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1 Introduction
In extreme value theory, the quality of convergence of normalized partial maximum of a
sample has been studied in recent literature. For the convergence rate of distribution of
normalized maximum, we refer to Smith [], Leadbetter et al. [], de Haan and Resnick []
for general cases, and specific cases were studied by Hall [], Nair [], Peng et al. [] and Jia
and Li []. Nair [] derived the higher-order expansions of moments of normalized maxi-
mum with parent following normal distribution. Liao et al. [] and Jia et al. [] extended
Nair’s results to skew-normal distribution and general error distribution, respectively.

The main objective of this paper is to derive the higher-order expansions of density of
normalized maximum with parent following the general error distribution. To the best of
our knowledge, there are few studies on the rate of convergence of density of normalized
maximum except the work of de Haan and Resnick [] for local limit theorems and Omey
[] for rates of convergence of densities with regular variation with remainders excluding
the case we will study in this paper, i.e., the general error distribution.

Let {Xn, n ≥ } be a sequence of independent and identically distributed (i.i.d.) random
variables with marginal cumulative distribution function (cdf ) Fv following the general
error distribution (Fv ∼ GED(v) for short), and let Mn = max≤k≤n Xk denote its partial
maximum. The probability density function (pdf) of the GED(v) is given by

fv(x) =
v exp(–(/)|x/λ|v)

λ+/v�(/v)
, x ∈ R,

where v >  is the shape parameter, λ = [–/v�(/v)/�(/v)]/ and �(·) denotes the gamma
function (Nelson []). Note that the GED() reduces to the standard normal distribution.
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For the GED(v), the limiting distribution of maximum Mn and its associated higher-
order expansions are given by Peng et al. [] and Jia and Li []. Peng et al. [] showed
that

lim
n→∞ P(Mn ≤ anx + bn) = �(x) = exp

(
– exp(–x)

)
, x ∈ R (.)

provided the norming constants an and bn satisfy the following equations:

 – Fv(bn) = n–, an = f (bn), (.)

where f (x) = v–λvx–v. In the sequel, let

gn(x) = nanFn–
v (anx + bn)fv(anx + bn) (.)

denote the density of normalized maximum, and

�n
(
gn,�′; x

)
= gn(x) – �′(x) (.)

with �′(x) = e–x�(x). By Proposition . in Resnick [], �n(gn,�′) →  as n → ∞. For
both applications and theoretical analysis, it is of interest to know the convergence rate of
(.). This paper focuses on this topic and applies the main results to derive the high-order
expansions of moments of extremes.

The paper is organized as follows. Section  provides the main results and all proofs are
deferred to Section . Auxiliary lemmas with proofs are given in Section .

2 Main results
In this section, we present the asymptotic expansions of density for the normalized max-
imum formed by the GED(v) random variables and its applications to the higher-order
expansions of moments of extremes.

Theorem . Let Fv(x) denote the cdf of GED(v) with v > , then for v 	= , with norming
constants an and bn given by (.), we have

bv
n
[
bv

n�n
(
gn,�′; x

)
– kv(x)�′(x)

] → ωv(x)�′(x) (.)

as n → ∞, where kv(x) and ωv(x) are respectively given by

kv(x) = kv(x) + kv(x), (.)

ωv(x) =
(
 – v–)λv(ωv(x) + ωv(x)e–x + ωv(x)e–x) (.)

with

kv(x) = –
(
 – v–)λv(x + x

)
,

kv(x) =
(
 – v–)λv( + x +

(
x + x

)
e–x),

ωv(x) = – – 
(
 – v–)x –



(
 – v–)x +



(
 – v–)x,
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ωv(x) = –

v

x –

v

x –


(
 – v–)x –



(
 – v–)x,

ωv(x) =


(
 – v–)(x + x

).

Remark . If we choose the norming constants an and bn such that

 – Fv(bn)
fv(bn)

∼ λv

v
b–v

n , an = f (bn) (.)

with v 	= , then

bv
n
[
bv

n�n
(
gn,�′; x

)
– k̄v(x)�′(x)

] → ω̄v(x)�′(x) (.)

as n → ∞, where k̄v(x) and ω̄v(x) are respectively given by

k̄v(x) =
(
 – v–)λv(–x +

(
 + x + x)e–x) (.)

and

ω̄v(x) = λv( – v–)(ω̄v(x) + ω̄v(x)e–x + ω̄v(x)e–x) (.)

with

ω̄v(x) =
(v– – )


x +

 – v–


x,

ω̄v(x) = 
(
v– – 

)
+ 

(
v– – 

)
x + 

(
v– – 

)
x +



(
v– – 

)
x +



(
v– – 

)
x,

ω̄v(x) = 
(
 – v–)

(
 + x +

x



)

.

