) + ⟨x (𝑘) , e∗
𝑦𝑧,𝜅(𝑘−1)

(𝑘 − 1)⟩

× (R∗
𝑒𝑦𝑧,𝜅(𝑘−1)

(𝑘 − 1))

−1

R𝑇
𝑤𝑦𝑧,𝜅(𝑘−1)

(𝑘, 𝛽
𝑘

𝜅(𝑘)
, 𝑘 − 1)

= F (𝑘, 𝑘 − 1)P
𝑥𝑤,𝜅(𝑘−1)

(𝑘 − 1, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 2) F𝑇 (𝑘, 𝑘 − 1)

+ R
𝑥𝑦𝑧,𝜅(𝑘−1)

(𝑘 − 1) (R∗
𝑒𝑦𝑧,𝜅(𝑘−1)

(𝑘 − 1))

−1

× R𝑇
𝑤𝑦𝑧,𝜅(𝑘−1)

(𝑘, 𝛽
𝑘

𝜅(𝑘)
, 𝑘 − 1) ,

R
𝑤𝑦𝑧,𝜅(𝑘)−1

(𝑘, 𝛽
𝑘

𝜅(𝑘)
, 𝑘)

= ⟨w (𝑘, 𝛽
𝑘

𝜅(𝑘)
) , e∗
𝑦𝑧,𝜅(𝑘)−1

(𝑘)⟩

= ⟨w (𝑘, 𝛽
𝑘

𝜅(𝑘)
) , [

H∗
𝜅(𝑘)−1

(𝑘)

L (𝑘) ]
̃x
𝜅(𝑘)−1

(𝑘 | 𝑘 − 1)

+ [

̃v∗
𝑦,𝜅(𝑘)−1

(𝑘 | 𝑘 − 1)

v
𝑧,𝜅(𝑘)−1

(𝑘)

]⟩

= R𝑇
𝑥𝑤,𝜅(𝑘)−1

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1) [

H∗
𝜅(𝑘)−1

(𝑘)

L (𝑘) ]

𝑇

− [
R𝑇
𝑤𝑤,𝜅(𝑘)−1

(𝑘, 𝛽
𝑘

𝜅(𝑘)
𝑘 − 1) (H∗

𝜅(𝑘)−1
(𝑘))

𝑇

0
] ,

R
𝑤𝑤,𝜅(𝑘)−1

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1)

:= ⟨w (𝑘, 𝛽
𝑘

𝜅(𝑘)
) ,

̃w
𝜅(𝑘)−1

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1)⟩

= ⟨w (𝑘, 𝛽
𝑘

𝜅(𝑘)
) ,w (𝑘, 𝛽

𝑘

𝜅(𝑘)
)⟩

− ⟨w (𝑘, 𝛽
𝑘

𝜅(𝑘)
) ,

̂w
𝜅(𝑘)−1

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1)⟩

= Q (𝑘, 𝛽
𝑘

𝜅(𝑘)
) − P
𝑤𝑤,𝜅(𝑘)−1

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1) ,
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P
𝑤𝑤,𝜅(𝑘)

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1)

:= ⟨w (𝑘, 𝛽
𝑘

𝜅(𝑘)
) ,

̂w
𝜅(𝑘)

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1)⟩

= ⟨w (𝑘, 𝛽
𝑘

𝜅(𝑘)
) ,

̂w
𝜅(𝑘)−1

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1)⟩

+ ⟨w (𝑘, 𝛽
𝑘

𝜅(𝑘)
) , e∗
𝑦𝑧,𝜅(𝑘)−1

(𝑘)⟩

× (R∗
𝑒𝑦𝑧,𝜅(𝑘)−1

(𝑘))

−1

R𝑇
𝑤𝑦𝑧,𝜅(𝑘)−1

(𝑘, 𝛽
𝑘

𝜅(𝑘)
, 𝑘)

= P
𝑤𝑤,𝜅(𝑘)−1

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1) + R

𝑤𝑦𝑧,𝜅(𝑘)−1
(𝑘)

× (R∗
𝑒𝑦𝑧,𝜅(𝑘)−1

(𝑘))

