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We consider the following generalized n-species Lotka-Volterra type and Gilpin-Ayala type competition systems with multiple
delays and impulses: 𝑥
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+
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the Krasnoselskii fixed-point theorem in a cone of Banach space, we derive some verifiable necessary and sufficient conditions for
the existence of positive periodic solutions of the previously mentioned. As applications, some special cases of the previous system
are examined and some earlier results are extended and improved.

1. Introduction

In the recent decades, the traditional Lotka-Volterra competi-
tion systems have been studied extensively. One of themodels
is the following competition system:
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, 𝑖 = 1, 2, . . . , 𝑛.

(1)

Many results concerned with the permanence, global asymp-
totic stability, and the existence of positive periodic solutions
of system (1) are obtained; we refer to [1–10] and the reference
therein. However, the Lotka-Volterra type models have often
been severely criticized. One of the criticisms is that, in such
a model, the per capita rate of change of the density of each
species is a linear function of densities of the interacting
species. In 1973, Ayala et al. [11] conducted experiments
on fruit fly dynamics to test the validity of ten models of

competitions. One of the models accounting best for the
experimental results is given by
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(2)

In order to fit data in their experiments and to yield
significantly more accurate results, Gilpin and Ayala [12]
claimed that a slightly more complicated model was needed
and proposed the following competition model:
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,

𝑖 = 1, 2, . . . , 𝑛,

(3)

where 𝑥
𝑖
is the population density of the ith species, 𝑟

𝑖
is the

intrinsic exponential growth rate of the ith species, 𝐾
𝑖
is the

environmental carrying capacity of species 𝑖 in the absence of
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competition, 𝜃
𝑖
provides a nonlinear measure of interspecific

interference, and 𝑎
𝑖𝑗

provides a measure of interspecific
interference. [13–15] obtained sufficient conditions which
guarantee the global asymptotic stability of system (3). Chen
[16] investigated the following n-species nonautonomous
Gilpin-Ayala competitive model:
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(4)

For each 𝑟 ≤ 𝑛, they established a series of criteria under
which 𝑟 of the species of system (4) were permanent while the
remaining 𝑛−𝑟 species were driven to extinction. In [17], Fan
and Wang further studied the following delay Gilpin-Ayala
type competition model:
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(5)

They obtained a set of easily verifiable sufficient conditions
for the existence of at least one positive periodic solution of
the system (5) by applying the coincidence degree theory.
Recently, in [18], Chen investigated the following n-species
Gilpin-Ayala type competition systems:
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He established a series of criteria under which 𝑟 of the
species in the system (6)were permanentwhile the remaining
𝑛 − 𝑟 species were driven to extinction. In [19], Xia et al.
considered the following almost periodic nonlinear n-species
competitive Lotka-Volterra model:
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By using comparison theorem and constructing suitable Lya-
punov functional, they derived a set of sufficient conditions
for the existence and global attractivity of a unique positive
almost periodic solution of the previously mentioned model.
Motivated by the previous ideas, in [20], Yan considered the
following generalized periodic 𝑛-species Gilpin-Ayala type
competitionmodels in periodic environments with deviating
arguments of the form:
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By using a fixed point theorem in cone and the proof
by contradiction, he obtained a necessary and sufficient
condition for the existence of positive periodic solutions
(with strictly positive components) of the system (8).

However, the ecological system is often deeply perturbed
by human exploitation activities such as planting and harvest-
ing, which makes it unsuitable to be considered continually.
For having a more accurate description of such a system,
we need to consider the impulsive differential equations. The
theory of impulsive differential equations is not only richer
than the corresponding theory of differential equations with-
out impulses, but also represents a more natural framework
for mathematical modeling of many real-world phenomena
(see [21–23]). In recent years, some impulsive equations have
been recently introduced in population dynamics in relation
to population ecology; we refer the reader to [24–36] and
the reference therein. However, to this day, only a little work
has been done on the existence of positive periodic solu-
tions to the generalized periodic n-species Gilpin-Ayala type
competitionmodels in periodic environments with deviating
arguments of the form and impulses. Motivated by this, in
this paper, wemainly consider the followingn-speciesGilpin-
Ayala type competition models in periodic environments
with deviating arguments of the form and impulses:
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To conclude this section, we summarize in the following
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Definition 1. A function 𝑥
𝑖
: 𝑅 → (0, +∞) is said to be a

positive solution of the system (9) and (10), if the following
conditions are satisfied:

(a) 𝑥
𝑖
(𝑡) is absolutely continuous on each (𝑡

𝑘
, 𝑡

𝑘+1
).

