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Abstract

Background: Cytogenomic mutations and chromosomal abnormality are implicated in the neuropathology of
several brain diseases. Cell heterogeneity of brain tissues makes their detection and validation difficult, however.
In the present study, we analyzed gene dosage alterations in brain DNA of schizophrenia patients and compared those
with the copy number variations (CNVs) identified in schizophrenia patients as well as with those in Asian lymphocyte
DNA and attempted to obtain hints at the pathological contribution of cytogenomic instability to schizophrenia.

Results: Brain DNA was extracted from postmortem striatum of schizophrenia patients and control subjects (n = 48
each) and subjected to the direct two color microarray analysis that limits technical data variations. Disease-associated
biases of relative DNA doses were statistically analyzed with Bonferroni’s compensation on the premise of brain cell
mosaicism. We found that the relative gene dosage of 85 regions significantly varied among a million of probe sites.
In the candidate CNV regions, 26 regions had no overlaps with the common CNVs found in Asian populations and
included the genes (i.e., ANTXRL, CHST9, DNM3, NDST3, SDK1, STRC, SKY) that are associated with schizophrenia and/or
other psychiatric diseases. The majority of these candidate CNVs exhibited high statistical probabilities but their signal
differences in gene dosage were less than 1.5-fold. For test evaluation, we rather selected the 10 candidate CNV regions
that exhibited higher aberration scores or larger global effects and were thus confirmable by PCR. Quantitative PCR
verified the loss of gene dosage at two loci (1p36.21 and 1p13.3) and confirmed the global variation of the copy
number distributions at two loci (11p15.4 and 13q21.1), both indicating the utility of the present strategy. These
test loci, however, exhibited the same somatic CNV patterns in the other brain region.

Conclusions: The present study lists the candidate regions potentially representing cytogenomic CNVs in the brain of
schizophrenia patients, although the significant but modest alterations in their brain genome doses largely remain to
be characterized further.
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Background
Copy number variation (CNV) is defined as a deletion or
duplication/multiplication of a genomic fragment span-
ning more than 1 kb when compared to a reference gen-
ome [1–3]. Approximately 37,000 sites of common CNVs
have been identified in the human genome and they oc-
cupy 12 % of the entire genome [4, 5]. The genome-wide

association studies (GWAS) on schizophrenia analyzed
DNA which was isolated from peripheral lymphocytes
and have identified risk CNV sites, some of which are not
present in the patients’ parents [6–9].
Somatic mosaicism of genome sequences and struc-

tures have recently drawn particular attention [10–12].
Nearly 30 % of developing brain cells in human are reported
to harbor aberrant chromosomal compositions [13, 14]. In
addition, there are significant genomic differences in som-
atic cells between monozygotic twins and among tissues
[15–18]. Accordingly, aberrant cytogenomic variations in
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human brain are implicated in neurodegenerative and
neurodevelopmental disorders such as Alzheimer’s disease,
amyotrophic lateral sclerosis, and Huntington’s diseases
[19–25]. It is an open question whether the brain-specific
somatic mutation or CNV might also contribute to the
etiology or neuropathology of schizophrenia [26–28].
To obtain hints at the above question, we prepared

DNA from the brain tissue of 48 schizophrenia patients
and 48 control subjects. Labeling brain DNA samples, we
directly applied those to Agilent 1 M comparative genomic
hybridization (CGH) arrays to measure relative gene doses
without the use of reference genome. This direct compari-
son through the case–control pairing reduces technical
data deviations and enhances the statistical power of
detection [29, 30]. With the potential genomic mosaicism
of heterogeneous brain cell mixtures, we expected that the
target genome could be diluted with normal DNA from
the off-target cells and thus assumed non-integer values
of CNVs in this analysis [31]. Technical limitations of this
approach are further discussed below.