−1

R𝑇
𝑤𝑦𝑧,𝜅(𝑘)−1

(𝑘, 𝛽
𝑘

𝜅(𝑘)
, 𝑘) , 𝜅 (𝑘) > 1,

P
𝑤𝑤,1

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1)

= ⟨w (𝑘, 𝛽
𝑘

𝜅(𝑘)
) ,

̂w
1
(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1)⟩

= ⟨w (𝑘, 𝛽
𝑘

𝜅(𝑘)
) ,

̂w
𝜅(𝑘−1)

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 2)⟩

+ ⟨w (𝑘, 𝛽
𝑘

𝜅(𝑘)
) , e∗
𝑦𝑧,𝜅(𝑘−1)

(𝑘 − 1)⟩

× (R∗
𝑒𝑦𝑧,𝜅(𝑘−1)

(𝑘 − 1))

−1

R𝑇
𝑤𝑦𝑧,𝜅(𝑘−1)

(𝑘, 𝛽
𝑘

𝜅(𝑘)
, 𝑘 − 1)

= F (𝑘, 𝑘 − 1)P
𝑤𝑤,𝜅(𝑘−1)

(𝑘 − 1, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 2) F𝑇 (𝑘, 𝑘 − 1)

+ R
𝑤𝑦𝑧,𝜅(𝑘−1)

(𝑘, 𝛽
𝑘

𝜅(𝑘)
, 𝑘 − 1) (R∗

𝑒𝑦𝑧,𝜅(𝑘−1)
(𝑘 − 1))

−1

× R𝑇
𝑤𝑦𝑧,𝜅(𝑘−1)

(𝑘, 𝛽
𝑘

𝜅(𝑘)
, 𝑘 − 1) ,

(18)

and

Q (𝑘, 𝛽
𝑘

𝜅(𝑘)
) =

{
{
{

{
{
{

{

0, 𝛽
𝑘

𝜅(𝑘)
= 𝑘;

𝑘

∑

𝑖=𝛽
𝑘

𝜅(𝑘)
+1

F (𝑘, 𝑖) F𝑇 (𝑘, 𝑖) , 𝛽
𝑘

𝜅(𝑘)
< 𝑘.

(19)

The projection of 𝜉(𝑘) in (14) corresponds to a stationary
point of the indefinite quadratic form 𝐽

𝜅(𝑘)
in (4), and the

value of 𝐽
𝜅(𝑘)

at this stationary point is

J∗
𝜅(𝑘)

(𝑘) =

𝑘

∑

𝑖=1,

𝜅(𝑖) ̸= 0

𝜅(𝑖)

∑

𝑗=1

(e∗
𝑦𝑧,𝑗

(𝑖))

𝑇

(R∗
𝑒𝑦𝑧,𝑗

(𝑖))

−1

e∗
𝑦𝑧,𝑗

(𝑖)

= J∗
𝜅(𝑘)−1

(𝑘) + (e∗
𝑦𝑧,𝜅(𝑘)

(𝑘))

𝑇

(R∗
𝑒𝑦𝑧,𝜅(𝑘)

(𝑘))

−1

× e∗
𝑦𝑧,𝜅(𝑘)

(𝑘) ,

(20)

where J∗
0
(𝑘) = J∗

𝜅(𝑘−1)
(𝑘 − 1),

e∗
𝑦𝑧,𝜅(𝑘)

(𝑘) = [

e∗
𝑦,𝜅(𝑘)

(𝑘 | 𝑘 − 1)

e
𝑧,𝜅(𝑘)

(𝑘 | 𝑘 − 1)

]

= [

y
𝛼
𝑘

𝜅(𝑘)

(𝛽
𝑘

𝜅(𝑘)
) − ŷ∗
𝜅(𝑘)

(𝑘 | 𝑘 − 1)

ẑ
𝜅(𝑘)

(𝑘 | 𝑘) − ẑ
𝜅(𝑘)

(𝑘 | 𝑘 − 1)

] ,

ŷ∗
𝜅(𝑘)

(𝑘 | 𝑘 − 1) = H∗
𝜅(𝑘)

(𝑘) x̂
𝜅(𝑘)

(𝑘 | 𝑘 − 1)

−H∗
𝜅(𝑘)

(𝑘) ŵ
𝜅(𝑘)

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1) ,

ẑ
𝜅(𝑘)

