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Abstract
In this article, a numerical method based on the fractional-order shifted Legendre
polynomials (FSLPs) and their operational matrix of fractional integration is
introduced for solving the fractional Bagley-Torvik equations. The main advantage of
the presented method is that it can reduce a solution of the initial and boundary
value problems for the fractional Bagley-Torvik differential equations to a system of
algebraic equations. In order to confirm the efficiency and superiority of the
presented method, some numerical examples are provided and a comparison is
presented between the obtained results and those results achieved from other
existing methods in the literature.
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1 Introduction
Fractional calculus, the theory of differentiation and integration to non-integer order, is
very useful for the description of various physical phenomena, such as damping laws,
diffusion process, etc. Fractional derivatives provide an excellent instrument for the de-
scription of memory and hereditary properties of various materials and processes [–].
Especially, fractional differential equations provide outstanding tools for illustration of
many engineering and physical problems. Since most fractional differential equations do
not have exact and analytic solutions, the accurate numerical techniques for solving these
fractional equations are a challenging and motivational research area in mathematics and
engineering.

The fractional Bagley-Torvik equation was originally formulated in a description of a
real material by the use of fractional calculus. Moreover, the Bagley-Torvik equation has
appeared in simulating the motion of a rigid plate immersed in a Newtonian fluid [–].
This equation has been studied both analytically and numerically in []. Diethelm []
transformed this equation into a system of fractional differential equation and solved the
problem with the Adams predictor and the corrector method. Recently, considerable at-
tention has been devoted to numerical solutions of the fractional Bagley-Torvik equation.
For example the spectral tau method [, ], the operational formulation of collocation
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methods [, ], collocation methods [–], wavelet methods [, ], pseudospectral
methods [], differential transform methods [], hybrid functions methods [], and
fractional Taylor methods [] have been used to solve this fractional differential equa-
tion. In this study, a fractional-order Legendre collocation method is proposed for solving
the Bagley-Torvik equations.

Applications of orthogonal functions and polynomials for numerical solution of ordi-
nary differential equations refer, at least, to the time of Lanczos []. Moreover, the origin
of some current spectral method, such as the Galerkin, tau, and pseudospectral methods
can be found in the ‘weighted residual method’ of Finlayson and Scriven []. Nowadays,
spectral methods are efficient techniques for solving a different kind of fractional differ-
ential and integral equations accurately [, , , ]. The main advantage of spectral
methods lies in their accuracy for a given number of unknowns. For smooth problems in
simple geometries, they offer exponential rates of convergence (spectral accuracy). By us-
ing the operational matrices for basis functions, spectral methods reduce the solution of
fractional differential and integral equations into a solution of systems of algebraic equa-
tions which produce highly accurate solutions for these equations [, , , ].

This paper is structured as follows: In Section  some basic preliminaries of the frac-
tional calculus are presented. The FSLPs and their properties are introduced in Section .
Section  is devoted to an operational matrix of fractional integration for the FSLPs. Ap-
plication of the FSLPs for solving the Bagley-Torvik equation is considered in Section .
Convergence and an error estimate for the FSLPs expansion are given in Section . The
efficiency and superiority of the proposed method is demonstrated by considering some
numerical examples in Section . Finally, a conclusion is given in Section .

2 Preliminaries
In this section we review some basic definitions and preliminaries of the fractional calculus
which are used in the next sections.

2.1 Fractional calculus
Fractional-order calculus is a branch of calculus which deals with integration and differen-
tiation operators of non-integer order. Among the several formulations of the generalized
derivative, the Riemann-Liouville and Caputo definition are most commonly used, which
can be described as follows [].

Definition  A real function f (t), t > , is said to be in the space Cμ, μ ∈ R if there exist
a real number p > μ and a function f(t) ∈ C[,∞) such that f (t) = tpf(t), and it is said to
be in the space Cn

μ, n ∈N if f (n) ∈ Cμ.

Definition  The Riemann-Liouville fractional integration of order ν ≥  of a function
f ∈ Cμ, μ ≥ –, is defined as

(
J ν f

)
(t) =

{


�(ν)
∫ t

 (t – τ )ν–f (τ ) dτ , ν > ,
f (t), ν = .

