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Emergency materials dispatch (EMD) is a typical dynamic vehicle routing problem (DVRP) and it concentrates on process strategy
solving, which is different from the traditional static vehicle routing problem. Based on the characteristics of emergency materials
dispatch, DVRP changed the EMD into a series of static problems in time axis. A mathematical multiobjective model is established,
and the corresponding improved ant colony optimization algorithm is designed to solve the problem. Finally, a numeric example
is provided to demonstrate the validity and feasibility of this proposed model and algorithm.

1. Introduction

In the emergency situations, such as earthquakes, snow-
storms, and wars, ensuring all kinds of materials to be
efficiently dispatched is the key problem to the emergency
logistics. And it is also a typical dynamic vehicle routing
problem whose aim is exactly a guarantee of the smooth
logistic workflow process. Meanwhile, emergency material
dispatch problem is a much more complex vehicle routing
problem because of its high efficiency and strict time limita-
tion. Therefore, exploring the modeling methods and efficient
solving algorithms under the dynamic condition is greatly
significant [1].

The research scope of dynamic vehicle routing problem
(DVRP) includes uncertain demands, uncertain network
performance, uncertain service vehicles, and subjective pref-
erence of decision makers. The solving strategy can be divided
into two categories. One is local optimization strategy, which
deals with the dynamic adjustment of implementation pro-
cess and local optimization algorithms. The insertion method
and k-opt method are often used to redesign the routing
lines and vehicles distribution [2]. The other one is restarting
optimization strategy, which is actually a static solution
for dynamic problems. Once received determined real-time
information, the strategy starts from the very beginning
again to find the optimal material dispatch scheme. As one

successful application of restarting optimization strategy,
Paraftis used dynamic programming (DP) to deal with dial-a-
ride problems with one vehicle [3]. However, this method can
only solve small-scale problems not exceeding ten demand
nodes.

Ant colony algorithm (ACA) has the nature advantage
to adapt the dynamic environment with inherent robustness.
Eyckelhof [4] carried out some research of VRP under the
condition of unchanging node number and changing node
distance, which indicates the sudden change of traffic con-
gestion degree. The preliminary study results show that the
original version and some slightly improved versions of ACA
are quite good in solving some simple test performances.
Wang [5] changed the dynamic vehicle routing problem into
a series of static subproblems based on time axis. The path
pheromone is reinitialized and the new problem with old
unmet demand nodes and new nodes in next dispatch round
is modeled to be solved.

Because emergency logistics is focusing on speed instead
of quantity, the dynamic effective material management is
to replace the inventory materials’ lack of mobility. The key
point of emergency material dispatch in this paper is how to
ensure the reliability of material supply stability in dynamic
environment. Based on the characteristics of emergency
material dispatch problem, the multiobjective mathematic
model is established, an improved ACA optimization strategy



and algorithm are developed, and a numeric example proved
this method is feasible to generate real-time emergency
material dispatch scheme corresponding to each point of the
time axis.

2. Mathematic Model of Emergency Material
Dispatch in Dynamic Environment

As to dynamic events of DVRP, the normal treatments are
the event trigger mechanism and rolling horizon principle.
While we adopt the event trigger mechanism, the new arrived
material assignment is immediately inserted into the running
dispatch scheme. Meanwhile we adopt the rolling horizon
principle and divide the operation time into several small
horizons. In the intervals, the material dispatch scheme is
adjusted. The two treatments have both advantages and dis-
advantages. The former one may cause the frequent scheme
altering, while the latter one may decrease the service quality.

2.1. Strategic Analysis. Because sudden incidents in the emer-
gency logistics are various and discrete, the demand of
materials is changing with the development of the situation.
According to the actual material assignment operation, a
rolling horizon multitask decision-making emergency mate-
rial dispatch model is built based on time axis, and the
dispatch scheme is updated while distributing unfinished dis-
patch scheme and addon dispatch scheme in these intervals.

In the interval, the event occurrences trigger the simple
K exchange neighborhood optimization and service denial
strategy, while guaranteeing that every undamaged vehicle
finally returns to the logistic center. Based on the instant
statistics information about each node demands of the
moment, the dynamic model can be converted to submodels.
As the time goes on, the material demands of customer nodes
will accumulate because of the frequent scheme altering or
the assignment finishing rate as shown in Figure L.