(b) for each 𝑘 ∈ 𝑍
+
, 𝑥

𝑖
(𝑡

+

𝑘
) and 𝑥

𝑖
(𝑡

−

𝑘
) exist, and 𝑥

𝑖
(𝑡

−

𝑘
) =

𝑥
𝑖
(𝑡

𝑘
).

(c) 𝑥
𝑖
(𝑡) satisfies the first equation of the system (9) and

(10) for almost everywhere (for short a.e.) in [0,∞] \

{𝑡
𝑘
} and satisfies 𝑥

𝑖
(𝑡

+

𝑘
) = Δ

𝑖𝑘
𝑥
𝑖
(𝑡

𝑘
) for 𝑡 = 𝑡

𝑘
, 𝑘 ∈ 𝑍

+
.

Under the previously mentioned hypotheses (𝐻
1
)–(𝐻

4
), we

consider the following nonimpulsive Lotka-Volterra compet-
itive systems:

𝑑𝑦
𝑖
(𝑡)

𝑑𝑡

= 𝑦
𝑖
(𝑡) [𝑎

𝑖
(𝑡) − 𝐵

𝑖
(𝑡) 𝑦

𝑖
(𝑡)

−

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(𝑡) 𝑦

𝛼𝑖𝑗

𝑖
(𝑡 − 𝜌

𝑖𝑗
(𝑡))

−

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(𝑡) 𝑦

𝛽𝑖𝑗

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) −

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(𝑡)

× ∫

0

−𝜂𝑖𝑗

𝑘
𝑖𝑗
(𝑠) 𝑦

𝛾𝑖𝑗

𝑗
(𝑡 + 𝑠) 𝑑𝑠 −

𝑛

∑

𝑗=1

𝐹
𝑖𝑗
(𝑡)

×∫

0

−𝜃𝑖𝑗

𝐾
𝑖𝑗
(𝜉) 𝑦

𝛿𝑖𝑗

𝑖
(𝑡 + 𝜉) 𝑦

𝜎𝑖𝑗

𝑗
(𝑡 + 𝜉) 𝑑𝜉] ,

𝑖 = 1, 2, . . . , 𝑛,

(12)

with initial conditions

𝑦
𝑖
(𝜁) = 𝜑

𝑖
(𝜁) , 𝜁 ∈ [−𝜏, 0] , 𝜑

𝑖
(0) > 0,

𝜑
𝑖
∈ 𝐶 ([−𝜏, 0) , [0, +∞)) , 𝑖 = 1, 2, . . . , 𝑛,

(13)

where

𝐵
𝑖
(𝑡) = 𝑏

𝑖
(𝑡) ∏

0<𝑡𝑘<𝑡

(1 + 𝜃
𝑖𝑘
) ,

𝐶
𝑖𝑗
(𝑡) = 𝑐

𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜌𝑖𝑗(𝑡)

(1 + 𝜃
𝑖𝑘
)
𝛼𝑖𝑗
,
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𝐷
𝑖𝑗
(𝑡) = 𝑑

𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜏𝑖𝑗(𝑡)

(1 + 𝜃
𝑖𝑘
)
𝛽𝑖𝑗
,

𝐸
𝑖𝑗
(𝑡) = 𝑒

𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡

(1 + 𝜃
𝑖𝑘
)
𝛾𝑖𝑗
,

𝐹
𝑖𝑗
(𝑡) = 𝑓

𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡

(1 + 𝜃
𝑖𝑘
)
𝛿𝑖𝑗+𝜎𝑖𝑗

, 𝑖 = 𝑗 = 1, 2, . . . , 𝑛.

(14)

By a solution 𝑦(𝑡) = (𝑦
1
(𝑡), . . . , 𝑦

𝑛
(𝑡))

𝑇 of the system (12)
and (13), it means an absolutely continuous function 𝑦(𝑡) =
(𝑦

1
(𝑡), . . . , 𝑦

𝑛
(𝑡))

𝑇 defined on [−𝜏, 0] that satisfies (12) and
(13).

The following lemma will be used in the proofs of our
results. The proof of Lemma 2 is similar to that of Theorem
1 in [24].