(𝑘 | 𝑘 − 1) = L (𝑘) x̂
𝜅(𝑘)

(𝑘 | 𝑘 − 1) ,

ŵ
𝑗
(𝑖, 𝛽
𝑖

𝑗
| 𝑖 − 1) = ŵ

𝑗−1
(𝑖, 𝛽
𝑖

𝑗
| 𝑖 − 1) + R

𝑤𝑦𝑧,𝑗−1
(𝑖, 𝛽
𝑘

𝑗
, 𝑖)

× (R∗
𝑒𝑦𝑧,𝑗−1

(𝑖))

−1

e∗
𝑦𝑧,𝑗−1

(𝑖) , 𝑗 > 1,

ŵ
1
(𝑖, 𝛽
𝑖

𝑗
| 𝑖 − 1) = ŵ

𝜅(𝑖−1)
(𝑖, 𝛽
𝑖

𝑗
| 𝑖 − 2)

+ R
𝑤𝑦𝑧,𝜅(𝑖−1)

(𝑖, 𝛽
𝑘

𝑗
, 𝑖 − 1)

× (R∗
𝑒𝑦𝑧,𝜅(𝑖−1)

(𝑖 − 1))

−1

× e∗
𝑦𝑧,𝜅(𝑖−1)

(𝑖 − 1) ,

ŵ
𝜅(𝑖−1)

(𝑖, 𝛽
𝑖

𝑗
| 𝑖 − 2) = F (𝑖, 𝑖 − 1) ŵ

𝜅(𝑖−1)
(𝑖 − 1, 𝛽

𝑖

𝑗
| 𝑖 − 2) ,

x̂
𝜅(𝑘)

(𝑘 | 𝑘 − 1) = x̂
𝜅(𝑘)−1

(𝑘 | 𝑘) , 𝜅 (𝑘) > 0,

x̂
0
(𝑘 | 𝑘 − 1) = F (𝑘, 𝑘 − 1) x̂

𝜅(𝑘−1)
(𝑘 − 1 | 𝑘 − 1) .

(21)

In (20), R∗
𝑒𝑦𝑧,𝜅(𝑘)

(𝑘) can also be expressed as follows:

R∗
𝑒𝑦𝑧,𝜅(𝑘)

(𝑘) := [

R
𝑦𝑦,𝜅(𝑘)

(𝑘) R
𝑦𝑧,𝜅(𝑘)

(𝑘)

R
𝑧𝑦,𝜅(𝑘)

(𝑘) R
𝑧𝑧,𝜅(𝑘)

(𝑘)
] ; (22)

then,

(R∗
𝑒𝑦𝑧,𝜅(𝑘)

(𝑘))

−1

= [

R
𝑦𝑦,𝜅(𝑘)

(𝑘) R
𝑦𝑧,𝜅(𝑘)

(𝑘)

R
𝑧𝑦,𝜅(𝑘)

(𝑘) R
𝑧𝑧,𝜅(𝑘)

(𝑘)
]

−1

= [

I −R−1
𝑦𝑦,𝜅(𝑘)

(𝑘)R
𝑦𝑧,𝜅(𝑘)

(𝑘)

0 I ]

× [

R
𝑦𝑦,𝜅(𝑘)
(𝑘) 0

0 R
𝑧𝑧,𝜅(𝑘)
(𝑘) − R

𝑧𝑦,𝜅(𝑘)
(𝑘)R−1
𝑦𝑦,𝜅(𝑘)
(𝑘)R
𝑦𝑧,𝜅(𝑘)
(𝑘)
]

−1

× [

I 0
−R
𝑧𝑦,𝜅(𝑘)

(𝑘)R−1
𝑦𝑦,𝜅(𝑘)

(𝑘) I] .