For the case of v = , we have the following results.

Theorem . For v = , with norming constants an = –/ and bn = –/ log(n/), we have

n
[
n�n

(
gn,�′; x

)
– k(x)�′(x)

] →
(

ω(x) +
k

 (x)


)
�′(x) (.)

as n → ∞, where k(x) and ω(x) are respectively given by

k(x) = –



e–x, ω(x) = –



e–x. (.)

To end this section, we apply the higher-order expansions of densities to derive the
asymptotic expansions of the moments of extremes. Methods used here are different from
those in Nair [] and Jia et al. [].

In the sequel, for nonnegative integers r, let

mr(n) =
∫

x∈R
xrgn(x) dx, mr =

∫

x∈R
xr�′(x) dx

denote respectively the rth moments of (Mn – bn)/an and its limits.
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Theorem . Let {Xn, n ≥ } be an iid sequence with marginal distribution Fv ∼ GED(v),
then

(i) for v 	= , with norming constants an and bn given by (.), we have

bv
n
[
bv

n
(
mr(n) – mr

)
+

(
 – v–)λvr(mr+ + mr)

]

→ rλv( – v–)
[((

 – v–)(r + ) + 
)
mr +

((
 – v–)(r + ) + 

)
mr+

+
(




(
 – v–)(r – ) +



(
 – v–)

)
mr+

]
(.)

as n → ∞;
(ii) for v = , with norming constants an = –/ and bn = –/ log(n/), we have

n
[

n
(
mr(n) – mr

)
+ (–)r r


�(r–)()

]
→ (–)r– r


[
�(r–)() – �(r–)()

]
(.)

as n → ∞, where �(r–)(t) denote the (r – )th derivative of the gamma function at
x = t.

3 Auxiliary lemmas
In this section we provide auxiliary lemmas which are needed to prove the main results.

Lemma . Let Fv(x) and fv(x) respectively denote the cdf and pdf of GED(v) with v 	= , for
large x, we have

 – Fv(x)

= fv(x)
λv

v
x–v[ + 

(
v– – 

)
λvx–v + 

(
v– – 

)(
v– – 

)
λvx–v + O

(
x–v)]. (.)

Furthermore, with the norming constants an and bn given by (.), we have
(i) for v 	= ,

bv
n
[
bv

n
(
Fn

v (anx + bn) – �(x)
)

– k̃v(x)�(x)
] →

(
ω̃v(x) +

k̃
v (x)


)
�(x) (.)

as n → ∞, where k̃v(x) and ω̃v(x) are respectively given by

k̃v(x) =
(
 – v–)λv(x + x

)
e–x, (.)

ω̃v(x) =
(
v– – 

)
λv

(
x + x +



(
 – v–)x +



(
 – v–)x

)
e–x; (.)

(ii) for v = , with norming constants an = –/ and bn = –/ log(n/), we have

n
[
n
(
Fn

 (anx + bn) – �(x)
)

– k(x)�(x)
] →

(
ω(x) +

k
 (x)


)
�(x) (.)

as n → ∞, where k(x) and ω(x) are those given by (.).
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Proof See Lemma  and Theorem  in Jia and Li []. �

Lemma . Let Fv(x) denote the cdf of GED(v) with v > , then
(i) for v 	= , with norming constants given by (.), we have

Fn–
v (anx + bn) =

(
 + k̃v(x)b–v

n +
(

ω̃v(x) +
k̃

v (x)


)
b–v

n
(
 + o()

)
)

�(x) (.)

as n → ∞, where k̃v(x) and ω̃v(x) are respectively given by (.) and (.);
(ii) for v = , with norming constants an = –/ and bn = –/ log(n/), we have

Fn–
 (anx + bn) =

(
 +


n

k(x) +


n

(
ω(x) +

k
 (x)


)(
 + o()

))
�(x) (.)

as n → ∞, where k(x) and ω(x) are given by (.).