Lemma 2. Suppose that (𝐻
1
)–(𝐻

4
) hold. Then

(i) if 𝑦
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) is a solution of (12) and

(13) on [−𝜏, +∞), then 𝑥
𝑖
(𝑡) = ∏

0<𝑡𝑘<𝑡
Δ

𝑖𝑘
𝑦
𝑖
(𝑡) (𝑖 =

1, 2, . . . , 𝑛) is a solution of (9) and (10) on [−𝜏, +∞);
(ii) if 𝑥

𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) is a solution of (9) and

(10) on [−𝜏, +∞), then 𝑦
𝑖
(𝑡) = ∏

0<𝑡𝑘<𝑡
Δ

−1

𝑖𝑘
𝑥
𝑖
(𝑡) (𝑖 =

1, 2, . . . , 𝑛) is a solution of (12) and (13) on [−𝜏, +∞).

Proof. (i) It is easy to see that 𝑥
𝑖
(𝑡) = ∏

0<𝑡𝑘<𝑡
Δ

𝑖𝑘
𝑦
𝑖
(𝑡) (𝑖 =

1, 2, . . . , 𝑛) is absolutely continuous on every interval
(𝑡

𝑘
, 𝑡

𝑘+1
], 𝑡 ̸= 𝑡

𝑘
, 𝑘 = 1, 2, . . .,

𝑥


𝑖
(𝑡) − 𝑥

𝑖
(𝑡)
[

[

𝑎
𝑖
(𝑡) − 𝑏

𝑖
(𝑡) 𝑥

𝑖
(𝑡) −

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑥

𝛼𝑖𝑗

𝑗
(𝑡 − 𝜌

𝑖𝑗
(𝑡))

−

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡) 𝑥

𝛽𝑖𝑗

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) −

𝑛

∑

𝑗=1

𝑒
𝑖𝑗
(𝑡)

× ∫

0

−𝜂𝑖𝑗

𝑘
𝑖𝑗
(V) 𝑥

𝛾𝑖𝑗

𝑗
(𝑡 + V) 𝑑V −

𝑛

∑

𝑗=1

𝑓
𝑖𝑗
(𝑡)

× ∫

0

−𝜉𝑖𝑗

𝐾
𝑖𝑗
(V) 𝑥

𝛿𝑖𝑗

𝑖
(𝑡 + V) 𝑥

𝜎𝑖𝑗

𝑗

× (𝑡 + V) 𝑑V]

]

= ∏

0<𝑡𝑘<𝑡

Δ
𝑖𝑘
𝑦


𝑖
(𝑡) − ∏

0<𝑡𝑘<𝑡

Δ
𝑖𝑘
𝑦
𝑖
(𝑡)

× [𝑎
𝑖
(𝑡) − 𝑏

𝑖
(𝑡) ∏

0<𝑡𝑘<𝑡

Δ
𝑖𝑘
𝑦
𝑖
(𝑡)

−

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜌𝑖𝑗(𝑡)

Δ

𝛼𝑖𝑗

𝑖𝑘
𝑦

𝛼𝑖𝑗

𝑗
(𝑡 − 𝜌

𝑖𝑗
(𝑡))

−

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜏𝑖𝑗(𝑡)

Δ

𝛽𝑖𝑗

𝑖𝑘
𝑦

𝛽𝑖𝑗

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))

−

𝑛

∑

𝑗=1

𝑒
𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡

Δ

𝛾𝑖𝑗

𝑖𝑘
∫

0

−𝜂𝑖𝑗

𝑘
𝑖𝑗
(V) 𝑦

𝛾𝑖𝑗

𝑗
(𝑡 + V) 𝑑V

−

𝑛

∑

𝑗=1

𝑓
𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡

Δ

𝛿𝑖𝑗+𝜎𝑖𝑗

𝑖𝑘

× ∫

0

−𝜉𝑖𝑗

𝐾
𝑖𝑗
(V) 𝑦

𝛿𝑖𝑗

𝑖
(𝑡 + V) 𝑦

𝜎𝑖𝑗

𝑗
(𝑡 + V) 𝑑V]

= ∏

0<𝑡𝑘<𝑡

Δ
𝑖𝑘

{

{

{

𝑦


𝑖
(𝑡) − 𝑦

𝑖
(𝑡)

