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Abstract
In this paper, we introduce the notion of diagonal operator, we present the historical
roots of diagonal operators and we give some fixed point theorems for this class of
operators. Our approaches are based on the weakly Picard operator technique,
difference equation techniques, and some fixed point theorems for multi-valued
operators. Some applications to differential and integral equations are given. We also
present some research directions.
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1 Introduction and preliminary notions and results
In this section we will present some useful notions and results concerning diagonal op-
erators, coupled fixed point operators, and iterations of some operators generated by the
above concepts.

1.1 Diagonal operators
Let X be a nonempty set and V : X × X → X be an operator. By definition, the operator
UV : X → X, defined by

UV (x) := V (x, x), for all x ∈ X,

is called the diagonal operator corresponding to the operator V .
We also consider the following operators generated by an operator V : X × X → X:
() The operator CV : X × X → X × X defined by

CV (x, y) :=
(
V (x, y), V (y, x)

)
.

By definition an element

(x, y) ∈ FCV :=
{

(u, v) ∈ X × X | CV (u, v) = (u, v)
}
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is called a coupled fixed point of V (see []; see also [, ]). We remark that

(x, x) ∈ FCV ⇔ x ∈ FUV .

() The operator DV : X × X → X × X defined by DV (x, y) := (y, V (x, y)).
We have (x, y) ∈ FDV ⇔ x = y and x ∈ FUV .
() The operator TV : X →P(X) is defined by

TV (x) := FV (·,x).

It is clear that FUV = FTV .
The aim of this paper is to present some historical roots of the diagonal operators, to

study the fixed points of this class of operators, and to give some applications. Some new
research directions are also presented.

More precisely, the plan of the paper is the following:
. Introduction and preliminary notions and results.
. Historical roots of the diagonal operators.
. Iterations of the operators CV and UV .
. Iterations of the operator DV and the difference equation

xn+ = V (xn, xn+), n ∈N, x, x ∈ X.

. Fixed point results for the operator TV .
. Applications.
. Research directions.
References.

1.2 L-Spaces [4–6]
Following Fréchet [], we present now the concept of L-space.

Definition . Let X be a nonempty set. Let

s(X) :=
{

(xn)n∈N | xn ∈ X, n ∈N
}

.

Let c(X) be a subset of s(X) and Lim : c(X) → X be an operator. By definition, the triple
(X, c(X), Lim) is called an L-space (denoted by (X,→)) if the following conditions are sat-
isfied:

(i) if xn = x, for all n ∈N, then (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x;
(ii) if (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x, then, for all subsequences (xni )i∈N of (xn)n∈N,

we have (xni )i∈N ∈ c(X) and

Lim(xni )i∈N = x.

By definition, an element of c(X) is said to be a convergent sequence and Lim(xn)n∈N is the
limit of this sequence. If Lim(xn)n∈N = x, then we will write

xn → x as n → ∞.
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Remark . An L-space is any set endowed with a structure implying a notion of conver-
gence for sequences. As examples of L-spaces we mention the following:

() If (X, τ ) is a Hausdorff topological space, then (X,
τ−→) is an L-space.

() If (X, d) is a metric space then (X,
d−→) is an L-space.

() If (X,‖ · ‖) is a normed space then (X,
‖·‖−→) and (X,⇀) are L-spaces.

1.3 Weakly Picard operators [5, 7–11], etc.
Let (X,→) be an L-space. By definition, f : X → X is said to be a weakly Picard operator
(WPO) if the sequence (f n(x))n∈N of successive approximations converges for all x ∈ X and
the limit (which may depend on x) is a fixed point of f . If f is weakly Picard operator and
Ff = {x∗}, then, by definition, f is called a Picard operator (PO).

If f : X → X is WPO, then we define the operator f ∞ : X → X by

f ∞(x) := lim
n→∞ f n(x).

Now let (X, d) be a metric space. By definition, a WPO f : X → X is called ψ-WPO if
ψ : R+ →R+ is increasing, continuous in  with ψ() = , and

d
(
x, f ∞(x)

) ≤ ψ
(
d
(
x, f (x)

))
, for all x ∈ X.

1.4 Measures of noncompactness [12–17], etc.
Let X be a Banach space. We will denote by Pb(X) the family of all nonempty bounded
subsets of S.

We will use the symbol αK : Pb(X) → R+, for the Kuratowski measure of noncompact-
ness on X, while αH : Pb(x) → R+ will denote the Hausdorff measure of noncompactness
on X. The following results are well known.

Darbo’s theorem Let X be a Banach space, Y ∈ Pb,cl,cv(X) and f : Y → Y be an operator.
We suppose that:

(i) f is continuous;
(ii) there exists l ∈ [, [ such that:

αK
(
f (A)

) ≤ l · αK (A), for all A ∈ P(Y ).

Then:
(a) Ff 	= ∅;
(b) Ff is a compact subset of Y .

Sadovskii’s theorem Let X be a Banach space, Y ∈ Pb,cl,cv(X) and f : Y → Y be an opera-
tor. We suppose that:

(i) f is continuous;
(ii) αH(f (A)) < αH (A), for all A ∈ P(Y ) with αH (A) 	= .