The Riemann-Liouville fractional operator J ν has the following properties:

J ν
(
J ν f (t)

)
= J ν

(
J ν f (t)

)
, ν,ν ≥ ,
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J ν
(
J ν f (t)

)
= J ν+ν f (t), ν,ν ≥ ,

J νtλ =
�(λ + )

�(λ + ν + )
tν+λ, ν ≥ ,λ > –.

Definition  The fractional derivative of order ν >  in the Caputo sense is defined as

Dν f (t) =

{ dnf (t)
dtn , ν = n ∈N,


�(n–ν)

∫ t


f (n)(τ )
(t–τ )ν–n+ dτ , t > ,  ≤ n –  < ν < n,

where n is an integer, t > , and f ∈ Cn
 .

For N = {, , , . . .}, f ∈ Cμ, μ,λ ≥ –, and n –  < ν ≤ n some useful and practical prop-
erties of the Caputo fractional operators Dν are given by the following expressions:

J νDν f (t) = f (t) –
n–∑

k=

f (k)(+) tk

k!
, t > ,

DνJ ν f (t) = f (t),

Dνtλ =

{
 for λ ∈N and λ < ν,

�(λ+)
�(λ–ν+) tλ–ν otherwise.

For more details of fractional calculus and their applications please refer to [–].

3 The FSLPs and their properties
The FSLPs can be defined based on the definition of the shifted Legendre polynomials by
introducing the change of variable t = xα for α >  []. Let Pn(x) is the nth shifted Leg-
endre polynomial and P(n,α)(x) denote the nth FSLPs, i.e. Pn(xα). By using the recurrence
formula for the shifted Legendre polynomials, it can be given as

P(n,α)(x) =
n – 

n
(
xα – 

)
P(n–,α)(x) –

n – 
n

P(n–,α)(x), n = , , . . . ,

where P(,α)(x) =  and P(,α)(x) = xα – . The set of FSLPs are orthogonal with respect to
the weight function wα(x) = xα– in the interval [, ] with the orthogonality property

∫ 


P(m,α)(x)P(n,α)(x)wα(x) dx =

δmn

α(n + )
.

Moreover, the analytical form of the FSLP P(n,α)(x) can be written as []

P(n,α)(x) =
n∑

k=

an,kxαk , n = , , , , . . . , ()

where an,k are defined as

an,k =
(–)n(n + k)!
(n – k)!(k!) . ()
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Any function f (t) defined over [, ] may be expanded in terms of FSLPs as

f (x) =
∞∑

k=

ckP(k,α)(x), ()

in which the ck are derived by

ck = α(k + )
∫ 


P(m,α)(x)P(n,α)(x)wα(x) dx.

If the infinite series in equation () is truncated, then it can be written as

f (x) � fM(x) =
M–∑

k=

ckP(k,α)(x) = CT�α(x), ()

where C and �α(x) are M ×  vectors given by

C = [c, c, . . . , cM–]T , �α(x) =
[
P(,α)(x), P(,α)(x), . . . , P(M–,α)(x)

]
. ()

4 Operational matrix of fractional integration of FSLPs
In recent years various operational matrices for the polynomials have been developed to
cover the numerical solution of differential, integral and integro-differential equations.
The main advantage of these operational matrices is that they replace differential and in-
tegral operators with some matrices. Consequently, they reduce such problems to those
of solving a system of algebraic equations, greatly simplifying the problem [–]. In this
section the operational matrix of fractional integration for FSLPs will be derived.

Theorem . The Riemann-Liouville fractional integration of order ν for the M ×  FSLPs
vector �α(x) can be defined as

J ν�α(x) = xνM(ν)�α(x), ()

where M(ν) is M × M matrix and its (i, j)th element is defined by

M(ν)
i,j =

i–∑

r=

j∑

l=

α(j + )ai–,raj,l�(sα + )
(αr + αl + α)�(rα + ν + )

, i, j = , , . . . , M, ()

where ai–,s is defined in equation ().