×
[

[

𝑎
𝑖
(𝑡) − 𝐵

𝑖
(𝑡) 𝑦

𝑖
(𝑡)

−

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(𝑡) 𝑦

𝛼𝑖𝑗

𝑖
(𝑡 − 𝜌

𝑖𝑗
(𝑡))

−

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(𝑡) 𝑦

𝛽𝑖𝑗

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) −

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(𝑡)

× ∫

0

−𝜂𝑖𝑗

𝑘
𝑖𝑗
(𝑢) 𝑦

𝛾𝑖𝑗

𝑗
(𝑡 + 𝑢) 𝑑𝑢 −

𝑛

∑

𝑗=1

𝐹
𝑖𝑗
(𝑡)

× ∫

0

−𝜉𝑖𝑗

𝐾
𝑖𝑗
(V) 𝑦

𝛿𝑖𝑗

𝑖
(𝑡 + V) 𝑦

𝜎𝑖𝑗

𝑗

× (𝑡 + V) 𝑑V]

]

}

}

}

= 0.

(15)

On the other hand, for any 𝑡 = 𝑡
𝑘
, 𝑘 = 1, 2, . . .,

𝑥
𝑖
(𝑡

+

𝑘
) = lim

𝑡→ 𝑡
+

𝑘

∏

0<𝑡𝑗<𝑡

Δ
𝑖𝑘
𝑦
𝑖
(𝑡) = ∏

0<𝑡𝑗≤𝑡𝑘

Δ
𝑖𝑘
𝑦
𝑖
(𝑡

𝑘
) ,

𝑥
𝑖
(𝑡

𝑘
) = ∏

0<𝑡𝑗<𝑡𝑘

Δ
𝑖𝑘
𝑦
𝑖
(𝑡

𝑘
) , 𝑖 = 1, 2, . . . , 𝑛;

(16)

thus,

𝑥
𝑖
(𝑡

+

𝑘
) = Δ

𝑖𝑘
𝑥
𝑖
(𝑡

𝑘
) , 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . . (17)

It follows from (15)–(17) that 𝑥
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) is a

solution of the system (9) and (10). Similarly, if 𝑦
𝑖
(𝑡) (𝑖 =

1, 2, . . . , 𝑛) is a solution of the system (12) and (13), we can
prove that 𝑥

𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) is a solution of the system (9)

and (10).
(ii) Since 𝑥

𝑖
(𝑡) = ∏

0<𝑡𝑘<𝑡
Δ

𝑖𝑘
𝑦
𝑖
(𝑡) is absolutely continuous

on every interval (𝑡
𝑘
, 𝑡

𝑘+1
], 𝑡 ̸= 𝑡

𝑘
, 𝑘 = 1, 2, . . ., and in view of

(16), it follows that for any 𝑘 = 1, 2, . . .,

𝑦
𝑖
(𝑡

+

𝑘
) = ∏

0<𝑡𝑗≤𝑡𝑘

Δ
−1

𝑖𝑘
𝑥
𝑖
(𝑡

+

𝑘
) = ∏

0<𝑡𝑗<𝑡𝑘

Δ
−1

𝑖𝑘
𝑥
𝑖
(𝑡

𝑘
) = 𝑦

𝑖
(𝑡

𝑘
) ,

𝑦
𝑖
(𝑡

−

𝑘
) = ∏

0<𝑡𝑗<𝑡𝑘

Δ
−1

𝑖𝑘
𝑥
𝑖
(𝑡

−

𝑘
) = ∏

0<𝑡𝑗≤𝑡
−

𝑘

Δ
−1

𝑖𝑘
𝑥
𝑖
(𝑡

−

𝑘
) = 𝑦

𝑖
(𝑡

𝑘
) ,

(18)
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which implies that 𝑦
𝑖
(𝑡) is continuous on [−𝜏, +∞). It is easy

to prove that 𝑦
𝑖
(𝑡) is absolutely continuous on [−𝜏, +∞).

Similar to the proof of (i), we can check that 𝑦
𝑖
(𝑡) =

∏
0<𝑡𝑘<𝑡

Δ
−1

𝑖𝑘
𝑥
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are solutions of (8) on

[−𝜏, +∞). Similarly, if𝑥
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) is a solution of the

system (9) and (10), we can prove that 𝑦
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) is

a solution of the system (12) and (13). The proof of Lemma 2
is completed.