The restart strategy based on rolling horizon principle
has three advantages. Firstly, the dispatch scheme can change
with the dynamic network attributes. Because the material
flow is continuous, the new dispatch scheme round can
be adjusted to take full use of limited transport network
resources. Secondly, it can reduce the complexity of problem
and generate simpler and easier schemes, in which every vehi-
cle starts from the logistic center and the initial capacity is the
loading capacity. Thirdly, the improved ACA algorithm can
speed up response time by using the information generated
from the solving process of former dispatch scheme.

2.2. Variable Parameter Descriptions. The vehicles that have
been the starting must try their abilities to serve all nodes
and the vehicles which are in the logistic center are dis-
patched according to actual need. The mathematic model of
emergency material dispatch is built based on some cases as
follows.

(i) Emergency materials are all generic class material
and dispatched as standardized container units whose
unit of measurement is twenty-foot equivalent units
(TEU).
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FIGURE 1: Accumulated material demands of customer nodes.

(ii) A route can only start from the logistic center and end
in the logistic center.

(iii) The type of vehicles is single and the lay time is
ignored. The drive speed is constant and the initial
route weight matrix A is represented by the distance
between nodes.

(iv) The emergency materials should be dispatched into
all customer nodes safely, cheaply, and fast during the
transportation.

(v) The parameters of the mathematic model are all
integer decision variables.

According to the current research situation, the problem
to be studied is described as a vector set of G = (V, D, W, R)
at the moment of t. The problem is a network topology
V = {vy, V15 V5...,v,} that contains a logistic center and N
customer nodes (C node for short), where N is the maximum
number of the C nodes. Each node has an associated location
[x;, ¥;], and the network is in the Euclidean plane, so the
travel distance d;; between any two nodes v; and v; is the
straightline distance between them. The distance d;; between
any two nodes of vector V' constitutes the route weight matrix
D, which is symmetric and satisfy the triangle inequality:
d;; < d;+d,;. And the travel time can be obtained if you divide
the distance by the drive speed, which is also a constant. Each
C node denotes a service request. All requests will randomly
arrive within a planning fixed horizon. Accumulated material
demands which contain both unfinished dispatch scheme
and addon dispatch scheme are expressed as vector W =
{w, w,, ws,...,w,}, which corresponds to the emergency
material demand of C node v; at the moment of ¢. Every
vehicle must depart from and return to the logistic center,
and the transportation parameter matrix is R = (K,Q).
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The logistic center has K service vehicles whose loading
capacity is Q TEU.

Define binary variable: x;;

1 if vehicle k drives from node v; to node v, @)
0 else.

2.3. Objective Function

K N N

minz, = Zzzdijxijk’ 2
k=1j=0i=0
K N

minz, = sz()jk‘ (3)
k=1j=1

The model seeks the optimization routes of the current
snapshot so that the total dispatch service benefit is max-
imized. Equation (2) is an object function minimizing the
total dispatch route length, which also makes the drive cost
the lowest. Equation (3) is an object function minimizing the
number of vehicles that have been put into use in the logistic
center, which also cuts down greatly the fixed charges. And
the two targets will guarantee the maximum of emergency
material dispatch safety.

In this paper the multiple objectives are integrated into a
single objective with the weight coefficient method, and the
weight vector of the two objectives is w = (0.354,0.646),
which was obtained from importance comparison matrix in
AHP. Considering the data in numeric example, the value of
z, ranged from 800 to 1000, and the value of z, ranged from 9
to 22. Therefore we used weighted summation of the two data
to get the single objective function Z as follows:

minZ = 0.354 -1gz;, + 0.646 - z,. (4)

2.4. Constraint Conditions. Consider

K N
szojk < K; (5)
k=1j=1
N N
j=0i=0
N N
Zxojk = inok <1, kek, (7)
j=1 i=1
K N
Y¥xp =1 j=1{1,23,...,N}, (8)
k=1i=0
K N
Y¥xp=1 i={1,23...,N}, ©))
k=1j=0
i#j. (10)

Equation (5) ensures that the total number departed from
the logistic center is less than the upper bound in every

interval of dispatch scheme. Equation (6) ensures that the
sum of total demand of all C nodes in a vehicle’s route is
less than its loading capacity. Equation (7) can ensure that
all vehicles have departed from the logistic center and finally
returned to the depot. Equations (8) and (9) ensure that every
C node has one and only one predecessor node and successor
node and is visited only once by a vehicle. Expression (10)
can ensure the travel route of every vehicle forbid loop node,
especially looping in the logistic center.