Results
The striatum contain neural stem cells that proliferate
throughout human life and carries somatic mutation in its
mitochondrial genome [32, 33]. Therefore, we hypothe-
sized that the striatum may be a potential candidate region
that would exhibit somatic mosaicism in brain genome
structures. DNA was extracted from postmortem striatum
of patients with chronic schizophrenia (n = 48) and age-
matched controls who had no history of neuropsychiatric
disorders (n = 48) (Additional file 1: Table S1). Although
there were significant differences in postmortem intervals
(PMIs) between groups, there was no detectable difference
in DNA quality (data not shown). All other indices were
indistinguishable between schizophrenia patients and con-
trol subjects. A DNA sample was randomly picked from
each group, paired to a sample in the other group, and
subjected to two-color competitive CGH analysis with
1 M SurePrint G3 Human CGH Microarrays.
We applied the ADM-2 algorithm to the CGH signals of

individual microarray probes (nearly 1 million) and searched
for the primary candidate CNV loci associated with schizo-
phrenia. A flowchart of the present study design is shown in
Additional file 1: Figure S1. We chose1381 chromosomal
loci that exhibited large group differences in gain/loss calls
(Selection 1). In each probe site located on the primary
candidate loci, we plotted the distribution of log2 signal
ratios from 48 sets of microarray analyses and tested the
null hypothesis that the mean log2 signal ratios was zero,
indicating that the two groups were indistinguishable
(Selection 2). We calculated total probabilities and aver-
aged log2 signal ratios for individual candidate loci and
judged their statistical significance with Bonferroni’s cor-
rection. The number of the candidate loci maintaining the

statistical significance through Selection 2 was reduced to
85 (Details in Additional file 1: Table S2).
Positive CNV loci were found in almost all chromo-

somes except chromosome 17 and 21 (Fig. 1). Individual
loci covered 1–746 probe sites (3–2200 kb) and exhibited
average log2 ratios of −1.46 to +0.63 (i.e., odds ratio (OR) =
0.36–1.55). A majority of the average log2 ratios were be-
tween −0.59 to +0.59 (i.e., < 1.5-fold differences) and only
4 loci showed more than 1.5-fold differences in array
CGH signals. A genomic region spanning from 6p22.2
to 6p21.32 contained six CNV loci and included genes
for the major histocompatibility complex that is highly
associated with schizophrenia in GWAS [34]. Among
the 85 CNV loci in Selection 2, 59 loci were reported
and 26 loci were not reported in the CNV study on
leukocyte DNA samples of Asian populations (Additional
file 1: Table S2) [2].
To validate the authenticity of the present procedure,

we attempted to verify the above genome dosage changes
of several candidate loci using quantitative polymerase
chain reaction (qPCR). According to the following two cri-
teria, we selected the test loci whose signal differences
were larger between groups and could be detectable with
the given accuracy of qPCR; (i) those exhibiting the large
and consistent gain/loss calls across the limited sample
pairs (from Selection 1) and (ii) the loci represented larger
global effects shared in most of the schizophrenia samples
(from Selection 2).
In the former category, the gene dosage of Hs03385437

(1p13.3), CC70L1J (1p36.21), Hs03318079 (Chr18:q22.1),
Hs04794356 (4q24), Hs05080419 (9q22.2), and Hs07134106
(19p12) produced exclusive gain/loss calls in not less than
four sample pairs. No discrepant calls were detected in
any sample pairs. Using the same DNA pairs showing the
difference in the penetrance call (Selection 1), we deter-
mined and confirmed the gene dosage of those DNA sam-
ples using qPCR. ANOVA detected significant gene dose
differences at two loci (Hs03385437 and CC70L1J) be-
tween patient and control groups (Fig. 2).
In this measurement, we used RNaseP gene as an internal