Then:
(a) Ff 	= ∅;
(b) Ff is a compact subset of Y .
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1.5 Fixed point structures [14]
Let C be a class of structured sets (ordered sets, topological spaces, metric spaces, Banach
spaces, Hilbert spaces, . . .). Let we denote by Set∗ the class of all nonempty sets. For X ∈
Set∗ we shall use the notations:

P(X) := {Y ⊂ X | Y 	= ∅} and P(C) :=
{

A ∈ P(X) | X ∈ C
}

,

M(A, B) := {f : A → B | f is an operator} and M(A) := M(A, A).

Now we consider the following multi-valued operators:
S : C � Set∗, X � S(X) ⊂ P(X),
M : DM ⊂ P(C) × P(C) �M(P(C), P(C)), (A, B) � M(A, B) ⊂M(A, B).

By a fixed point structure on X ∈ C , we understand a triple (X, S(X), M) with the follow-
ing properties:

(i) A ∈ S(X) ⇒ (A, A) ∈ DM ;
(ii) A ∈ S(X), f ∈ M(U) ⇒ Ff 	= ∅.
The following examples illustrate this notion.
() The fixed point structure (f.p.s.) of Tarski
Let C be the class of complete lattices. If (X,) is a complete lattice,

S(X) :=
{

A ∈ P(X) | (A,) is a complete lattice
}

and

M(A) := {f : A → A | f is increasing},

then, by Tarski’s fixed point theorem, we see that (X, S(X), M) is a f.p.s.
() The f.p.s. of contractions
Let C be the class of complete metric spaces. For a complete metric space (X, d), we

consider

S(X) := Pcl(X)

and

M(A) := {f : A → A | f is a contraction}.

Then the Banach contraction principle implies that (X, S(X), M) is a f.p.s.
() The f.p.s. of Schauder
Let C be the class of Banach spaces. For a Banach space X, if we consider

S(X) := Pcp,cv(X)

and

M(A) = M(A, A) := C(A, A),

then, by Schauder’s theorem, we see that (X, S(X), M) is a f.p.s.
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A similar notion of fixed point structure can be defined for multi-valued operators (see
[], pp.-).

A triple (X, S(X), M) is a multi-valued fixed point structure (m.f.p.s.) if the following
properties hold:

(i) S(X) ⊂ P(X) and S(X) 	= ∅;
(ii) M : P(X) �

⋃
Y∈P(X) M(Y ), Y � M(Y ) ⊂M(Y ), where M(Y ) is the set of all self

multi-valued operators on Y ;
(iii) Y ∈ S(X), T ∈ M(Y ) ⇒ FT 	= ∅.

1.6 Acyclic topological spaces [15, 18]
Let X be a compact metric space and Hq(x) be the q-dimensional Čech homology on Q

of X. By definition, X is called acyclic if Hq(X) =  for q ≥  and Hq(X) ≈Q.
The following result is a particular case of the Eilenberg-Montgomery theorem (see [,

, ]).

Theorem . Let Y be a compact convex subset of a Banach space E and T : Y → P(Y ) be
an upper semi-continuous multi-valued operator with acyclic values. Then FT 	= ∅.

2 Historical roots of the diagonal operators
There are some roots of the diagonal operators as the following examples reveal.

Example . (Difference equations [–]) Let (X,→) be an L-space and V : X ×X → X
be an operator. We consider the following difference equation:

xn+ = V (xn, xn+), n ∈N, x, x ∈ X.

Let us suppose that (xn)n∈N is a solution of this equation with the property that

xn → x∗ as n → ∞.

If the function V is continuous, then we have x∗ = V (x∗, x∗). Thus, x∗ is a fixed point of
the diagonal operator corresponding to V .

Example . (Krasnoselskii () []) Let X be a Banach space, Y ∈ Pb,cl,cv(X) and f , g :
Y → Y be two operators. We suppose that:

(i) f is a contraction;
(ii) g is complete continuous;

(iii) f (x) + g(y) ∈ Y , for all x, y ∈ Y .
Under these conditions, Krasnoselskii proved that the operator f + g : Y → Y has at least

a fixed point.
If we consider the operator V : Y × Y → Y , defined by

V (x, y) := f (x) + g(y),

then f + g : Y → Y , x �→ f (x) + g(x) is the diagonal operator corresponding to V .
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Example . (Browder (; []; see also [, , , –], etc.) Let X be a Banach
space, Y ∈ Pb,op(X) and V : X × X → X be a continuous operator. Then Browder consid-
ered the operator U : Y → X defined by U(x) := V (x, x).

Moreover, Browder introduced the following notions:
() U is strictly semicontractive if, for each fixed x in X , V (·, x) is Lipschitzian with

constant l <  and V (x, ·) is compact.
() U is weakly semicontractive if, for each x in X , the operator V (·, x) is nonexpansive

and V (x, ·) is compact.

Example . (Ziebur ( and ); [, ]) Let b ∈R
m and h, k ∈R

∗
+. One consider a

set � :=
∏m

i=[bi – k, bi + k] and a function f ∈ C([, h]×�,Rm). Let us consider the Cauchy
problem

(C)

{
x′ = f (t, x),
x() = x.

Then Ziebur introduced a function F ∈ C([, h]×�×�,Rm) with the following property:
(a) F(t, x, x) = f (t, x), for all t ∈ [, h], x ∈R

m;
(b) F(t, ·, x) is increasing;
(c) F(t, x, ·) is decreasing.
The following Cauchy problem was also considered:

(C)

{
x′ = F(t, x, y),
y′ = F(t, y, x),

(x, y)() = (x, x)

and it is proved that if the Cauchy problem (C) has a unique solution then the problem
(C) has a unique solution too and the Picard sequence converges to that solution.