Proof (i) It follows from (.) and (.) that

Fn
v (anx + bn) = b–v

n

(
b–v

n

(
ω̃v(x) +

k̃
v (x)


)(
 + o()

)
+ k̃v(x)

)
�(x) + �(x)

=
(

 + k̃v(x)b–v
n +

(
ω̃v(x) +

k̃
v (x)


)
b–v

n
(
 + o()

))
�(x). (.)

Noting that

Fn
v (anx + bn) → �(x) = exp

(
– exp(–x)

)
,

by taking logarithms, we have

n
(
 – Fv(anx + bn)

) → e–x.

Thus

 – Fv(anx + bn) ∼ n–e–x = o
(
b–v

n
)

since bn ∼ /vλ(log n)/v, which implies


Fv(anx + bn)

=  +
(
 – Fv(anx + bn)

)(
 + o()

)
=  + o

(
b–v

n
)
. (.)

The desired result (.) follows by (.) and (.). The proof of (ii) is similar and details
are omitted here. �

Lemma . Let fv(x) denote the pdf of GED(v) with v 	= , then

fv(x) =
(
 – Fv(x)

) v
λv xv–( + 

(
 – v–)λvx–v – 

(
 – v–)λvx–v + O

(
x–v)) (.)
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for large x, and

Cn(x) :=
anfv(anx + bn)

 – Fv(anx + bn)

=  +
(
 – v–)λv(x + )b–v

n + λv( – v–)
(

– –
x
v

+
 – v–


x

)
b–v

n

+ O
(
b–v

n
)

(.)

as n → ∞.

Proof The desired results follow directly by (.). �

Lemma . Let

Hv(bn; x) =
 – Fv(anx + bn)

 – Fv(bn)
ex – 

and the norming constants an and bn be given by (.), then

bv
n
(
bv

nHv(bn; x) – kv(x)
) → ω◦

v (x) (.)

as n → ∞, where kv(x) is given by (.) and ω◦
v (x) is given by

ω◦
v (x) =

(
 – v–)λv

(
x + x +



(
 – v–)x +



(
 – v–)x

)
.

Proof Let

Bn(x) =  + (v– – )λv(anx + bn)–v + (v– – )(v– – )λv(anx + bn)–v + O((anx + bn)–v)
 + (v– – )λv(bn)–v + (v– – )(v– – )λv(bn)–v + O((bn)–v)

,

it is easy to check that limn→∞ Bn(x) =  and

Bn(x) –  =
(
 + o()

)[
–

(
v– – 

)
λvb–v

n x + O
(
b–v

n
)]

.

Hence,

lim
n→∞ bv

n
(
Bn(x) – 

)
=  (.)

and

lim
n→∞ bv

n
(
Bv(x) – 

)
= –

(
v– – 

)
λvx. (.)

By (.), we have

 – Fv(anx + bn)
 – Fv(bn)

ex

= Bn(x) exp

[
–

∫ x



(
(v – )an

bn + ant
+

van(bn + ant)v–

λv – 
)

dt
]
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= Bn(x)
{

 –
∫ x



(
(v – )an

bn + ant
+

van(bn + ant)v–

λv – 
)

dt

+



[∫ x



(
(v – )an

bn + ant
+

van(bn + ant)v–

λv – 
)

dt
](

 + o()
)
}

. (.)

Combining (.)-(.) together, we have

lim
n→∞ bv

nHv(bn; x)

= lim
n→∞ bv

n

(
Bn(x)

{
 –

∫ x



(
(v – )an

bn + ant
+

van(bn + ant)v–

λv – 
)

dt
(
 + o()

)}
– 

)

= lim
n→∞

(
bv

n
(
Bn(x) – 

)
– bv

nBn(x)
∫ x



(
(v – )an

bn + ant
+

van(bn + ant)v–

λv – 
)

dt
)

= – lim
n→∞

∫ x


bv

n

(
(v – )an

bn + ant
+

van(bn + ant)v–

λv – 
)

dt

= –
(
 – v–)λv(x + x

)

= kv(x).