(23)
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Letting ẑ∗
𝜅(𝑘)

(𝑘 | 𝑘) = ẑ
𝜅(𝑘)

(𝑘 | 𝑘 − 1) −

R
𝑧𝑦,𝜅(𝑘)

(𝑘)R−1
𝑦𝑦,𝜅(𝑘)

(𝑘)e∗
𝑦,𝜅(𝑘)

(𝑘 | 𝑘 − 1), the last term in (20) is

e∗
𝑦𝑧,𝜅(𝑘)

(𝑘) (R∗
𝑒𝑦𝑧,𝜅(𝑘)

(𝑘))

−1

e∗
𝑦𝑧,𝜅(𝑘)

(𝑘)

= (e∗
𝑦,𝜅(𝑘)

(𝑘 | 𝑘 − 1))

𝑇

R−1
𝑦𝑦,𝜅(𝑘)

(𝑘) e∗
𝑦,𝜅(𝑘)

(𝑘 | 𝑘 − 1)

+ (ẑ
𝜅(𝑘)

(𝑘 | 𝑘) − ẑ∗
𝜅(𝑘)

(𝑘 | 𝑘))

𝑇

× (R
𝑧𝑧,𝜅(𝑘)

(𝑘) − R
𝑧𝑦,𝜅(𝑘)

(𝑘)R−1
𝑦𝑦,𝜅(𝑘)

(𝑘)R
𝑦𝑧,𝜅(𝑘)

(𝑘))

−1

× (ẑ
𝜅(𝑘)

(𝑘 | 𝑘) − ẑ∗
𝜅(𝑘)

(𝑘 | 𝑘)) .

(24)

According to Lemma 12 in [21], J∗
𝜅(𝑘)

(𝑘) is the minimum
of J
𝜅(𝑘)

(𝑘) if and only if R∗
𝑒𝑦𝑧,𝜅(𝑘)

(𝑘) and R∗V𝑦𝑧,𝜅(𝑘)(𝑘) have the
same inertia. Considering the block triangular factorization
of R∗
𝑒𝑦𝑧,𝜅(𝑘)

(𝑘) as shown in (23), the minimum condition can
also be given by

R
𝑧𝑧,𝜅(𝑘)

(𝑘) − R
𝑧𝑦,𝜅(𝑘)

(𝑘)R−1
𝑦𝑦,𝜅(𝑘)

(𝑘)R
𝑦𝑧,𝜅(𝑘)

(𝑘) < 0. (25)

Therefore, a choice of ẑ
𝜅(𝑘)

(𝑘 | 𝑘) to guarantee J∗
𝜅(𝑘)

(𝑘) > 0

is ẑ
𝜅(𝑘)

(𝑘 | 𝑘) = ẑ∗
𝜅(𝑘)

(𝑘 | 𝑘), and the minimum of J
𝜅(𝑘)

(𝑘) is

J∗
𝜅(𝑘)

(𝑘) = J∗
𝜅(𝑘)−1

(𝑘) + e∗
𝑦,𝜅(𝑘)

(𝑘 | 𝑘 − 1)

× (R
𝑦𝑦,𝜅(𝑘)

(𝑘))

−1

e∗
𝑦,𝜅(𝑘)

(𝑘 | 𝑘 − 1) .

(26)

Then, the estimation of the signal to be estimated is

ẑ (𝑘 | 𝑘) = L (𝑘) x̂
𝜅(𝑘)

(𝑘 | 𝑘) (27)

in which

x̂
𝜅(𝑘)

(𝑘 | 𝑘) = x̂
𝜅(𝑘)

(𝑘 | 𝑘 − 1) + K
𝑦,𝜅(𝑘)

(𝑘) e∗
𝑦,𝜅(𝑘)

(𝑘 | 𝑘 − 1) ,

(28)

K
𝑦,𝜅(𝑘)

(𝑘) = R
𝑥𝑦,𝜅(𝑘)

(𝑘)R−1
𝑦𝑦,𝜅(𝑘)

(𝑘) . (29)

The parameters R
𝑥𝑦,𝜅(𝑘)

(𝑘) and R−1
𝑦𝑦,𝜅(𝑘)

(𝑘) in (29) can be
obtained by iterating the equations in (18).