Example . (Amann (, ), Opoitsev (; [, –]))
In [] the author presents the following result ‘concerning so-called intervined’:
Let X be a chain complete ordered set possessing a least and a greatest element. Let

g : X × X → X be a mapping such that:
(i) g(·, y) : X → X is increasing for every y ∈ X ;

(ii) g(x, ·) : X → X is decreasing for every x ∈ X .
Then there exist two points x, x̂ ∈ X such that x  x̂, g(x, x̂) = x, and g (̂x, x) = x̂. Moreover,
if f (x) := g(x, x) for all x ∈ X, then

Ff ⊂ [x, x̂].

Remark . For other examples on this topic see [, –], etc.

Example . (Quasilinear differential equations; see [, , , ], etc.) Diagonal oper-
ators also appears by the linearization of a quasilinear differential equations. For example,
let us consider the Cauchy problem:

{
x′(t) = A(t)x(t) + f (t, x(t)), t ∈ [a, b],
x(a) = x,

(.)

where A ∈ C([a, b],Rm×m) and f ∈ C([a, b] ×R
m,Rm).
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Then, for each u ∈ C([a, b],Rm) with u(a) = x we consider the linearized Cauchy prob-
lem

{
x′(t) = A(t)x(t) + f (t, u(t)), t ∈ [a, b],
x(a) = x,

(.)

Let S ⊂ C([a, b],Rm) be the solution set of the problem (.) and let T(u) the solution set
of the problem (.). Then S = FT .

3 Iterations of CV and UV

The following result is the starting point for this section.

Lemma . Let (X,→) be an L-space and V : X × X → X be an operator. We suppose that
the operator CV is WPO. Then we have:

(a) UV is WPO;
(b) C∞

V (x, x) = (U∞
V (x), U∞

V (x)), for all x ∈ X ;
(c) if CV is a PO, then:

() FCV = {(x∗, x∗)};
() UV is PO and FUV = {x∗}.

Proof (a) + (b). We remark that CV (x, x) = (UV (x), UV (x)). From this we have

Cn
V (x, x) =

(
Un

V (x), Un
V (x)

)

and

Cn
V (x, x) → C∞(x, x) =

(
U∞

V (x), U∞
V (x)

)
as n → ∞, for all x ∈ X.

(c). Follows from the definition of PO and from (a) + (b).
Now we consider instead of the L-space (X,→) a metric space (X, d).
We will consider, on X × X, the following metrics:

d
(
(x, y), (x, y)

)
:= d(x, x) + d(y, y), (.)

d
(
(x, y), (x, y)

)
:=

[(
d(x, x)

) +
(
d(y, y)

)] 
 , (.)

and

d∞
(
(x, y), (x, y)

)
:= max

(
d(x, x), d(y, y)

)
. (.)

�

In the case of metric spaces we have the following result.

Theorem . Let (X, d) be a metric space and V : X × X → X be an operator. Then:
(a) If CV is ψ – WPO with respect to the metric d, then UV is a θ – WPO where

θ (r) :=


ψ(r), r ∈R+.



Petruşel et al. Fixed Point Theory and Applications  (2016) 2016:95 Page 8 of 21

(b) If CV is ψ – WPO with respect to the metric d, then UV is a θ – WPO where

θ (r) :=
√

ψ(

√
r), r ∈R+.

(c) If CV is ψ – WPO with respect to the metric d∞, then UV is a ψ – WPO.

Proof (a). From

d
(
(x, y), C∞

V (x, y)
) ≤ ψ

(
d

(
(x, y), CV (x, y)

))
, for all (x, y) ∈ X × X,

it follows that

d
(
(x, x),

(
U∞

V (x), U∞
V (x)

)) ≤ ψ
(
d

(
(x, x),

(
V (x, x), V (x, x)

)))
, for all x ∈ X,

so

d
(
x, U∞

V (x)
) ≤ 


ψ

(
d

(
x, UV (x)

))
, for all x ∈ X.

(b). If CV is ψ – WPO with respect to the metric d then

d
(
(x, x), C∞

V (x, x)
) ≤ ψ

(
d

(
(x, x),

(
V (x, x), V (x, x)

)))
, for all x ∈ X,

which means that

√
d

(
x, U∞

V (x)
) ≤ ψ

(√
d

(
x, UV (x)

))
, for all x ∈ X,

so we get the conclusion.
(c). If CV is ψ – WPO with respect to the metric d∞ then

d∞
(
(x, x), C∞

V (x, x)
) ≤ ψ

(
d∞

(
(x, x),

(
V (x, x), V (x, x)

)))
, for all x ∈ X,

so

d
(
x, U∞

V (x)
) ≤ ψ

(
d
(
x, UV (x)

))
, for all x ∈ X,

which proves that UV is a ψ – WPO. �

The following result is a coupled fixed point theorem in a complete b-metric space,
which has as an additional conclusion the fact that the operator CV is a Picard operator.