Hence,

lim
n→∞ bv

n
(
bv

nHv(bn; x) – kv(x)
)

= lim
n→∞

[
bv

n
(
Bn(x) – 

)
– Bn(x)bv

n

×
(∫ x


bv

n

(
(v – )an

bn + ant
+

van(bn + ant)v–

λv – 
)

dt + kv(x)
)

+


(
 + o()

)
Bn(x)bv

n

(∫ x



(
(v – )an

bn + ant
+

van(bn + ant)v–

λv – 
)

dt
)]

= –
(
v– – 

)
λvx +

λv( – v–)
v

x –


(
 – v–)( – v–)λvx

+
( – v–)


λv(x + x

)

= ω◦
v (x).

The proof is complete. �

Lemma . Let Cn(x) be given by (.) and Dn(x) be denoted by

Dn(x) =  + k̃v(x)b–v
n +

(
ω̃v(x) +

k̃
v (x)


)
b–v

n
(
 + o()

)
.

For v 	=  and –d log bn < x < cb

v
n with  < c, d < , we have

∣
∣Cn(x)Dn(x)

∣
∣ < ,

∣∣bv
n
(
Cn(x)Dn(x) – 

)∣∣ ≤  +
(
 + v–)λv( + |x| +

(
x + |x|)e–x),
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∣∣bv
n
[
bv

n
(
Cn(x)Dn(x) – 

)
– kv(x)

]∣∣

≤  +
(
 + v–)λv

[
 +


v
|x| +

(
 + v–)x +

(

v
|x| +

(
 + v–)x

+


(
 + v–)|x| +

 + v–


x

)
e–x +



(
 + v–)(x + |x|)e–x

]

for large n, where kv(x) and kv(x) are given by (.).

Proof The desired results follow from Lemmas . and .. �

The following Mills’ inequalities are from the GED(v) in Jia et al. [], which will be used
later.

Lemma . Let Fv(x) and fv(x) denote the cdf and pdf of GED(v), respectively. Then
(i) for v >  and all x > , we have

λv

v
x–v

(
 +

(v – )λv

v
x–v

)–

<
 – Fv(x)

fv(x)
<

λv

v
x–v; (.)

(ii) for  < v <  and all x > λ[(/v – )]/v, we have

λv

v
x–v <

 – Fv(x)
fv(x)

<
λv

v
x–v

(
 +

(v – )λv

v
x–v

)–

. (.)

Lemma . Let the norming constant bn be given by (.), for any constant  < c <  and
arbitrary nonnegative integers i, j and k, we have

lim
n→∞ bi

n

∫ ∞

cb
v

n

|x|je–kx�(x) dx = , (.)

lim
n→∞ bi

n

∫ ∞

cb
v

n

|x|jgn(x) dx =  (.)

if v 	= .

Proof By arguments similar to Lemma . in Jia et al. [], we can get (.). The rest is to
prove (.). By (.) and (.), and Lemma ., we have

bi
n

∫ ∞

cb
v

n

|x|jgn(x) dx

= bi
n

∫ ∞

cb
v

n

|x|jnanFn–
v (anx + bn)fv(anx + bn) dx

= bi
n

∫ ∞

cb
v

n

|x|j  – Fv(anx + bn)
 – Fv(bn)

exCn(x)Dn(x)�′(x) dx

≤ bi
n

∫ ∞

cb
v

n

|x|je–x�(x) dx

→ 

as n → ∞. The proof is complete. �
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Lemma . Assume that the shape parameter v 	= , then for any constant  < d <  and
arbitrary nonnegative integers i, j and k, we have

lim
n→∞ bi

n

∫ –d log bn

–∞
|x|je–kx�(x) dx = , (.)

lim
n→∞ bi

n

∫ –d log bn

–∞
|x|jgn(x) dx = . (.)

Proof By arguments similar to that of Lemma ., we have

bi
n

∫ –d log bn

–∞
|x|je–kx�(x) dx

≤ bi
n exp

(
–

bd
n



)∫ ∞


xjekx exp

(
–

ex



)
dx

→ 

as n → ∞ since
∫ ∞

 xjekx exp(– ex

 ) dx < ∞.
For assertion (.), we only consider the case of v >  since the proof of the case of

 < v <  is similar. Rewrite

bi
n

∫ –d log bn

–∞
|x|jgn(x) dx = bi

n

∫ – vλ–vbv
n



–∞
|x|jgn(x) dx + bi

n

∫ – vλ–vb
v–

n


– vλ–vbvn


|x|jgn(x) dx

+ bi
n

∫ –d log bn

– vλ–vb
v–

n


|x|jgn(x) dx

= In + IIn + IIIn.