In the following section, we only discuss the existence of
a periodic solution for the system (12) and (13).

The paper is organized as follows. In the next section, we
give some definitions and lemmas. In Section 3, we derive
a necessary and sufficient condition ensuring at least one
positive periodic solution of the system, by using the Kras-
noselskii fixed-point theorem in the cone of Banach space. In
Section 4, as applications, we consider some particular cases
of the system which have been investigated extensively in the
references mentioned previously.

2. Preliminaries

We will first make some preparations and list a few prelim-
inary results. Let 𝑋 = {𝑦 = (𝑦

1
(𝑡), 𝑦

2
(𝑡), . . . , 𝑦

𝑛
(𝑡))

𝑇
∈

𝐶(𝑅, 𝑅
𝑛
) | 𝑦

𝑖
(𝑡 + 𝜔) = 𝑦

𝑖
(𝑡)} with the norm ‖𝑦‖ = ∑

𝑛

𝑖=1
|𝑦

𝑖
|
0
,

|𝑦
𝑖
|
0
= sup

𝑡∈[0,𝜔]
|𝑦

𝑖
(𝑡)|. It is easy to verify that (𝑋, ‖ ⋅ ‖) is a

Banach space.
We define an operator 𝐴 : 𝑋 → 𝑋 as follows:

(𝐴𝑦) (𝑡) = ((𝐴𝑦)
1
(𝑡) , (𝐴𝑦)

2
(𝑡) , . . . , (𝐴𝑦)

𝑛
(𝑡))

𝑇

, (19)

where

(𝐴𝑦)
𝑖
(𝑡)

= ∫

𝑡+𝜔

𝑡

{

{

{

𝐺
𝑖
(𝑡, V) 𝑦

𝑖
(V)

×
[

[

𝐵
𝑖
(V) 𝑦

𝑖
(V)

+

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(V) 𝑦

𝛼𝑖𝑗

𝑖
(V − 𝜌

𝑖𝑗
(V))

+

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(V) 𝑦

𝛽𝑖𝑗

𝑗
(V − 𝜏

𝑖𝑗
(V)) +

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(V)

× ∫

0

−𝜂𝑖𝑗

𝑘
𝑖𝑗
(𝑠) 𝑦

𝛾𝑖𝑗

𝑗
(V + 𝑠) 𝑑𝑠 +

𝑛

∑

𝑗=1

𝐹
𝑖𝑗
(V)

× ∫

0

−𝜃𝑖𝑗

𝐾
𝑖𝑗
(𝜉) 𝑦

𝛿𝑖𝑗

𝑖
(V + 𝜉) 𝑦

𝜎𝑖𝑗

𝑗

× (V + 𝜉) 𝑑𝜉]

]

}

}

}

𝑑V, 𝑖 = 1, 2, . . . , 𝑛,

𝐺
𝑖
(𝑡, V) =

𝑒
−∫

V

𝑡
𝑎𝑖(𝑢)

𝑑𝑢

1 − 𝑒
−∫
𝜔

0
𝑎𝑖(𝑢)

𝑑𝑢

=

𝑒
∫
𝑡+𝜔

V
𝑎𝑖(𝑢)

𝑑𝑢

𝑒
∫
𝜔

0
𝑎𝑖(𝑢)

𝑑𝑢 − 1

,

𝐺 (𝑡, V) = diag [𝐺
1
(𝑡, V) , 𝐺

2
(𝑡, V) , . . . , 𝐺

𝑛
(𝑡, V)] ,

𝑡 ≤ V ≤ 𝑡 + 𝜔.

(20)

It is clear that 𝐺
𝑖
(𝑡 + 𝜔, V + 𝜔) = 𝐺

𝑖
(𝑡, V), 𝜕𝐺

𝑖
(𝑡, V)/𝜕𝑡 =

𝑎
𝑖
(𝑡)𝐺

𝑖
(𝑡, V), 𝐺

𝑖
(𝑡, 𝑡) − 𝐺

𝑖
(𝑡, 𝑡 + 𝜔) = 1.