Theorem . ([]) Let (X, d) be a complete b-metric space with constant s ≥ . Let V :
X ×X → X be an operator. Assume that there exists k ∈ (, ) such that, for all (x, y), (u, v) ∈
X × X, we have

d
(
V (x, y), V (u, v)

)
+ d

(
V (y, x), V (v, u)

) ≤ k
[
d(x, u) + d(y, v)

]
.



Petruşel et al. Fixed Point Theory and Applications  (2016) 2016:95 Page 9 of 21

Then there exists a unique solution (x∗, y∗) ∈ X × X of the following coupled fixed point
problem :

{
x = V (x, y),
y = V (y, x).

(.)

and, for any initial point (x, y) ∈ X × X, the sequences (xn)n∈N, (yn)n∈N defined, for n ∈N,
by

{
xn+ = V (xn, yn),
yn+ = V (yn, xn),

(.)

converge to x∗ and, respectively, to y∗ as n → ∞.
In particular, the operator CV : X × X → X × X given by CV (x, y) := (V (x, y), V (y, x)) is a

Picard operator.

Proof For the sake of completeness we present here the sketch of the proof. We introduce
on Z := X × X the functional d̃ : Z × Z →R+ defined by

d̃
(
(x, y), (u, v)

)
:= d(x, u) + d(y, v).

Notice that, as before, d̃ is a b-metric on Z with the same constant s ≥  and, if the space
(X, d) is complete, then (Z, d̃) is complete too.

We consider now the operator F : Z → Z given by

F(x, y) :=
(
V (x, y), V (y, x)

)
.

It is easy to prove now that F is a contraction in (Z, d̃) with constant k ∈ (, ), i.e.,

d̃
(
F(z), F(w)

) ≤ kd̃(z, w), for all z, w ∈ Z.

Thus, we can apply for F the b-metric space version of the contraction principle given by
Czerwik (see, for example, Theorem ., p. in []) and we get the conclusion. �

Another result involves the coupled fixed point problem in a complete metric space
under a contraction condition on the graphic of the operator. In this case, we will see
that CV is a weakly Picard operator. Let us also point out that we denote V (x, y) :=
V (V (x, y), V (y, x)) and V (y, x) := V (V (y, x), V (x, y)), while the graphic of an operator U :
X → X is denoted by Graph(U) := {(x, y) ∈ X × X : y = U(x)}.

Theorem . Let (X, d) be a complete metric space and V : X × X → X be an operator.
Assume that there exists k ∈ (, ) such that, for all (x, y) ∈ X × X, we have

d
(
V (x, y), V (x, y)

)
+ d

(
V (y, x), V (y, x)

) ≤ k
[
d
(
x, V (x, y)

)
+ d(y, V (y, x)

]
.

Then there exists at least one solution (x∗, y∗) ∈ X × X of the coupled fixed point problem
(.) and, for any initial point (x, y) ∈ X × X, the sequences (xn)n∈N, (yn)n∈N defined by
(.) converge to x∗ and, respectively, to y∗ as n → ∞.
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In particular, CV : X ×X → X ×X given by CV (x, y) := (V (x, y), V (y, x)) is a weakly Picard
operator.

Proof We consider again on Z := X × X the functional d̃ : Z × Z →R+ defined by

d̃
(
(x, y), (u, v)

)
:= d(x, u) + d(y, v).

As before, (Z, d̃) is a complete metric space.
We consider now the operator F : Z → Z given by

F(x, y) :=
(
V (x, y), V (y, x)

)
.

It is easy to prove now that F is a graphic contraction in (Z, d̃) with constant k ∈ (, ), i.e.,

d̃
(
F(z), F(z)

) ≤ kd̃
(
z, F(z)

)
, for all z = (x, y) ∈ Z.

Thus, the conclusion follows by the graphic contraction principle; see, for example, [] or
[]. �

Remark . It is worth to mention that the above results can easily be considered in the
framework of an ordered metric space X, under contraction type conditions imposed for
comparable elements (with respect to a partial order relation  on X); see for example [,
, –], etc.

We will consider now some qualitative properties concerning the behavior of an oper-
ator A : X → X, where (X, d) is a metric space. More precisely, we consider the following
notions:

(i) the fixed point equation

x = A(x), x ∈ X

is called well-posed if FA = {x∗
A} and for any xn ∈ X, n ∈N a sequence in X such that

d
(
xn, A(xn)

) →  as n → ∞,

we have

xn → x∗
A as n → ∞.

(ii) The operator A has the Ostrowski property (or the operator A has the limit shadowing
property) if FA = {x∗} and for any xn ∈ X, n ∈N a sequence in X such that

d
(
xn+, A(xn)

) →  as n → ∞,

we have

xn → x∗ as n → ∞.
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(iii) The fixed point equation

x = A(x), x ∈ X

is generalized Ulam-Hyers stable if there exists an increasing function θ : R+ → R+, con-
tinuous in  with θ () = , and for each ε >  and for each solution y∗ of the inequality

d
(
y, A(y)

) ≤ ε

there exists a solution x∗ of the fixed point equation with

d
(
x∗, y∗) ≤ θ (ε).

By the above notions, we have the following result.

Theorem . Let (X, d) be a metric space and V : X × X → X be an operator. Then:
(a) If the fixed point equations for CV is well-posed and FCV = {(x∗, x∗)}, then the fixed

point equations for UV is well-posed.
(b) If the operator CV has the Ostrowski property and FCV = {(x∗, x∗)}, then the operator

UV has the Ostrowski property.
(c) If the fixed point equations for CV is generalized Ulam-Hyers stable and all the fixed

points of CV are of the form (x∗, x∗), then the fixed point equations for UV is
generalized Ulam-Hyers stable.