3. Ant Colony Algorithm Design of DVRP

Dealing with DVRP, the new input information could make
the former optimal dispatch scheme change into the subopti-
mal, even the infeasible scheme. In the static environment, it
is tolerable to spend more processing time for commanders
getting high quality or optimal dispatch scheme. However,
commanders want to obtain the dispatch scheme immedi-
ately; the fewer seconds or minutes are the better in an
emergency.

The main idea of this algorithm design is to improve the
performance of basic ant colony algorithm by state trans-
formation rules using load rating function and pheromone
update rules based on ant ranking system [6]. Furthermore,
the route pheromone information is reserved while solving
the former dispatch scheme, so the latter dispatch scheme
solving process is speeded up and the emergency material
dispatch scheme is generated.

3.1. State Transformation Rules of ACA. Dorigo M put for-
ward the adaptive pseudorandom probability transformation
rule in ant-Q algorithm in 1993 [6]. In general approach
of basic Dorigo ant algorithm, each of m ants constructs
several routes touring through all the given N cities in every
generation, which makes up the dispatch scheme. Starting
at a random city an ant selects the next city using heuristic
information as well as pheromone information, which serves
as a form of memory by indicating which choices were good
in the past. In order to enhance the accuracy and reality of
the ants while they choose travel routes, this paper proposes
the improved state transformation rule which takes full use
of load rating in view of constraint expression (6) as follows.
Consider

_ |argmax {TZ‘ () - 115 (t) - ‘ul?'j (t)} , ifR<R,
B pf} 1), else,
HORAONTAG

L o B
pij (t) B ZSE&“OWEdkTij (t) ’ 1’]1] (t) ) ‘uz; (t)
0, else.

(11)

, ifs € allowed,

(12)

The probability for ant k to append arc (v;, v;) to its partial

solution is then given as pfj(t); 7;; indicates the pheromone
concentration information; 1;j represents the expectation
heuristic information, which equals the reciprocal of d;;



and minimizes the total dispatch route length. y; repre-
sents the load rating heuristic information, which minimizes
the number of vehicles in use. a, 3, and y are constants
that determine the relative influence corresponding to the
pheromone values, distance values, and load rating values
on the decision of the ant k. Random variable R follows 0-1
uniform distribution. Parameter R,(0 < R, < 1) determines
state transformation rule, which also indicates the relative
importance of exploitation versus exploration. The nodes set
allowed;, contains the remaining nodes that have not been
visited so far by ant k.

While ant k has Q; TEU capacity at node v;, and the
material demand of successor node v; is w; TEU. Function

Q; +w;
Wi = (Tj>, if p; > 1, then y;; = 0. (13)

3.2. Pheromone Update Rules. Once the m ants of the colony
have completed their computation, the better dispatch routes
are used to globally modify the pheromone trail. In this way
a “preferred route” is memorized in the pheromone trail
matrix and future ants will use this information to generate
new solutions in a neighborhood of this preferred route. For
pheromone initialization we set 7, = 1/(N — 1) for every arc
(v;>»v;) at the beginning of each iteration.

When ant k moves from v; to v;, a local updating
is performed on the pheromone matrix, according to the
following rule:

T (t+1) = (1-py) - 7; (£) + pr7p, (14)

where parameter p, determines the evaporation rate of
pheromone.

The global pheromone matrix adapts the elite ant strategy,
which only uses the optimal and suboptimal dispatch route.
And it is updated as follows:

T t+1) = (1 - PZ) " Tij )+ PZATij ),

¢y, ife;; € optimal dispatch route (15)
AT (t) = y¢,, ife; € suboptimal dispatch route

0, otherwise,

where parameter p, determines the evaporation rate of
pheromone, ¢, and ¢, are constants, and ¢, > ¢, > 0.