In view of (𝐻
1
), for 1 ≤ 𝑖 ≤ 𝑛, we define

𝛼
𝑖
:= min

0≤𝑡≤𝑠≤𝜔





𝐺

𝑖
(𝑡, V)





=

1

𝑒
∫
𝜔

0
𝑎𝑖(𝑢)𝑑𝑢

− 1

,

𝛽
𝑖
:= max

0≤𝑡≤𝑠≤𝜔





𝐺

𝑖
(𝑡, V)





=

𝑒
∫
𝜔

0
𝑎𝑖(𝑢)𝑑𝑢

𝑒
∫
𝜔

0
𝑎𝑖(𝑢)𝑑𝑢

− 1

,

𝛼 = min
1≤𝑖≤𝑛

𝛼
𝑖
, 𝛽 = max

1≤𝑖≤𝑛

𝛽
𝑖
, 𝜎 =

𝛼

𝛽

∈ (0, 1) .

(21)

Define 𝑃 as a cone in𝑋 by

𝑃 = {𝑦 = (𝑦
1
(𝑡) , 𝑦

2
(𝑡) , . . . , 𝑦

𝑛
(𝑡))

𝑇

∈ 𝑋 : 𝑦
𝑖
(𝑡)

≥ 𝜎




𝑦
𝑖




0
, 𝑡 ∈ [0, 𝜔] } .

(22)

We easily verify that 𝑃 is a cone in 𝑋. For convenience of
expressions, we define an operator 𝑇 : 𝑃 → 𝑋 by

(𝑇𝑦)
𝑖
(𝑡) = 𝑦

𝑖
(𝑡)
[

[

𝐵
𝑖
(𝑡) 𝑦

𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(𝑡) 𝑦

𝛼𝑖𝑗

𝑖
(𝑡 − 𝜌

𝑖𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(𝑡) 𝑦

𝛽𝑖𝑗

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) +

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(𝑡)

× ∫

0

−𝜂𝑖𝑗

𝑘
𝑖𝑗
(𝑠) 𝑦

𝛾𝑖𝑗

𝑗
(𝑡 + 𝑠) 𝑑𝑠 +

𝑛

∑

𝑗=1

𝐹
𝑖𝑗
(𝑡)

×∫

0

−𝜃𝑖𝑗

𝐾
𝑖𝑗
(𝜉) 𝑦

𝛿𝑖𝑗

𝑖
(𝑡 + 𝜉) 𝑦

𝜎𝑖𝑗

𝑗
(𝑡 + 𝜉) 𝑑𝜉

]

]

,

𝑖 = 1, 2, . . . , 𝑛.

(23)

The proof of the main result in this paper is based on an
application of theKrasnoselskii fixed-point theorem in cones.
Firstly, we need to introduce some definitions and lemmas.

Definition 3. Let𝑋 be a real Banach space and 𝑃 be a closed,
nonempty subset of𝑋. 𝑃 is said to be a cone if

(1) 𝛼𝑥 + 𝛽𝑦 ∈ 𝑃 for all 𝑥, 𝑦 ∈ 𝑃, and 𝛼, 𝛽 > 0,
(2) 𝑥, −𝑥 ∈ 𝑃 imply 𝑥 = 0.

Lemma4 (see [37–39]). Let𝑃 be a cone in a real Banach space
𝑋. Assume that Ω

𝑟1
and Ω

𝑟2
are open subsets of 𝑋 with 0 ∈

Ω
𝑟1
⊂ Ω

𝑟1
⊂ Ω

𝑟2
, where Ω

𝑟𝑖
= {𝑥 ∈ 𝑋 : ‖𝑥‖ < 𝑟

𝑖
}, 𝑖 = 1, 2.
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Let 𝑇 : 𝑃 ∩ (Ω
𝑟2
\ Ω

𝑟1
) → 𝑃 be a continuous and completely

continuous operator satisfying

(1) ‖𝑇𝑥‖ ≤ ‖𝑥‖, for any 𝑥 ∈ 𝑃 ∩ 𝜕Ω
𝑟1
;

(2) The fact that there exists 𝜙 ∈ 𝑃 \ {0} such that 𝑦 ̸= 𝑇𝑦 +

𝜆𝑦, for any 𝑦 ∈ 𝑃 ∩ 𝜕Ω
𝑟2
and 𝜆 > 0.

Then,𝑇 has a fixed point in𝑃∩(Ω
𝑟2
\Ω

𝑟1
).The same conclusion

remains valid if (1) holds for for any 𝑥 ∈ 𝑃∩𝜕Ω
𝑟2
and (2) holds

for any 𝑦 ∈ 𝑃 ∩ 𝜕Ω
𝑟1
and 𝜆 > 0.