DNA dose control. Measured genome doses of the above
regions appeared not to be integer levels in several control
samples, potentially reflecting the cell mosaicism of the ori-
ginal tissues. We also extracted DNA from the prefrontal
cortex of the same subjects of both groups and compared
the genome doses of the above loci (Hs03385437 and
CC70L1J). We calculated the copy number ratio of the
patient’ DNA dosage to that of the control subject’ dosage
and compared these ratios between the brain regions. At
both loci, almost all the copy number ratios were mark-
edly lower than 1.0 except the C26:S34 pair, supporting
our primary observation that the absolute gene dosages of
these loci were decreased in the schizophrenia samples.
However, copy number ratios did not significantly differ
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Fig. 1 Statistically positive loci for log2 signal ratios in 48 sets of CGH microarrays. The signal bias was tested at each probe site by a two-tailed t-test. Bars represent the chromosomal position and lengths
represent the logarithmic value of the probability of rejecting the null hypothesis. As comparisons were repeated 1381 times, we applied the Bonferroni’s correction and decreased a statistical threshold from
p= 0.05 to p= 0.05/1381 (−log p= 4.44). Within a positive candidate CNV locus, neighboring probe sites were merged and their probabilities were cumulated (Additional file 1: Table S2). Note: Data from
chromosomes 17 and 21 are not shown because these did not include any positives
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between these brain regions in any of the sample pairs
(Fig. 2). At least at these two candidate loci, we failed to
find evidence for a gene dosage difference between these
brain regions.
In the latter category, Hs0358779 (6p22.1), Hs03265736

(7p21.3), Hs03765933 (11p15.4), and Hs03298358 (q21.1)
exhibited higher log2 signal ratios and were thus subjected
to the test evaluation. Gene dosage of these four loci were
determined by qPCR using all the DNA samples in control
and schizophrenia groups (n = 48 each). Differences in gene
dosages were replicated by qPCR for Hs03765933 and
Hs03298358 (Fig. 3). In contrast to the data distributions of
Fig. 2, almost all the values of the gene doses were located

at the levels of integers but with several exceptions. These
candidate CNVs appear to reflect the gene dosage differ-
ences of germinal origin.

Discussion
Several recent reports have indicated the neuropathological
contribution of somatic CNV or DNA instability of the
brain genome [19–28, 35–40]. In accordance with these
findings, a small proportion few percent of brain cells are
known to exhibit aneuploidy and carry large CNVs [13,
14, 41]. Aneuploidy is detected by fluorescence in situ
hybridization (FISH) and appears to be increased by the
onset of Alzheimer’s disease [20, 22]. The aneuploidy of
chromosome 1, 18 and X was also identified in the brain
of schizophrenia patients [21, 41]. Despite its advan-
tages, FISH cannot be employed in exploratory investiga-
tions, unless the specific genome region of the CNV of
interest is identified. Since bonafide genome structures
from off-target cells could dilute the abnormal genome
DNA population, more sensitive technologies remain to
be developed, which detect low quantities of CNV in het-
erogeneous cell mixtures of the brain tissue [42, 43]. In the
present study, we attempted to evaluate the efficacy of the
CGH microarray technique to extract somatic CNVs in
the postmortem brains of schizophrenia patients [42, 43].
With given semi-quantitative nature of the microarray

technique, we applied statistics to the 1 M array CGH re-
sults from 48 sample pairs. Using the high density CGH
array and statistical approach, we found 85 candidate CNV
loci in the present study; 59 CNV loci are overlapped with
the common CNV regions and the remaining 26 loci are
not reported in peripheral leukocyte-derived DNA of Asian
people [2, 44]. Of note, the 26 candidate regions encode the
seven genes that are associated with or implicated in
schizophrenia or other psychiatric diseases; ANTXRL,
CHST9, DNM3, NDST3, SDK1, STRC, and SKY (Add-
itional file 1: Table S2). DNM3 in the candidate region of
1q24.3 is disruptively mutated in some of schizophrenia pa-
tients [45]. ANTXRL and CHST9 are located in the CNV
regions associated with bipolar disorder and autism [46,
47]. NDST3 and STRC are the risk genes for schizophrenia
and hearing impairment that are identified by GWAS, re-
spectively [48, 49]. SDK1 and SKY are the genes whose ex-
pression levels are markedly altered in the brain of
schizophrenia patients [50, 51]. Accordingly, the present
listing of the candidate brain CNVs is informative for future
cytogenomic studies on schizophrenia [21, 41].
It was difficult for us to validate most of the above-

mentioned 85 candidate loci with qPCR analysis with the
given small signal differences between groups (i.e., less than
1.5-fold). Therefore, we selected the best 10 test loci that
exhibited relatively large and/or wide effects on gene dos-
age. The six loci were chosen from Selection 1 as putative
rare CNVs, which exhibited exclusive gain/loss calls in the