First note that
∫
R

|x|jfv(x) dx < ∞ and the symmetry of fv implies Fv(–x) + Fv(x) = . By
using (.) and (.) we have

In < jvλ–vbi+j+v
n

(
 – Fv(bn)

)n–

< jvλ–vbi+j+v
n exp

(
(n – )

(
c – (v – ) log bn –

(bn)v

λv

))

→  (.)

as n → ∞, where c = ( – v – /v) log  + (v – ) logλ – log�(/v).
To show IIn →  and IIIn → , we consider the case of v >  first. By using the following

inequalities

 – vx < ( – x)v <  – vx +
v(v – )


x,  < x <




, v > , (.)

we can get

nanfv
(
bn – b

–v


n
)

<  exp

(
v

λv b
v–


n

)
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and

 – Fv(bn – b
–v


n )

 – Fv(bn)

>
λv

v (bn – b
–v


n )–v( + (v–)λv

v (bn – b
–v


n )–v)–fv(bn – b

–v


n )
λv

v b–v
n fv(bn)

>
( – b– +v


n )–v

 + (v–)λv

v (bn – b
–v


n )–v

exp

(
v

λv b
v–


n –

v(v – )
λv b–

n

)

>



exp

(
v

λv b
v–


n

)

for large n, which implies that

IIn < bi
n

(
vλ–vbv

n


)j

nanfv

(
–an

vλ–vb
v–


n


+ bn

)
Fn–

v

(
–an

vλ–vb
v–


n


+ bn

)
vλ–vbv

n


< bi
n

(
vλ–vbv

n


)j+

nanfv

(
–an

vλ–vb
v–


n


+ bn

)
exp

(
–(n – )

(
 – Fv

(
bn – b

–v


n
)))

= bi
n

(
vλ–vbv

n


)j+ λ+ 
v �( 

v )
v

exp

(
bv

n + vb
v–


n

λv –



exp

(
v

λv b
v–


n

))

→  (.)

as n → ∞.

Similarly, for – vλ–vb
v–


n

 < x < –d log bn, we have

nanfv(anx + bn)

<
(

 +
(v – )λv

v
b–v

n

)
fv(anx + bn)

fv(bn)

<
(

 +
(v – )λv

v
b–v

n

)
exp

(
–

bv
n

λv λvb–v
n x

)

< e–x

and

 – Fv(anx + bn)
 – Fv(bn)

>
λv

v (anx + bn)–v( + (v–)λv

v (anx + bn)–v)–fv(anx + bn)
λv

v b–v
n fv(bn)

>
( + λv

v b–v
n x)–v

 + (v–)λv

v (anx + bn)–v
exp

(
–x –

v – 
v

λvb–v
n x

)

>



e–x
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for large n by using (.). Then

IIIn < bi
n

∫ –d log bn

– vλ–vb
v–

n


|x|je–x exp

(
–




e–x
)

dx

< bi
n exp

(
–

ed log bn



)∫ –d log bn

– vλ–vb
v–

n


|x|je–x exp

(
–




e–x
)

dx

→  (.)

as n → ∞.
Combining with (.)-(.), the assertion (.) is derived for v > . Similar proofs for

the case of  < v ≤  and details are omitted here. The proof is complete. �

Lemma . Let α = min(, v) as v 	= . For large n and –d log bn < x < cb
v

n , both xrbv

n�n(gn,
�′; x) and xrbv

n[bv
n�n(gn,�′; x) – kv(x)�′(x)] are bounded by integrable functions indepen-

dent of n, with r > ,  < c <  and  < d < α, where an and bn are given by (.), and kv(x)
is given by (.).