In summary, the unified finite horizon𝐻
∞
fusion filtering

algorithm is given by

ẑ (𝑘 | 𝑘) = L (𝑘) x̂
𝜅(𝑘)

(𝑘 | 𝑘)

x̂
𝜅(𝑘)

(𝑘 | 𝑘) = x̂
𝜅(𝑘)−1

(𝑘 | 𝑘) + K
𝑦,𝜅(𝑘)

(𝑘) e∗
𝑦,𝜅(𝑘)

(𝑘 | 𝑘 − 1)

x̂
0
(𝑘 | 𝑘) = F (𝑘, 𝑘 − 1) x̂

𝜅(𝑘−1)
(𝑘 − 1 | 𝑘 − 1) ,

(30)

where

K
𝑦,𝜅(𝑘)

(𝑘) = R
𝑥𝑦,𝜅(𝑘)

(𝑘)R−1
𝑦𝑦,𝜅(𝑘)

(𝑘)

e∗
𝑦,𝜅(𝑘)

(𝑘 | 𝑘 − 1)

= y
𝛼
𝑘

𝜅(𝑘)

(𝛽
𝑘

𝜅(𝑘)
) − ŷ∗
𝜅(𝑘)

(𝑘 | 𝑘 − 1)

= y
𝛼
𝑘

𝜅(𝑘)

(𝛽
𝑘

𝜅(𝑘)
) −H∗

𝜅(𝑘)
(𝑘) x̂
𝜅(𝑘)

(𝑘 | 𝑘 − 1)

−H∗
𝜅(𝑘)

(𝑘) ŵ
𝜅(𝑘)

(𝑘, 𝛽
𝑘

𝜅(𝑘)
| 𝑘 − 1) .

(31)

The Riccati equations are given as follows.

(1) If the next measurement arrives at fusion filter in the
fusion period [𝑘, 𝑘 + 1), the Ricatti equation is

P
𝜅(𝑘)+1

(𝑘) = P
𝜅(𝑘)

(𝑘) − K
𝜅(𝑘)

(𝑘)R𝑇
𝑥𝑦𝑧,𝜅(𝑘)

(𝑘) . (32)

(2) Otherwise, the next measurement arrives at fusion
filter in the fusion period [𝑘 + 1, 𝑘 + 2). The Ricatti
equation is

P
1
(𝑘 + 1) = F (𝑘 + 1, 𝑘) (P

𝜅(𝑘)
(𝑘) − K

𝜅(𝑘)
(𝑘)R𝑇
𝑥𝑦,𝜅(𝑘)

(𝑘))

× F𝑇 (𝑘 + 1, 𝑘) + I.
(33)

Remark 4. In ideal communication networks, all the mea-
surements arrive at the fusion filter in time; namely, the
measurements are all ITMs. In this case, the above unified
finite horizon 𝐻

∞
fusion filtering algorithm will be simpli-

fied into the following sequential finite horizon 𝐻
∞

fusion
filtering algorithm, which can deal with the ITMs in real time
according to their sampled sequence

ẑ (𝑘 | 𝑘) = L (𝑘) x̂
𝑁
(𝑘 | 𝑘) , (34)

in which

x̂
𝑙
(𝑘 | 𝑘) = x̂

𝑙−1
(𝑘 | 𝑘)

+ K
𝑦,𝑙
(𝑘) e
𝑦,𝑙
(𝑘 | 𝑘 − 1) , 𝑙 = 1, 2, . . . , 𝑁,

x̂
0
(𝑘 | 𝑘) = F (𝑘, 𝑘 − 1) x̂

𝑁
(𝑘 − 1 | 𝑘 − 1) ,

K
𝑦,𝑙
(𝑘) = H

𝑙
(𝑘)P
𝑙
(𝑘) [H

𝑙
(𝑘)P
𝑙
(𝑘)H𝑇
𝑙
(𝑘) + I]

−1

,

e
𝑦,𝑙
(𝑘 | 𝑘 − 1) = y

𝑙
(𝑘) −H

𝑙
(𝑘) x̂
𝑙−1

(𝑘 | 𝑘 − 1) .

(35)
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3∗t + 1 3∗t + 2 3∗(t + 1)

Fusion center

Sensor 1

Sensor 2

Figure 1: The measurement arrival scenes.