Fig. 2 Gene dosage evaluation of the individual positive pairs in CGH
analysis. DNA was prepared from the striatum and prefrontal cortex of the
same subjects whose pairs resulted in the exclusive penetrance calls in
array CGH analysis (Selection 1). DNA was then subjected to qPCR using
the RNase P gene as an internal control in quadruplicate. Moreover, to
compare the gene dosage between the striatum and prefrontal cortex,
ratios of DNA dosages of the schizophrenia patients to those of the
control subjects were calculated in each brain region and plotted.
Statistical comparisons of gene dosages or their ratios were conducted by
two-way ANOVA with the subject factors of disease and sample pair,
considering technical deviations. *p< 0.05, **p< 0.01, ***p< 0.001
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limited number of samples. From Selection 2, the four loci
were chosen as provisional common variants, which
showed large effects and higher probability levels in the
above parametric analysis. The qPCR analysis confirmed
the schizophrenia-associated gene dosage differences at
nearly half of the candidate CNV loci, suggesting the valid-
ity of the present strategy.
Unfortunately we had neither stored peripheral tissues

nor information about these CNVs in peripheral DNA of
the same subjects. To estimate the contribution of somatic
CNVs to the present CNV listing, therefore, we were com-
pelled to compare the gene dosages between the two brain
regions or to search for their absence in the databases of
Asian CNVs of leukocyte origin [2.44]. In the test PCR,
however, we could not detect significant differences in gene
dosages between the striatum and prefrontal cortex, at least,

at these test CNV loci. If somatic CNVs were produced
prior to neuroectodermal differentiation, there should be no
difference between these two neural tissues, suggesting that
the present comparison between these brain regions was in-
appropriate. Therefore, a comparative analysis of DNA from
germinal cells of the same subjects will warrant this defini-
tive conclusion [45].
Among the CNV candidate regions in Fig. 1, 26 candi-

date regions are not reported as the common CNVs of
Asian populations [2, 44]. The majority of these
loci exhibited high statistical significance with the probabil-
ities of less than 10−100, such as 4q35.2, 6p11.2, 7q11–12,
11p15.4–15.5, and 15q11.2. In contrast, their CGH signal
differences between patients and controls were markedly
smaller (OR = 0.988–1.055). As discussed above, these
candidate CNV loci include the peculiar genes that are

Fig. 3 qPCR evaluations of candidate CNV loci from Selection 2. Gene dosages of the candidate loci 6p22.1, 7p21.3, 11p15.4, 13q21.1, and the
RNase P (internal control) were determined by qPCR using all sample DNAs and TaqMan probes (Additional file 1: Table S3). Individual gene
dosages of 48 patients’ or 48 controls’ DNAs were plotted and compared between groups using the Chi-square and Mann–Whitney U tests

Sakai et al. Molecular Cytogenetics  (2015) 8:46 Page 5 of 9



implicated in schizophrenia [45–51]. These regions, which
exhibited small signal differences, might represent more
promising candidates of somatic CNV sites because the
genome aberration of target cells is presumably diluted in
the brain and should result in smaller ORs. However, such
small differences in gene dosage should make the conven-
tional qPCR verification more challenging with the given
technical deviations [52]. To avoid target DNA dilution
with cell mosaicism, single cell qPCR or FISH may be more
beneficial in theory [20–22, 43]. However, it would be dif-
ficult to independently perform microdissection of
hundreds of cells and perform single-cell analysis
unless the target cell population is identified with mo-
lecular markers and its sensitivity of gene detection is
high enough. FISH also requires properly fixed and
processed brain tissues of the same subjects. With the
given technical difficulties, therefore, we have been un-
able to verify these small variations.