Proof (a). If FCV = {(x∗, x∗)} then FUV = {x∗}. Let (xn)n∈N ⊂ X such that d(xn, UV (xn)) → 
as n → +∞. Then

d∗
(
(xn, xn), CV (xn, xn)

) → , n → +∞,

where d∗ is one of the metrics on X × X defined by (.)-(.). Since the fixed point equa-
tion for CV is well-posed

d∗
(
(xn, xn),

(
x∗, x∗)) → , n → +∞,

therefore

d
(
xn, x∗) → , n → +∞,

so the fixed point equation for UV is well-posed.
(b). Let (xn)n∈N ⊂ X such that d(xn, UV (xn+)) →  as n → +∞. Then

d∗
(
(xn, xn), CV (xn+, xn+)

) → , n → +∞,

where d∗ is one of the metrics on X × X defined by (.)-(.). Since the operator CV has
the Ostrowski property

d∗
(
(xn, xn),

(
x∗, x∗)) → , n → +∞,
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therefore

d
(
xn, x∗) → , n → +∞,

so the operator UV has the Ostrowski property.
(c). If (x∗, x∗) ∈ FCV then x∗ ∈ FUV . Let ε >  and y∗ ∈ X be a solution of the inequality

d
(
y, UV (y)

) ≤ ε,

then

d
((

y∗, y∗), CV
(
y∗, y∗)) = d

(
y∗, UV

(
y∗)) ≤ ε.

From the Ulam-Hyers stability of the fixed point equation for CV we see that there exists
(x∗, x∗) ∈ FCV such that

d
((

y∗, y∗),
(
x∗, x∗)) ≤ θ (ε) ⇐⇒ d

(
y∗, x∗) ≤ θ (ε),

so

d
(
y∗, x∗) ≤ θ(ε),

where θ(t) = 
θ (t) which proves that the fixed point equations for UV is generalized

Ulam-Hyers stable.
If we replace the metric d on X × X defined by (.) with the metric d or d∞ on X × X

defined by (.), respectively, by (.), we get the same conclusion but instead of θ(t) we
have a different function, in the case of d we have θ(t) = √

θ (
√

t), and in the case of d∞
we have θ∞(t) = θ (t). �

Remark . For other considerations on the operator CV see [, –], etc.

4 Iterations of the operator DV and the difference equation xn+2 = V(xn, xn+1),
n ∈N, x0, x1 ∈ X

Let X be a nonempty set and V : X × X → X. Let (xn, yn) := Dn
V (x, y), (x, y) ∈ X × X.

We remark that (xn)n∈N is a solution of the difference equation

xn+ = V (xn, xn+), n ∈N, x, x = y ∈ X. (.)

Moreover, we have the following.

Lemma . Let (X,→) be an L-space and V : X × X → X a continuous operator. Then the
following statements are equivalent:

(i) DV is Picard with FDV = {(x∗, x∗)};
(ii) D

V is Picard operator with FD
V

= {(x∗, x∗)};
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(iii) x∗ is globally asymptotically stable solution of the difference equation

xn+ = V (xn, xn+), n ∈N.

Proof (i) ⇔ (ii). See Lemma . in []. (i) ⇔ (iii). See [, ]. �

Theorem . Let (X, d) be a complete metric space, V : X × X → X and ϕ : R
+ →R+. We

suppose that:
(i) ϕ is increasing;

(ii)
∑∞

k= φk(r) < +∞, where φ(r) = ϕ(r, r), r ∈R+;
(iii) ϕ(r, ) + ϕ(, r) ≤ φ(r), r ∈R+;
(iv) d(V (x, x), V (x, x)) ≤ ϕ(d(x, x), d(x, x)), for all x, x, x ∈ X .
Then
(a) FUV = {x∗}.
(b) If (xn)n∈N is a solution of the difference equation (.) then xn → x∗ as n → +∞.

Proof Let x, x ∈ X and (xn)n∈N be defined by the difference equation (.). We have

d(x, x) = d
(
V (x, x), V (x, x)

) ≤ ϕ
(
d(x, x), d(x, x)

)

≤ φ
(
d∞

(
(x, x), (x, x)

))
,

d(x, x) = d
(
V (x, x), V (x, x)

) ≤ ϕ
(
d(x, x), d(x, x)

)

≤ ϕ
(
d∞

(
(x, x), (x, x)

)
,φ

(
d∞

(
(x, x), (x, x)

)))

≤ φ
(
d∞

(
(x, x), (x, x)

))
,

d(x, x) = d
(
V (x, x), V (x, x)

) ≤ ϕ
(
d(x, x), d(x, x)

)

≤ ϕ
(
φ
(
d∞

(
(x, x), (x, x)

))
,φ

(
d∞

(
(x, x), (x, x)

)))

= φ(d∞
(
(x, x), (x, x)

))
.