Lemma 5. Assume that (H
1
)–(H

4
) hold. Then the solutions of

the system (12) and (13) are defined on [−𝜏,∞) and are positive.

Proof. By Lemma 2, we only need to prove that the solutions
𝑦
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) of (12) and (13) are defined on [−𝜏,∞)

and are positive on [0,∞). From (12), we have that for any
𝜑
𝑖
∈ 𝐶([−𝜏, 0), 𝑅

+
) (𝑖 = 1, 2, 3, . . . , 𝑛) and 𝑡 > 0

𝑦
𝑖
(𝑡)

= 𝜑
𝑖
(0) exp{∫

𝑡

0

[𝑎
𝑖
(V) − 𝐵

𝑖
(V) 𝑦

𝑖
(V)

−

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(V) 𝑦

𝛼𝑖𝑗

𝑖
(V − 𝜌

𝑖𝑗
(V))

−

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(V) 𝑦

𝛽𝑖𝑗

𝑗
(V − 𝜏

𝑖𝑗
(V)) −

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(V)

× ∫

0

−𝜂𝑖𝑗

𝑘
𝑖𝑗
(𝑠) 𝑦

𝛾𝑖𝑗

𝑗
(V + 𝑠) 𝑑𝑠 −

𝑛

∑

𝑗=1

𝐹
𝑖𝑗
(V)

× ∫

0

−𝜃𝑖𝑗

𝐾
𝑖𝑗
(𝜉) 𝑦

𝛿𝑖𝑗

𝑖
(V + 𝜉) 𝑦

𝜎𝑖𝑗

𝑗

× (V + 𝜉) 𝑑𝜉] 𝑑V} ,

𝑖 = 1, 2, . . . , 𝑛.

(24)

Therefore, 𝑦
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are defined on [−𝜏,∞) and

are positive on [0,∞).The proof of Lemma 5 is complete.

Lemma 6. Assume that (H
1
)–(H

4
) hold. Then 𝐴 : 𝑃 → 𝑃 is

well defined.

Proof. In view of the definitions of 𝑃 and 𝑇, for any 𝑦 ∈ 𝑃, we
have

(𝐴𝑦)
𝑖
(𝑡) = ∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, V) (𝑇𝑦)

𝑖
(V) 𝑑V,

(𝐴𝑦)
𝑖
(𝑡 + 𝜔) = ∫

𝑡+2𝜔

𝑡+𝜔

𝐺
𝑖
(𝑡, V + 𝜔) (𝑇𝑦)

𝑖
(V + 𝜔) 𝑑V

= ∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, V) (𝑇𝑦)

𝑖
(V) 𝑑V = (𝐴𝑦)

𝑖
(𝑡) .

(25)

Therefore, (𝐴𝑦) ∈ 𝑋. Furthermore, for any 𝑦 ∈ 𝑃, it follows
from (20) that





(𝐴𝑦)

𝑖




0
≤ 𝛽

𝑖
∫

𝜔

0

(𝑇𝑦)
𝑖
(V) 𝑑V. (26)

On the other hand, for any 𝑦 ∈ 𝑃, we obtain

(𝐴𝑦)
𝑖
(𝑡) ≥ 𝛼

𝑖
∫

𝜔

0

(𝑇𝑦)
𝑖
(V) 𝑑V

≥

𝛼
𝑖

𝛽
𝑖





(𝐴𝑦)

𝑖




0
≥ 𝜎





(𝐴𝑦)

𝑖




0
.

(27)

Therefore, 𝐴𝑦 ∈ 𝑃. The proof of Lemma 6 is complete.

Lemma 7. The operator 𝐴 : 𝑃 → 𝑃 is continuous and
completely continuous.