Proof The ith element of the vector �α(x) is P(i–,α)(x). Using the analytical form of
P(i–,α)(x), the fractional integration of order ν for this function can be written as

J νP(i–,α)(x) =
i–∑

r=

ai–,r
�(sα + )

�(rα + ν + )
xrα+ν = xν

i–∑

r=

ai–,r
�(sα + )

�(rα + ν + )
xrα . ()

Now the term xαr is expanded exactly by FSLPs as

xαr =
M–∑

j=

ρr,jP(j,α)(x), ()
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in which the ρr,s can be derived as

ρr,j = α(j + )
∫ 


P(j,α)(x)xαrwα(x) dx = α(j + )

∫ 


P(j,α)(x)xαrxα– dx

= α(j + )
j∑

l=

aj,l

∫ 


xαr+αl+α– dx = α(j + )

j∑

l=

aj,l

αl + αr + α
. ()

By substituting equations () and () in () we have

J νP(i–,α)(x) = xν

M–∑

j=

( i–∑

r=

j∑

l=

α(j + )ai–,raj,l�(sα + )
(αr + αl + α)�(rα + ν + )

)

P(j,α)(x), ()

this means that the fractional integration of ith element of �α(x) can be expanded in FSLPs
as derived in equation () and this yields the desired result directly. �

5 Numerical solution of Bagley-Torvik equations
The fractional Bagley-Torvik equation is of the form

ADy(x) + ADνy(x) + Ay(x) = f (x),  ≤ x ≤ R,  < ν < , ()

subject to the initial conditions

y() = α, y′() = α, ()

or the boundary conditions

y() = β, y(R) = β, ()

where A, A, A, α, α, β, and β are constants with A �= . To solve this fractional Bagley-
Torvik equation we consider two cases.

Case () Intitial conditions: For solving the Bagley-Torvik equation () with intitial con-
ditions (), we use the change of variable t = x

R to transform x ∈ [, R] in t ∈ [, ]. So, we
get

A
R D

Y (t) +
B

Rα
DνY (t) + CY (t) = F(t),  ≤ t ≤ ,  < ν < , ()

subject to the initial conditions

Y () = α, Y ′() = Rα, ()

in which Y (t) = y(Rt) and F(t) = f (Rt). Now, we approximate the functions Y (t) and F(t)
in terms of FSLPs as

Y (t) � CT�α(t), F(t) � �T�α(t), ()



Mohammadi and Mohyud-Din Advances in Difference Equations  (2016) 2016:269 Page 6 of 14

where C is an unknown M ×  vector. Substituting equation () in equation () and
applying the Riemann-Liouville integral operator J  we get

A

R

(
CT�α(t) – α – Rtα

)
+

A

Rα
J –ν

(
CT�α(t) – α – Rtα

)

+ AJ CT�α(t) = J �T�α(t), ()

by using the operational matrix of fractional integration M(ν) we have

A

R

(
CT�α(t) – α – Rtα

)

+
A

Rα

(
t–νCTM(–ν)�α(t) – α

t–ν

�( – ν)
– Rα

t–ν

�( – ν)

)

+ tACTM�α(t) = t�TM�α(t). ()

Now we collocate the equation () at the M zeros of the shifted Legendre polynomial
PM(x). This generates a system of M algebraic equations for the unknown vector C. After
finding the solution of this algebraic system, the solution Y (t) can be derived by substitut-
ing the vector C in equation ().

Case () Boundary conditions: To solve the Bagley-Torvik equation () with boundary
conditions (), similar to the previous case, by using the change of variable t = x

R we obtain

A
R D

Y (t) +
B

Rα
DνY (t) + CY (t) = F(t),  ≤ t ≤ ,  < ν < , ()

subject to boundary conditions

Y () = β, Y () = β,

substituting the approximation functions Y (t) and F(t) defined in equation () into equa-
tion () and using the operational matrix of fractional integration M(ν) we get

A

R

(
CT�α(t) – β – Rtw

)

+
A

Rα

(
t–νCTM(–ν)�α(t) – β

t–ν

�( – ν)
– Rw

t–ν

�( – ν)

)

+ tACTM�α(t) = t�TM�α(t), ()

in which w = Y ′() is unknown. To obtain the solution Y (t) we collocate the equation ()
at the M zeros of the shifted Legendre polynomial PM(x) and this gives a system of M
algebraic equations for the unknown vector C. Moreover, the boundary condition y(R) =
Y () = β give a linear equation. This equation together with M algebraic equations derived
by collocation method, generates a system of M +  equations which can be solved for the
unknown vector C and initial condition w. By substituting the derived vector C in equation
() the solution Y (t) can be derived.
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6 Error analysis
In this section, in order to demonstrate the efficiency of the proposed FSLPs method, we
have given some theorems on convergence and error estimation. The next theorem gives
an upper bound for the error function of the truncated FSLPs series.