By induction we get

d(xn, xn+) ≤ φ[ n
 ](d∞

(
(x, x), (x, x)

))
,

thus

d(xn, xn+p) ≤
p–∑

i=

d(xn+i, xn+i+) ≤
p–∑

i=

φ[ n+i
 ](d∞

(
(x, x), (x, x)

))

≤ 
[ n+p–

 ]∑

j=[ n
 ]

φj(d∞
(
(x, x), (x, x)

)) →  as n, p → +∞,

so (xn)n∈N is fundamental, therefore there exists x∗ ∈ X such that xn → x∗ as n → +∞.
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By the continuity assumption on ϕ in  we have

d
(
x∗, V

(
x∗, x∗))

≤ d
(
x∗, xn

)
+ d

(
xn, V

(
xn–, x∗)) + d

(
V

(
xn–, x∗), V

(
x∗, x∗))

≤ d
(
x∗, xn

)
+ ϕ

(
d(xn–, xn–), d

(
xn–, x∗)) + ϕ

(
d
(
xn–, x∗), d

(
x∗, x∗)),

thus x∗ = V (x∗, x∗), which means that x∗ ∈ FUV .
If there exist x∗, y∗ ∈ FUV then

d
(
x∗, y∗) = d

(
V

(
x∗, x∗), V

(
y∗, y∗))

≤ d
(
V

(
x∗, x∗), V

(
x∗, y∗)) + d

(
V

(
x∗, y∗), V

(
y∗, y∗))

≤ ϕ
(
, d

(
x∗, y∗)) + ϕ

(
d
(
x∗, y∗), 

) ≤ φ
(
d
(
x∗, y∗)),

but φ(r) < r for all r ∈R
∗
+, so d(x∗, y∗) = . �

Theorem . Let (X, d) be a complete metric space and V : X × X → X. We suppose that
there exist l, l ∈R+, l + l <  such that

d
(
V (x, y), V (x, y)

) ≤ ld(x, x) + ld(y, y), for all xi, yi ∈ X, i = , .

Then
(a) D

V is a (l + l)-contraction;
(b) FDV = {(x∗, x∗)} and FUV = {x∗};
(c) if (xn)n∈N is a solution of the difference equation

xn+ = V (xn, xn+), n ∈N,

then xn → x∗ as x → ∞.

Proof (a). Let us consider the complete metric space (X × X, d∞) where d∞ is defined by
(.). We have

d∞
(
D

V (x, y), D
V (x, y)

)

= max
{

d
(
V (x, y), V (x, y)

)
, d

(
V

(
y, V (x, y)

)
, V

(
y, V (x, y)

))}

and

d
(
V (x, y), V (x, y)

) ≤ (l + l) · d∞
(
(x, y), (x, y)

)
,

d
(
V

(
y, V (x, y)

)
, V

(
y, V (x, y)

))

≤ ld(y, y) + ld
(
V (x, y), V (x, y)

)

≤ (l + l) · d∞
(
(x, y), (x, y)

)
.
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Thus

d∞
(
D

V (x, y), D
V (x, y)

) ≤ (l + l) · d∞
(
(x, y), (x, y)

)
,

so D
V is an (l + l)-contraction.

From Lemma . we get (b) and (c). �

For related results concerning the difference equation (.) see [–, , ], etc.

5 Fixed point results for the operator TV

A possible approach for the study of the fixed points of the operator TV is given by the
following general result.

Lemma . Let X be a nonempty set, (X, S(X), M) be a f.p.s. on X and (X, S(X), M
) be

a m.f.p.s. on X. Let Y ∈ S(X) ∩ S(X) and V : Y × Y → Y . We suppose that:
(i) S(X) ∩ S(X) 	= ∅;

(ii) V (·, x) ∈ M(Y ), for each x ∈ Y ;
(iii) TV ∈ M

 (Y ).
Then FTV 	= ∅ and FUV = FTV .

Proof Since Y ∈ S(X) ∩ S(X) and using (ii) we obtain TV (x) 	= ∅, for each x ∈ Y . Since
Y ∈ S(X) and using (iii) we get FTV 	= ∅. On the other hand, FUV = FTV . �

In particular, we have the following consequences of the above approach.

Theorem . Let X be a Banach space and Y ∈ Pcp,cv(X). Let V : Y ×Y → Y be an operator
such that:

(i) V : Y × Y → Y is continuous;
(ii) the set {u ∈ Y | u = V (u, x)} is convex, for each x ∈ Y .
Then FTV 	= ∅, i.e., there exists x∗ ∈ Y such that x∗ = V (x∗, x∗).

Proof Since V (·, x) : Y → Y is continuous and Y ∈ Pcp,cv(X), by Schauder’s fixed point the-
orem, we get FV (·,x) 	= ∅, for each x ∈ Y . Moreover, by (ii), the set FV (·,x) is convex, for each
x ∈ Y . On the other hand, by the continuity of V , we see that the set {(x, u) ∈ Y × Y |
u = V (u, x)} is closed in Y × Y . Thus, the multi-valued operator TV : Y → P(Y ) given by
TV (x) := FV (·,x) has a closed graphic. Since the co-domain Y is compact, TV is upper semi-
continuous on Y . Hence, we get TV : Y → Pcp,cv(Y ) and it is upper semi-continuous. By
Bohnenblust-Karlin’s fixed point theorem we get FTV 	= ∅. �

Theorem . Let X be a uniformly convex Banach space and Y ∈ Pcp,cv(X). Let V : Y ×
Y → Y be an operator such that:

(i) V : Y × Y → Y is continuous;
(ii) V (·, x) : Y → Y is nonexpansive, for each x ∈ Y .
Then FTV 	= ∅.