The corresponding Riccati equations are

P
1
(𝑘) = F (𝑘, 𝑘 − 1)

× (P
𝑁
(𝑘 − 1) − R

𝑥𝑦𝑧,𝑙
(𝑘)R−1
𝑒𝑦𝑧,𝑙

(𝑘)

× R𝑇
𝑥𝑦𝑧,𝑁

(𝑘 − 1))

× F𝑇 (𝑘, 𝑘 − 1) + I

P
𝑙+1

(𝑘) = P
𝑙
(𝑘) − R

𝑥𝑦𝑧,𝑙
(𝑘)R−1
𝑒𝑦𝑧,𝑙

(𝑘)R𝑇
𝑥𝑦𝑧,𝑙

(𝑘) ,

R
𝑥𝑦𝑧,𝑙

(𝑘) = P
𝑙
(𝑘) [(H

𝑙
(𝑘))
𝑇 L𝑇 (𝑘)] ,

R
𝑒𝑦𝑧,𝑙

(𝑘) := [

H
𝑙
(𝑘)

L (𝑘) ]P𝑙 (𝑘)

× [(H
𝑙
(𝑘))
𝑇 L𝑇 (𝑘)] + [

𝐼 0
0 −𝛾
2I] .

(36)

4. Simulation

In order to illustrate the viability and the effectiveness of the
proposedmethod, the discrete dynamical system as shown in
(1) is considered in this section, in which F(𝑘, 𝑘 − 1) = [

1 1

0 1
],

H
𝑖
= [1, 1], (𝑖 = 1, 2), 𝐿 = [0.1, 0], 𝛾 = 1.5. Moreover, the

initial value is selected as x
0
= [1, 5], and P

0
= [
1 1/2

1/2 2
].

The measurement arrival scenes are designed as follows.
All the measurements are sampled in time. For Sensor 1,
all the measurements arrive at the fusion filter in time. For
Sensor 2, the measurements sampled at the moments with
indexes modulo 3 equal to 1 or 2 arrive at the fusion filter
with one-step delay, and other measurements arrive in time,
as shown in Figure 1.

In this simulation, two simulation results are compared.
The first one is the result of the proposedmethod in the above
measurement arrival scene, which is for short marked as
“Algorithm 1” in this section. The other one is the simulation
result of the sequential fusion filtering method in the scene
that all the measurements arrive in time, as shown in
Remark 4, which is marked as “Algorithm 2.”

According to the simulation results shown in Table 1,
Figures 1 and 2, the following performances of the proposed
algorithm are illustrated.

(1) The proposed algorithm could deal with different
kinds of arrived measurements: ITMs (the measure-
ments sampled by Sensor 1 and the ones sampled
by Sensor 2 at the sampled moments with indexes
divided by 3 exactly), ISDMs (the measurements
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The signal to be estimated
Algorithm 1

Algorithm 2

Figure 2: The estimate curves.

Table 1: The mean absolute estimation errors at filtering time with
the indexes are divided by 5 exactly.

Algorithm 1 Algorithm 2
The mean absolute estimation errors 0.3787 0.3832

sampled by Sensor 2 at the sampled moments with
indexes modulo 3 equal to 1), and OOSMs (the
measurements sampled by Sensor 2 at the sampled
moments with indexes modulo 3 equal to 2).

(2) For Algorithm 1, at the fusion time with the indexes
divided by 3 exactly, the delay measurements can
all arrive at the fusion center. At this fusion time,
the fusion filtering results of Algorithm 1are better
than the ones of Algorithm 2. The mean absolute
estimation errors at these fusion times of Algorithm
1 are 0.3787, while the one of Algorithm 2 is 0.3832. It
is because more amount of information is applied to
update the estimate at this fusion time in Algorithm 1
(Figure 3).

(3) It is implied that the proposed algorithm could deal
with the delay measurements effectively.

5. Conclusion

In this paper, a unified finite horizon 𝐻
∞

filtering method
is proposed for general networked dynamical systems, the
fusion filter of which could receive none, one, or multiple
measurements in a fusion period. According to the com-
plex arrival scenes of networked measurements, a novel
𝐻
∞

performance criterion function is built to restrain the
𝐻
∞

filtering process. Based on the projection method in
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Figure 3: The absolute estimation error curves at the fusion time
with the indexes are divided by 3 exactly.

Krein space, a novel 𝐻
∞

filtering method is proposed to
uniformly deal with various delay measurements and ITMs
in the centralized fusion frame. Otherwise, there are several
interesting future directions along the line of this work:

(1) how to deal with the networked measurements in the
distributed fusion frame in a uniform manner,

(2) how to deal with various quantified delay measure-
ments for networked multisensor systems.
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