Conclusion
The present CGH analysis lists the potential candidate
regions of somatic CNVs associated with schizophrenia,
although most of those exhibited the modest but highly
significant alterations in brain genome doses. Future stud-
ies aim to develop more elaborate techniques for somatic
genome mosaicism and to verify the schizophrenia-
associated cytogenomic instability in the above CNV
candidates [53–56].

Methods
Ethical approval
The study was approved by Niigata University Medical
Ethics Committee (No. 683). The use of postmortem brain
tissues was authorized by the Matsuzawa Hospital Ethics
Committee, Kobe University Medical Ethics Committee,
Fukushima Medical University Ethics Committee, and
Niigata University Medical Ethics Committee. The fam-
ilies of the control and schizophrenia patients provided
written informed consent to allow the use of brain tissues
for pathological investigations.

Brain tissue
Postmortem brain tissue was collected from patients with
chronic schizophrenia (30 men, 18 women; mean age,
64.5 ± 12.5 years old) and from age-matched control sub-
jects (30 men, 18 women; mean age, 64.2 ± 12.0 years old),
with no history of neuropsychiatric disorders (Additional
file 1: Table S1). The diagnosis of schizophrenia was con-
firmed by examining the patient’s report according to
DSM-III or DSM-IV categories (American Psychiatric
Association). Postmortem brains of schizophrenia patients
were collected at Matsuzawa Hospital, Kobe University,
Fukushima Medical University and Niigata University,
while those of control subjects were collected at Niigata

University. In brief, the left cerebral hemisphere was fixed
in formalin for diagnostic examination and the right hemi-
sphere was frozen at −80 °C. Tissue samples were taken
from postmortem brains that did not exhibit neurodegen-
erative abnormalities by conventional pathological staining
(data not shown). The striatum (caudate) was identified in
frozen coronal slices according to a human brain atlas. All
tissues were collected and stored according to the princi-
ples of the Declaration of Helsinki, and tissue use was in
compliance with the Human Tissue Act 2004.

DNA extraction
High molecular weight DNA was extracted by the guani-
dinium − phenol procedure (Gentra Pure Gene Tissue
Kit, Qiagen, Tokyo, Japan) according to the manufac-
turer’s protocol. Extracted DNA was quantified by spec-
trophotometry using a Nanodrop ND-2000® (Thermo
Scientific Wilmington, DE, USA). Samples with absorb-
ance ratios of A260/280 ~ 1.80 and A260/230 > 1.90,
respectively, were regarded as sufficiently pure and
suitable for CGH analysis. Some DNA samples were
subjected to 1.0 % agarose gel electrophoresis for quality
control. Evidence of DNA degradation was not detected
in randomly-picked DNA samples from patient or con-
trol groups (data not shown).