Theorem . Let f (x) be a defined function on [, ] and g(x) = f (x 
α ) ∈ Cn+[, ], the

mean error bound for the truncated FSLPs series fM(x) =
∑M–

k= ckP(k,α)(x) can be derived as
follows:

‖f – fM‖α ≤ ‖g(n+)‖∞
(n + )!n+ .

Proof The truncated FSLPs series fM(x) can be written as a polynomial qn(xα) of degree
M –  which approximates f (x) with minimum mean error, so

‖f – fM‖
α =

∫ 



∣
∣f (x) – fM(x)

∣
∣xα– dx =

∫ 



∣
∣f (x) – qn(x)

∣
∣xα– dx,

by the change of variable t = xα we get

‖f – fM‖
α = α

∫ 



∣∣g(t) – qn(t)
∣∣ dt ≤ α

∫ 



∣∣g(t) – Qn(t)
∣∣ dt,

in which Qn(x) is the well-known polynomial interpolation for g(t) at shifted zeros of
Chebyshev polynomials in the interval [, ]. Now by using an error bound of the poly-
nomial interpolation Qn(t) (Theorem . in []) we have

‖f – fM‖
α ≤ α

∫ 



( ‖g(n+)‖∞
(n + )!n+

)

dt =
( ‖g(n+)‖∞

(n + )!n+

)

,

taking the square root of both sides completes the proof. �

Now, we give the error estimation of the numerical method given in the previous section.
Suppose y(x) is the exact solution of () and yM(x) is the approximate solution for y(x).
Here, we introduce a process for estimating the error of the approximate solution, i.e.
eM(x) = y(x) – yM(x). Consider the perturbation function RM(x), depending only on the
approximate solution yM(x) as

RM(x) = ADy(x) + ADνy(x) + Ay(x) – f (x), ()

subtracting () from () we obtain

ADeM(x) + ADνeM(x) + AeM(x) = RM(x), ()

these Bagley-Torvik equations with initial conditions eM() = , e′
M() =  or boundary

conditions eM() = , eM(R) =  can be solved by using the proposed FSLPs method as
given in previous section for this system to find an approximation of the error function
eM(x).
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7 Numerical examples
In this section, the efficiency and superiority of the proposed method is demonstrated by
some illustrative examples. All algorithms are performed by Maple .

Example  Let us consider the Bagley-Torvik equation () with the following conditions
[, , ]:

A = A = A = , ν = .,  ≤ x < , f (x) = x + ,

y() = , y() = .

The exact solution of this problem is

y(x) = x + .

The FSLPs basis and its fractional operational matrix have been applied for solving this
fractional Bagley-Torvik equation. For α =  and M =  the presented FSLPs collocation
method results in the following linear system for the unknowns c, c, and w:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

.w – .c + .c

– . = ,
–.w – .c + .c

– . = ,
c + c –  = ,

in which w = y′() and y(x) = cP(,α)(x) + cP(,α)(x). Solving this linear system we obtain

c = ., c = .,

w = ..

Hence, we get y(x) =  + x up to  digits precision which is the exact solution.

Example  In this example, we consider the Bagley-Torvik equation () with the follow-
ing conditions [, , ]:

A = , A = A = , ν = .,  ≤ x < ,

f (x) =

√

x√
π

+ t – t, y() = y() = .

The exact solution of this problem is

y(x) = x – x.

To solve this problem we implemented the proposed FSLPs collocation method for M = 
and α = . For unknown c, c, c, and w = y′() this collocation method results in the
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following linear system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.w – .c – .c

+ .c – . = ,
–.w + .c – .c

+ .c – . = ,
–.w – .c + .c

+ .c – . = ,
c + c + c = ,

where w = y′() and y(x) = cP(,α)(x) + cP(,α)(x) + cP(,α)(x). By solving this linear system
we get

c = –., c = . × –,

c = ., w = –.,

and this results the exact solution y(x) = x – x up to  digits precision.

Example  In this example, we consider the Bagley-Torvik equation () with the follow-
ing conditions [, , ]:

A = , A =



, A =



, ν = .,  ≤ x < ,

f (x) =
x–.


√

π

(
p(t) + 

√
π tq(t)

)
, y() = y() = ,

in which

p(t) = x – x + x – x,

q(t) = x – x + x – x + x – .

The exact solution of this problem is

y(x) = x –
x


+

x


–

x


+

x


.