3.3. Dynamic Modification Rules of Pheromone Matrix. Dur-
ing the emergency material dispatch, service requests are
received in real time, and serviceability of requesting node
is immediately verified. The target of this paper is to get
the updated dispatch scheme based on rapid reaction to the
dynamic information about the traffic capacity of transport
network and demand nodes. However, the situations of
dynamic environment can be divided into three types as
follows:

(i) the change in route weight matrix D,

(ii) the change in material demand of customer nodes,
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(iii) the change in optimization objectives of material
dispatch.

How to modify the pheromone matrix as much as
possible to adjust the change in route weight matrix is the
key point. Among these three situations, types (i) and (ii)
are more common in connectivity and travel time reliability
along with the development of the situation. The simplest
strategy is reinitializing all pheromones to 7, and then
restarting the ant algorithm while making the solving process
inefficiency, so the current solving process should make full
use of the previous results of the dispatch scheme calculation
in order to reduce the computation time. For description, the
modification rules are as follows.

(1) Rule 1: Dynamic Distance Weight between Nodes. In
the case of the distance between any two nodes v; and v;
changing, MaxDis is the maximum of all the d;; in the former
route weight matrix D; the pheromone modif{cation rule of
arc (v;, v]-) is expressed as follows:

If (d,; < P x MaxDis) V (d,; < P x MaxDis)

\Y (da]- <Px MaxDis)

V (dy; < P x MaxDis) (16)

Then 7 =T0-<1 +log<T—>>,
0

where parameter P € [0, 1] determines the adjustment range.
P = 0 means no adjustment, while P = 1 means all
pheromones are changing according to this rule.

(2) Rule 2: Dynamic Regulation of Customer Nodes Demands.
In the case of the demand wj; of node v; changing, N is the
number of all customer nodes; the pheromone modification
rule of arc (v;, v;) is expressed as follows:

1
Tij = (1 - 91) . Tij + 01- . m (17)

(1) n-strategy [2], as Figure 2. Consider

il } A € [0, +00)
)"’11'1'

0; = max {0, 1-
(18)

_ 1 L
’7=m'z Z Nij-

i=1j=1,j#i

Because parameter #;; equals the reciprocal of d;;, so it can
be inferred that parameter 0, is inversely proportional to the
distance between node v; and the changed node.

(2) T-strategy [2], as shown in Figure 3. Consider

0; = min{l,)bw};

=

(x.y)ep; max

A € [0,+00),

(19)

¥ = max
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FIGURE 3: 7-strategy.

From the equations it can be deduced that the closer
arc (v;,v;) is next to the changed node, the more equalized
pheromone is in the route.

To illustrate the #-strategy and 7-strategy operation, we
used a 10 x 10 grid of cities and set A = 1 to visualize how
the distribution of reset values takes place. In Figure 2 the
distribution for the #-strategy is proportionate to Euclidean
distance, while Figure 3 shows that the -strategy tends to
distribute along the path. By comparing the two strategies,
we choose #-strategy to deal with dynamic regulation of
customer nodes demands.

(3) Rule 3: Dynamic Regulation of Nodes Number. When the
increased node number equals the decreased number, replace
the nodes and then deal in Rule (1).

(1) When the increased node number is more than the
decreased number, directly delete the row and column
in which the node stays.

(2) When the increased node number is less than the
decreased number, insert the new node, calculate the
distance weight, and initialize pheromone to .

3.4. Detailed Steps of Improved ACA

Step 1. Calculate the dispatch scheme at the initial time of ¢,
using improved ACA and generate the solved result.

Step 2. Overwrite the pheromone matrix into the excel
document “pheromone” until the iteration stops.

Step 3. When calculating the new dispatch scheme, read the
data in excel document “pheromone” and save it initialize
pheromone matrix.

Step 4. According to the specific changing information of
dynamic environment, update the pheromone matrix with
modification rules in Section 3.2.

Step 5. Calculate the dispatch scheme at the time of t using
improved ACA, generate the new solved result, and then go
to and execute Step 2.