Comparative genomic hybridization (CGH)
Array-based CGH was performed by the manufacturer
Takara Bio Dragon Genomics Center (Seta, Shiga,
Japan). In brief, DNA (2 micro g) was fluorescent-
labeled by random priming DNA synthesis in the pres-
ence of Cy3-dUTP (control group) or Cy5-dUTP (pa-
tient group) (Genomic DNA Enzymatic Labeling Kit;
Agilent Technologies, Hachioji, Tokyo, Japan). DNA la-
beling efficiency was estimated by spectrophotometry
(Nanodrop ND-2000®) measuring optical absorbance at
260 nm for DNA, at 550 nm for Cy5, and at 649 nm for
Cy3. Cy5- and Cy3-labeled DNAs were randomly paired,
mixed, and hybridized to SurePrint G3 Human CGH
Microarrays (1 M) in the presence of human Cot-1 DNA
(Oligo aCGH/ChIP-on-chip Hybridization Kit, Agilent
Technologies). Following hybridization for 24 h, micro-
array slides were washed according to the manufacturer’s
instructions and immediately scanned on a DNA Micro-
array Scanner (Agilent Technologies). With the given
limitation of the sample number, we took an advantage of
the above direct comparison between case and control
samples [57]. This approach allowed us to determine rela-
tive ratios of their gene dosages but not their absolute
gene dosages. However this procedure decreased data de-
viations, compared with the CGH analysis utilizing two
microarrays and reference genome DNA [30].
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Quantitative polymerase chain reaction (qPCR)
To validate the results from the microarray experiments,
we performed qPCR using TaqMan probes (Applied
Biosystems, Foster City, CA) as described previously [32].
Gene dosages of the following genomic regions of interest
were measured for the sample pair sets that exhibited the
exclusive positive penetrance call with the Aberration
Detection Method 2 (ADM-2) algorithm; CC70L1J (1p13.3),
Hs03385437 (1p36.21), Hs04794356 (4q24), Hs05080419
(9q22.2), Hs03318079 (18q21.1), and Hs07134106 (19p12).
Using all the samples, we also determined the gene dos-
ages of the candidate CNV loci that exhibited lower prob-
ability scores by the global t-test analysis; Hs03587795
(6p22.1), Hs03265736 (7p21.3), Hs03765933 (11p15.4),
and Hs03298358 (13q21.1). DNA sequences of TaqMan
probes and PCR primers are shown in the Additional
file 1. We obtained cycle threshold (CT) values for the
region of interest for each sample with FAM™-labeled
probes, simultaneously monitoring those for RNaseP gene
(an internal control) with its VIC®-labeled probe (ABI
PRISM 7900HT Sequence Detection System and SDS v2.3
software, both Applied Biosystems). These CT values of
the target gene and RNaseP gene were obtained for all
the DNA samples. Copy number of the target gene was
estimated from CT values by CopyCaller v1.0 software
(Applied Biosystems).

Statistics
The ADM-2 algorithm prompted by Genomic Workbench
software (edition 5.0.14, Agilent Technologies, 2010) was
used to identify individual and common aberrations for 48
microarray data sets. This algorithm identifies all aberrant
intervals with consistently high or low log ratios based on
the statistical score. The algorithm searches for intervals
where a statistical score based on the average quality-
weighted log ratio of the sample and reference channels
exceed a user-specified threshold. For the primary screen-
ing (Selection 1), we applied the following filtering options
to the human genome assembly hg19 (excluding sex chro-
mosomes): sensitivity threshold = 6, fuzzy zero =On, bin
size = 10, and centralization threshold = 6. We then se-
lected the primary candidate loci of somatic CNVs which
exhibited > =4 difference in gain/loss calls in the whole
penetrance summary.
To calculate mean signal OR and the probability of

CNVs between groups, we plotted individual log2 signal
ratios at all the probe sites within the above candidate
loci. The Kolmogorov − Smirnov test revealed that log2
signal ratios were judged to fit into the Gaussian distri-
bution at more than 80 % of probe sites. Assuming their
Gaussian distribution, we analyzed their statistical biases
against log2 = 0 (i.e., the null hypothesis of equal signal
intensities between patients and controls) by two tailed
t-test at each probe position. Within a candidate CNV

locus containing multiple probe sites, their log2 signal
ratios were averaged and probabilities were summed and
then subjected to Bonferroni’s correction (Selection 2).
Statistical difference of qPCR results between individual
sample pairs was determined with ANOVA or two tailed
t-test, incorporating technical errors into account. Alter-
natively, group differences of qPCR results from individual
samples were estimated by the chi-square and Mann–
Whitney U tests. Statistical analyses were performed using
SPSS software (IBM Japan, Tokyo, Japan).

Additional file

Additional file 1: Figure S1. A flowchart of the study design. Table S1.
Autopsy and clinical information of the subjects used. Table S2. List of
candidate CNV regions and their statistical details. Table S3. Custom
Taqman PCR primers and probes used.
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