Proof We only consider the case of v > . For the case of  < v < , the proofs are similar
and details are omitted here. Rewrite

bv
n�n

(
gn,�′; x

)
= bv

nHv(bn; x)e–x�(x) + bv
n
(
Cn(x)Dn(x) – 

)
e–x�(x),

where Cn(x) is given by (.), Hv(bn; x) and Dn(x) are respectively defined in Lemma .
and Lemma .. Note that

∫ ∞
–∞ xke–tx exp(–e–x) dx = (–)k�(k)(t) is finite for t >  and non-

negative integers k. Lemma . shows that bv
n(Cn(x)Dn(x) – )e–x�(x) is bounded by inte-

grable function independent of n. The rest is to prove that bv
nHv(bn; x) is bounded by m(x),

where m(x) is a polynomial on x. Rewrite

bv
nHv(bn; x) = In(x) + Jn(x), (.)

where

In(x) = bv
n
(
Bn(x) – 

)
,

Jn(x) = bv
nBn(x)

∫ x



(
(v – )an

bn + ant
+

van(bn + ant)v–

λv – 
)

dt.

For –d log bn < x < cb
v

n , from Lemma . it follows that

∣∣In(x)
∣∣ <  (.)

and

∣
∣Jn(x)

∣
∣ <  +

[
v–

–vλ–v – d
|x| +

(
 – v–)λvx +



(
 – v–)∣∣ – v–∣∣λv|x|

]
. (.)

Hence, the desired result (.) follows by combining (.), (.) and (.) together.
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Rewrite

bv
n
[
bv

n�n
(
gn,�′; x

)
– kv(x)�′(x)

]

= bv
n

[
bv

n

(
 – Fv(anx + bn)

 – Fv(bn)
exCn(x)Dn(x) – 

)
– kv(x)

]
�′(x)

= bv
n

[
bv

nCn(x)Dn(x)
(

 – Fv(anx + bn)
 – Fv(bn)

ex – 
)

+ bv
n
(
Cn(x)Dn(x) – 

)
–

(
kv(x) + kv(x)

)]
�′(x)

= bv
n
[
bv

nCn(x)Dn(x)
(
Hv(bn; x) – b–v

n kv(x)
)

+ bv
n
(
Cn(x)Dn(x) –  – b–v

n kv(x)
)

+
(
Cn(x)Dn(x) – 

)
kv(x)

]
�′(x).

By Lemma ., we only need to estimate the bound of bv
n[bv

nCn(x)Dn(x)(Hv(bn; x) –
b–v

n kv(x))]. Rewrite

bv
n
[
bv

nCn(x)Dn(x)
(
Hv(bn; x) – b–v

n kv(x)
)]

= Hn(x) – Kn(x) + Ln(x),

where

Hn(x) = bv
n

(
Bn(x) – 

)
,

Kn(x) = bv
n

(
Bn(x)

∫ x



(
(v – )an

bn + ant
+

van(bn + ant)v–

λv – 
)

dt + b–v
n kv(x)

)
,

Ln(x) =


(
 + o()

)
Bn(x)bv

n

(∫ x



(
(v – )an

bn + ant
+

van(bn + ant)v–

λv – 
)

dt
)

.

For  < x < cb
v

n , by using  – vy < ( + y)–v <  for v >  and y > , we have

∣∣Hn(x)
∣∣ <  + λv( + λv)x

due to Lemma .. If –d log bn < x < , by using  + vy < ( + y)v <  for v >  and – < y < ,
Lemma . shows that

∣
∣Hn(x)

∣
∣ <  + λv( + λv)|x|

for large n. Similarly,

∣
∣Kn(x)

∣
∣ < 

(
 – v–)

∣∣
∣∣

v
λv – d

∣∣
∣∣

–

λvx +


(
 – v–)∣∣ – v–∣∣λv|x|, (.)

∣∣Ln(x)
∣∣ <  +




[
v–

–vλ–v – d
|x| +

(
 – v–)λvx +



(
 – v–)∣∣ – v–∣∣λv|x|

]

(.)

as –d log bn < x < cb
v

n . Hence, we derive the desired result by combining (.), (.) and

(.) together.
The proof is complete. �
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For v = , note that the GED() is the Laplace distribution with pdf given by

f(x) = – 
 exp

(
–


 |x|), x ∈R,

and its distributional tail can be written as

 – F(x) = – 
 f(x) = – exp

(
–



)

exp

(
–

∫ x




f (t)

dt
)

, x > 

with f (t) = – 
 . For the Laplace distribution, similar to the case of v > , we have the fol-

lowing two results.