Proof Since V (·, x) : Y → Y is nonexpansive and Y ∈ Pcp,cv(X), by Browder-Ghöde-Kirk’s
fixed point theorem, we see that the set FV (·,x) is nonempty and convex, for each x ∈ Y . On
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the other hand, by the continuity of V , we see that the set {(x, u) ∈ Y × Y | u = V (u, x)} is
closed in Y × Y . Thus, the multi-valued operator TV : Y → P(Y ) given by TV (x) := FV (·,x)

has a closed graphic. Since the co-domain Y is compact, TV is upper semi-continuous
on Y . Hence, we get TV : Y → Pcp,cv(Y ) and it is upper semi-continuous. Our conclusion
follows by Bohnenblust-Karlin’s fixed point theorem. �

Theorem . Let (X,‖ · ‖) be a Banach space and Y ∈ Pcl,cv(X). Let V : Y × Y → Y be an
operator such that:

(i) there exists α ∈ (, ) such that, for each x ∈ X , we have

∥∥V (u, x) – V (v, x)
∥∥ ≤ α‖u – v‖, for all u, v ∈ Y ;

(ii) for each u ∈ Y the operator V (u, ·) : Y → Y is continuous;
(iii) for each u ∈ Y the set V (u, Y ) is relatively compact.
Then FTV 	= ∅.

Proof Since, for every x ∈ Y , the operator V (·, x) : Y → Y is a contraction, for each x ∈ Y
there exists a unique u∗ = u∗(x) ∈ Y such that V (u∗, x) = u∗. Thus, the operator TV : Y → Y
given by TV (x) := u∗(x) is a self single-valued operator on Y . Notice that

TV (x) = V
(
u∗(x), x

)
for each x ∈ Y .

Moreover, TV is continuous since

∥
∥TV (x) – TV (x)

∥
∥

=
∥∥V

(
u∗(x), x

)
– V

(
u∗(x), x

)∥∥

≤ ∥∥V
(
u∗(x), x

)
– V

(
u∗(x), x

)∥∥ +
∥∥V

(
u∗(x), x

)
– V

(
u∗(x), x

)∥∥

≤ α
∥∥u∗(x) – u∗(x)

∥∥ +
∥∥V

(
u∗(x), x

)
– V

(
u∗(x), x

)∥∥

= α
∥∥TV (x) – TV (x)

∥∥ +
∥∥V

(
u∗(x), x

)
– V

(
u∗(x), x

)∥∥.

As a consequence, we get the continuity of the single-valued opertor TV :

∥
∥TV (x) – TV (x)

∥
∥ ≤ 

 – α
· ∥∥V

(
u∗(x), x

)
– V

(
u∗(x), x

)∥∥ →  as x → x.

By (iii), TV (Y ) is relatively compact. Thus, by Schauder’s fixed point theorem, there exists
x∗ ∈ Y such that x∗ = TV (x∗). As a consequence, x∗ = u∗ = V (u∗, x∗) = V (x∗, x∗). �

Theorem . Let (X,‖ · ‖) be a Banach space and Y ∈ Pcp,cv(X). Let V : Y × Y → Y be an
operator such that:

(i) there exists α ∈ (, ) such that, for each x ∈ X , we have

∥∥V (u, x) – V
(
V (u, x), x

)∥∥ ≤ α
∥∥u – V (u, x)

∥∥, for all x, u ∈ Y ;

(ii) V : Y × Y → Y is continuous;
(iii) the set {u ∈ Y | u = V (u, x)} is convex, for each x ∈ Y .
Then FTV 	= ∅.
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Proof Notice first that, for every x ∈ Y , the operator V (·, x) : Y → Y is a graphic contrac-
tion. Thus, for each x ∈ Y , the set FV (·,x) is nonempty. Moreover, by the continuity of V ,
the set FV (·,x) is closed. Thus, the operator TV : Y → P(Y ) given by TV (x) := FV (·,x) is a
multi-valued operator with closed graph. Since Y is compact, we see that TV is upper
semi-continuous on Y with compact and (by (iii)) convex values. The conclusion follows
by Bohnenblust-Karlin’s fixed point theorem. �

Another result of this type can be reached using the above mentioned particular variant
of the Eilenberg-Montgomery theorem; see Theorem ..

Theorem . Let (X,‖ · ‖) be a Banach space and Y ∈ Pcp,cv(X). Let V : Y × Y → Y be an
operator such that:

(i) for each x ∈ X the operator V (·, x) is nonexpansive and compact;
(ii) the operator V : Y × Y → Y is continuous.
Then FTV 	= ∅.

Proof Notice first that, by Theorem . in [], the set FV (·,x) is nonempty and acyclic,
for each x ∈ Y . On the other hand, by the continuity of V , we see that the set {(x, u) ∈
Y × Y | u = V (u, x)} is closed in Y × Y . Thus, the multi-valued operator TV : Y → P(Y )
given by TV (x) := FV (·,x) has a closed graphic. Since the co-domain Y is compact, TV is
upper semi-continuous on Y . Hence, we see that TV : Y → P(Y ) has acyclic values and it
is upper semi-continuous. The conclusion follows by Theorem .. �

Remark . For the case of the Eilenberg-Montgomery fixed point theorem see [, ,
], etc.