4. Experimental Results

The emergency material dispatch system contains one logistic
center and 100 demand nodes. The loading capacity of each
vehicle is 200TEU. The static data of numeric example in this
paper adapts the CI101 and R101 from Solomon benchmark
at the initial moment. As the situation develops, such as
earthquake, snowstorm, and war, each problem has 5 groups
of dynamic data which are used to depict 5 different dynamic
degrees of 10%, 30%, 50%, 70%, and 90%, respectively.
We randomly choose the proportional elements of distance
matrix D and nodes demand vector W from G = (V, D, W, R)
to simulate the dynamic environment. The distance matrix is
not symmetric and does not satisfy the triangle inequality any
more. The test data set is designed by modifying benchmark
method, which was proposed by Lackner [7] in 2004.

The test work is completed on a desktop computer with
Intel Pentium Dual-Core E5700@3.0 GHz, 2046 MB RAM,
and Windows XP SP3 Professional Operating system. The
algorithm is coded and compiled using M file in Matlab 7.8.0.
The simulation experimental results are shown in Table 1.

For description convenience, we call the column (1)
Cl, column (2) C2, and so on. Cl represents the data
type of Solomon’s 100-customer benchmark problems.
C2 and C3 are the best known results obtained by
the heuristics for Solomon’s static VRPTW problems
reported in http://www.sintef.no/static/am/opti/projects/top
/vrp/bknown.html (last updates: March 24, 2005). C4 DoD is
short for the degree of dynamism, which means the changing
nodes’ percentage of all the nodes. Among the data items
from the table, C5, C6, and C7 are the computational results
for proposed approach, and they are also the average number
of used vehicles (NV), the average travel distance (length),
and the average CPU time (CPU, in s), respectively. The CPU
time is the time used for solving each static version problem.
So are the C8, C9, and CI0.

Other parameters are set as follows. The ant colony size
is 50 ants, the number of iterations is 100, and the heuristic
factoris g« = 1,8 = 5,9 = 1. The evaporation rate of
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TaBLE 1: Calculation results of Solomon benchmark problem for various dynamic degrees.
Test data (1) Best known results D (4) Basic ACO + restart strategy Improved ACO + pheromone reserved strategy
NV (2) Length (3) NV (5) Length(6) CPU (7) NV (8) Length (9) CPU (10)

10% 10 895.77 216.61 10 914.33 57.33
30% 10 990.03 208.82 10 962.11 46.80

Clo1 10 828.54 50% 1 1012.34 230.09 1 1001.18 53.94
70% 11 1077.60 215.55 1 1031.58 51.97
90% 11 1145.45 226.79 1 1039.77 56.00
10% 20 1795.81 218.72 19 1685.08 76.02
30% 20 1812.70 218.55 20 1699.23 76.31

R101 19 1645.79 50% 21 1900.23 216.39 21 1756.29 78.62
70% 21 1950.34 231.28 21 1787.76 74.22
90% 21 1991.94 217.12 21 1814.62 72.42

pheromone p = 0.4. The state transformation rule parameter
R, = 0.6, and the dynamic modification rule parameters
P=01,1A=2.

As shown in Table 1, the basic ACO algorithm with a
simple restart strategy uses one more vehicle and generates
the suboptimal total dispatch route, while its solution time
is far more than other algorithms. The improved ACO
algorithm with pheromone reserved strategy can meet the
requirement of quick decisions, which saves an average of
50% computation time searching the optimal emergency
material dispatch scheme. And the total computation time
is less than 80 seconds in absolute amount dealing with 100-
node problem. Because of simplified modeling, this improved
ACO algorithm is superior to the LNS algorithm in [8]. So the
improved ACO algorithm designed in this paper is optimal in
the vehicles number and suboptimal in the total route length.

5. Conclusions

The multiobjective materials dispatch model is built by linear
weighted method. The dynamic information generated in
the process of emergency material dispatch is disposed in
batches by rolling horizon strategy, such as traffic capacity of
transport network or demand nodes. Eventually, a numeric
example is designed in 5 different dynamic degrees to prove
the validity of this model and algorithm. The modified
ant colony optimization algorithm utilizes the pheromone
reserved by old material dispatch scheme to initialize the
ant colony pheromone matrix in seeking for the next new
dispatch scheme. This method improves the quality of scheme
solutions and obviously the solving efficiency, while generat-
ing material dispatch scheme in real time based on current
emergency material dispatch network. However, there are still
some problems that need to be studied such as split demand,
complete set, and multimodal transport of complex dynamic
emergency materials dispatch problem.
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