Similar to the previous examples the FSLPs method has been used for solving this problem.
After solving the linear system derived by the presented collocation method for α =  and
M =  we get the following values for the unknown coefficients:

c = ., c = –.,

c = ., c = .,

c = –., c = .,

w = .,
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Figure 1 The exact and approximate solution for α = 0.5, 1 and M = 20.

and this results in

y(x) = .x – .x + .x

– .x + .x + . × –,

which is the exact solution up to  digits precision.

Example  In this example, we consider the Bagley-Torvik equation () with the follow-
ing conditions []:

A = , A = A = , ν = .,  ≤ x < ,

f (x) =

√

x√
π

+ x + x, y() = , y() = .

The exact solution of this problem is

y(x) = x.

Similar to the previous examples the FSLPs method has been used for solving this problem
and by solving the linear system derived by the presented collocation method for α =  and
M =  we get

c = ., c = .,

c = ., c = –. × –.

and this results in the solution function in the interval [, ] as

y(t) = .x – .–x + .–.
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(a)

(b)

Figure 2 The absolute error of the obtained results. We took (a) α = 1 and (b) α = 0.5.

By the change of variable t = x
 in this function we get

.x – .–x + . × –,

which is the exact solution up to  digits precision.

Example  Consider the fractional Bagley-Torvik equation () with the following con-
ditions [, –]:

A = , A = ., A = ., ν = .,  ≤ x < ,

y() = , y′() = , f (x) =

{
,  ≤ x ≤ ,
, x > .
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Table 1 Comparison of the numerical solution for ν = 1.5, α = 0.5, 1, and M = 17 with other
results in [23, 27]

t Exact FSLPs (α = 0.5) FSLPs (α = 1.0) Ref. [27] Ref. [23]

1.40625 4.85696 4.80915 4.85715 4.95531 4.67105
2.03125 6.83165 6.78579 6.85062 6.93440 6.48436
2.96875 7.67925 7.64470 7.67261 7.80605 7.21918
3.59375 6.97278 6.94967 6.98356 7.09830 6.51938
4.21875 5.48313 5.47278 5.48883 5.59310 5.09093
5.46875 1.28657 1.29947 1.28343 1.33675 1.11881
7.96875 –4.53369 –4.50974 –4.53926 –4.59731 –4.30082
9.53125 –3.64404 –3.63542 –3.64279 –3.71142 –3.40603
11.7188 0.59143 0.57883 0.59421 0.58569 0.61398
13.5938 2.64127 2.62760 2.63996 2.67926 2.51628
15.4688 1.72175 1.71945 1.72207 1.75636 1.60585
16.4063 0.63025 0.63383 0.62882 0.64944 0.56273
17.3438 –0.44428 –0.43668 –0.44270 –0.44298 –0.45529
18.9063 –1.50186 –1.49344 –1.49966 –1.52298 –1.44138
19.8438 –1.52304 –1.51713 –1.518921 –1.54859 –1.44734

The exact solution of equation is given by

y(x) =
∫ x


G(x – t)f (t) dt,

in which G(t) = 
A

∑∞
r=

(–)r

r! ( A
A

)rtr+E(r)

 , r

 +
( A

A
t 

 ) and Eλ,μ is called the Mittag-Leffler
function in two parameters λ,μ >  and

E(r)
λ,μ(z) =

drEλ,μ(z)
dxr =

∞∑

j=

(j + r)!zj

j!�(λj + λr + μ)
, r = , , , . . . .

The proposed FSLPs collocation method is implemented for solving this fractional Bagley-
Torvik equation. Figure  shows the exact and approximate solution for α = .,  and M =
. The absolute errors for the obtained numerical solutions with α = . and α =  are
plotted in Figure . Moreover, a comparison between the results achieved by the proposed
FSLPs method with M =  and other methods in Refs. [, ] is presented in Table .
From Table  we can immediately see that the FSLPs method, in comparison to other
existing methods, is more efficient and accurate.

8 Discussion and conclusion
A new type of orthonormal fractional-order Legendre polynomials is defined. The oper-
ational matrix of fractional integration for this fractional-order basis is derived. By using
this fractional operational matrix and collocation method a numerical method is proposed
for solving the fractional Bagley-Torvik equations. A comparison is made between nu-
merical results derived by the presented collocation method and other existing numerical
method. According to the numerical results, we can conclude that the presented method
is more accurate and effective for a numerical solution of the fractional Bagley-Torvik
equations.
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