Remark . For the fixed point theory of multivalued operators see [, , , ], etc.

6 Applications
6.1 Fredholm type integral equations
Let � ⊂R

m be a bounded domain and C(�) be the Banach space with

‖x‖∞ := max
t∈�

∣∣x(t)
∣∣.

We consider the integral equation, in C(�),

x(t) =
∫

�

K
(
t, s, x(s), x(s)

)
ds, t ∈ �, (.)

where K ∈ C(�,� ×R
).

Let us consider now the operator V : C(�) × C(�) → C(�) defined by

V (x, y)(t) :=
∫

�

K
(
t, s, x(s), y(s)

)
ds.

By Theorem . we have the following.

Theorem . We suppose that:
(i) ϕ : R

+ →R+ satisfies conditions (i)-(iii) in Theorem .;
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(ii) |K(t, s, u, v) – K(t, s, v, w)| ≤ 
mes(�)ϕ(|u – v|, |v – w|) for all t, s ∈ �, u, v, w ∈R.

Then:
(a) Equation (.) has a unique solution, x∗ ∈ C(�).
(b) The sequence (xn)n∈N, defined by

xn+(t) =
∫

�

K
(
t, s, xn(s), xn+(s)

)
ds, t ∈ �,

converges to x∗ for all x, x ∈ C(�).

6.2 A periodic boundary value problem
We will consider now a periodic boundary value problem of the following type:

{
–x′′ = f (t, x, x), t ∈ [a, b],
x(a) = , x(b) = ,

(.)

where f : [a, b] ×R
 →R is a given continuous function.

This problem is equivalent to a Fredholm type integral equation of the following form:

x(t) =
∫ b

a
G(t, s)f

(
s, x(s), x(s)

)
, t ∈ [a, b],

where G : [a, b] × [a, b] →R+ is the corresponding Green function.
Let us define now the operator V : C[a, b] × C[a, b] → C[a, b] defined by

V (x, y)(t) :=
∫ b

a
G(t, s)f

(
s, x(s), y(s)

)
ds.

By Theorem . we have the following.

Theorem . We suppose that:
(i) ϕ : R

+ →R+ satisfies conditions (i)-(iii) in Theorem .;
(ii) |f (s, u, v) – f (s, v, w)| ≤ 

(b–a) · ϕ(|u – v|, |v – w|) for all t, s ∈ [a, b], u, v, w ∈R.
Then:

(a) The boundary value problem (.) has a unique solution, x∗.
(b) The sequence (xn)n∈N, defined by

xn+(t) =
∫ b

a
f
(
s, xn(s), xn+(s)

)
ds, t ∈ [a, b]

converges to x∗ for all x, x ∈ C[a, b].

6.3 Other applications
Other applications of the abstract results given in this paper can be obtained for the case of
functional-differential equations and functional-integral equations (or inclusions) which
appear in [, , , , , ], etc.
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7 Research directions
7.1 Mixed monotone operators
Let (X,≤) be an ordered set and U : X → X. Under these conditions there exists V : X ×
X → X such that:

(i) V (·, x) is increasing;
(ii) V (x, ·) is decreasing;

(iii) U = UV .
References: [, , ], etc.

7.2 Difference equations for diagonal operators
Let (X,→) be an L-space and U : X → X an operator. Under which conditions is U a
diagonal operator with respect to some V : X × X → X such that each solution (xn)n∈N of
the difference equation

xn+ = V (xn, xn+), n ∈N,

converges to a fixed point of U?
References: [, , , , , ], etc.

7.3 Fixed point structures approach to diagonal operators
Let (X, S(X), M) be a fixed point structure on X, Y ∈ S(X) and V : Y × Y → Y . Under
which conditions on V do we have UV ∈ M(Y )?

Commentaries Let X be a Banach space, (X, Pb,cl,cv(X), M) the fixed point structure of
Darbo. Let Y ∈ Pb,cl,cv(X) and V : Y × Y → Y . We suppose that:

(i) V is continuous;
(ii) V (·, y) is a l-contraction, for all y ∈ Y ;

(iii) V (x, ·) is compact, for all x ∈ Y .
Then UV ∈ M(Y ) (see [, , ]).
References: [, –], etc.
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52. Lakshmikantham, V, Ćirić, L: Coupled fixed point theorems for nonlinear contractions in partially ordered metric

spaces. Nonlinear Anal. 70, 4341-4349 (2009)
53. Lishan, L: Iterative method for solutions and coupled quasi-solutions of nonlinear Fredholm integral equations in

ordered Banach spaces. Indian J. Pure Appl. Math. 27(10), 959-972 (1996)
54. Xiao, J-Z, Zhu, X-H, Shen, Z-M: Common coupled fixed point results for hybrid nonlinear contractions in metric

spaces. Fixed Point Theory 14, 235-250 (2013)
55. Popa, D, Lungu, N: On an exponential inequality. Demonstr. Math. 38(3), 667-674 (2005)
56. Soleimani Rad, G, Shukla, S, Rahimi, H: Some relations between n-tuple fixed point and fixed point results. Rev. R.

Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 109(2), 471-481 (2015)
57. Rus, IA: Remarks on a LaSalle conjecture on global asymptotic stability. Fixed Point Theory 17(1), 159-172 (2016)
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