Lemma . For  < d <  and an arbitrary nonnegative real number j, we have

lim
n→∞ n

∫ –db


n

–∞
|x|je–kx�(x) dx = , k = , , . . . , (.)

lim
n→∞ n

∫ –db


n

–∞
|x|jFn

 (anx + bn) dx = . (.)

Lemma . For x > –db


n , both xrn((Fn

 (anx + bn))′ – �′(x)) and xrn[n((Fn
 (anx + bn))′ –

�′(x)) + 
 e–x�′(x)] are bounded by integrable functions independent of n, where r >  and

 < d < .

4 Proofs of the main results
Proof of Theorem . From Lemma . and Lemma . it follows that

Cn(x)Dn(x)

=  + kv(x)b–v
n +

(
 – v–)λv

[
– –


v

x + 
(
 – v–)x +

(
–


v

x + 
(
 – v–)x

+
( – v–)


x –

 – v–


x

)
e–x +

( – v–)


(
x + x

)e–x
]

b–v
n + O

(
b–v

n
)
, (.)

where kv(x) is given by (.). Note that (.) shows

 – Fv(anx + bn)
 – Fv(bn)

ex =  + kv(x)b–v
n + ω◦

v (x)b–v
n + O

(
b–v

n
)
. (.)

Hence,

�n
(
gn,�′; x

)

=
(

 – Fv(anx + bn)
 – Fv(bn)

exCn(x)Dn(x) – 
)

�′(x)

=
[(

 – v–)λv( – x +
(
x + x

)
e–x)b–v

n +
(
 – v–)λv

(
– – 

(
 – v–)x

–
( – v–)


x +

 – v–


x +

(
–


v

x –

v

x –
( – v–)


x –

( – v–)


x
)

e–x
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+
 – v–


(
x + x

)e–x
)

b–v
n + O

(
b–v

n
)]

�′(x)

=
[
kv(x)b–v

n +
(
 – v–)λv(ωv(x) + ωv(x)e–x + ωv(x)e–x)b–v

n + O
(
b–v

n
)]

�′(x)

=
(
kv(x)b–v

n + ωv(x)b–v
n + O

(
b–v

n
))

�′(x)

implying that

lim
n→∞ bv

n
[
bv

n�n
(
gn,�′; x

)
– kv(x)�′(x)

]
= ωv(x)�′(x).

The proof is complete. �

Proof of Theorem . For v 	= , by Lemmas .-. and the dominated convergence theo-
rem, we have

bv
n
(
mr(n) – mr

)

= bv
n

∫ –d log bn

–∞
xr�n

(
gn,�′; x

)
dx + bv

n

∫ cb
v

n

–d log bn

xr�n
(
gn,�′; x

)
dx

+ bv
n

∫ ∞

cb
v

n

xr�n
(
gn,�′; x

)
dx

→
∫ ∞

–∞
xrkv(x)�′(x) dx

= –
(
 – v–)λvr(mr + mr+)

and

bv
n
[
bv

n
(
mr(n) – mr

)
+

(
 – v–)λvr(mr + mr+)

]

=
∫ ∞

–∞
xrbv

n
[
bv

n�n
(
gn,�′; x

)
– kv(x)�′(x)

]
dx

=
∫ –d log bn

–∞
xrbv

n �n
(
gn,�′; x

)
dx –

∫ –d log bn

–∞
xrbv

nkv(x)�′(x) dx

–
∫ ∞

cb
v

n

xrbv
nkv(x)�′(x) dx +

∫ cb
v

n

–d log bn

xrbv
n
[
bv

n�n
(
gn,�′; x

)
– kv(x)�′(x)

]
dx

+
∫ ∞

cb
v

n

xrbv
n �n

(
gn,�′; x

)
dx

→
∫ ∞

–∞
xrωv(x)�′(x) dx

= rλv( – v–)
[((

 – v–)(r + ) + 
)
mr +

((
 – v–)(r + ) + 

)
mr+

+
(




(
 – v–)(r – ) +



(
 – v–)

)
mr+

]

as n → ∞.
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For the case of v = , note that

∫ ∞

–∞
xke–mx�(x) dx = (–)k�(k)(m).

Combining with Lemmas . and . and the dominated convergence theorem, we can
derive the desired results.

The proof is complete. �
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