Proof. By using a standard argument one can show that 𝜓
is continuous on 𝑃. Now, we show that 𝐴 is completely
continuous. Let 𝑟 be any positive constant and 𝑆

𝑟
= {𝑦 ∈ 𝑋 :

|𝑦
𝑖
|
0
≤ 𝑟} a bounded set. For any 𝑦 ∈ 𝑆

𝑟
, by (20), we have





(𝐴𝑦)

𝑖




0

≤ 𝛽
𝑖
∫

𝜔

0

(𝑇𝑦)
𝑖
(V) 𝑑V

= 𝛽
𝑖
∫

𝜔

0

𝑦
𝑖
(V) [𝐵

𝑖
(V) 𝑦

𝑖
(V)

+

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(V) 𝑦

𝛼𝑖𝑗

𝑖
(V − 𝜌

𝑖𝑗
(V))

+

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(V) 𝑦

𝛽𝑖𝑗

𝑗
(V − 𝜏

𝑖𝑗
(V)) +

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(V)

× ∫

0

−𝜂𝑖𝑗

𝑘
𝑖𝑗
(𝑠) 𝑦

𝛾𝑖𝑗

𝑗
(V + 𝑠) 𝑑𝑠 +

𝑛

∑

𝑗=1

𝐹
𝑖𝑗
(V)

× ∫

0

−𝜃𝑖𝑗

𝐾
𝑖𝑗
(𝜉) 𝑦

𝛿𝑖𝑗

𝑖
(V + 𝜉) 𝑦

𝜎𝑖𝑗

𝑗

× (V + 𝜉) 𝑑𝜉] 𝑑V

≤ 𝜔𝛽
𝑖
𝑟
[

[

𝐵
𝑖
𝑟 +

𝑛

∑

𝑗=1

(𝐶
𝑖𝑗
𝑟
𝛼𝑖𝑗
+ 𝐷

𝑖𝑗
𝑟
𝛽𝑖𝑗
+ 𝐸

𝑖𝑗
𝑟
𝛾𝑖𝑗

+𝐹
𝑖𝑗
𝑟
𝛿𝑖𝑗+𝜎𝑖𝑗

)
]

]

:= 𝑅
𝑖
.

(28)

Therefore, for any 𝑦 ∈ 𝑆
𝑟
, we obtain





𝐴𝑦




=

𝑛

∑

𝑖=1





(𝐴𝑦)

𝑖




0
≤

𝑛

∑

𝑖=1

𝑅
𝑖
:= 𝑅, (29)
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which implies that 𝐴(𝑆
𝑟
) is a uniformly bounded set. On the

other hand, in view of the definitions of 𝐴 and 𝑇, we have

𝑑 [(𝐴𝑦)
𝑖
(𝑡)]

𝑑𝑡

= 𝐺
𝑖
(𝑡, 𝑡 + 𝜔) (𝑇𝑦)

𝑖
(𝑡 + 𝜔) − 𝐺

𝑖
(𝑡, 𝑡) (𝑇𝑦)

𝑖
(𝑡)

+ ∫

𝑡+𝜔

𝑡

𝑑𝐺
𝑖
(𝑡, V)

𝑑𝑡

(𝑇𝑦)
𝑖
(V) 𝑑V

= −(𝑇𝑦)
𝑖
(𝑡) + 𝑎

𝑖
(𝑡) ∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, V) (𝑇𝑦)

𝑖
(V) 𝑑V

= 𝑎
𝑖
(𝑡) (𝐴𝑦)

𝑖
(𝑡) − (𝑇𝑦)

𝑖
(𝑡) .

(30)

Again, from (20), we obtain











𝑑 [(𝐴𝑦)
𝑖
(𝑡)]

𝑑𝑡











≤ 𝑎
𝑀

𝑖
𝑅

𝑖
+ 𝑟

×
[

[

𝐵
𝑖
𝑟 +

𝑛

∑

𝑗=1

(𝐶
𝑖𝑗
𝑟
𝛼𝑖𝑗
+ 𝐷

𝑖𝑗
𝑟
𝛽𝑖𝑗

+𝐸
𝑖𝑗
𝑟
𝛾𝑖𝑗
+ 𝐹

𝑖𝑗
𝑟
𝛿𝑖𝑗+𝜎𝑖𝑗

)
]

]

:= 𝑅
𝑖
≤ 𝑀 := max

𝑖∈[1,𝑛]

{𝑅
𝑖
} ,

(31)

which implies that 𝑑[(𝐴𝑦)
𝑖
(𝑡)]/𝑑𝑡, for any 𝑦 ∈ 𝑆

𝑟
, is

also uniformly bounded. Hence, 𝐴(𝑆
𝑟
) ⊂ 𝑋 is a family

of uniformly bounded and equi-continuous functions. By
the well-known Ascoli-Arzela theorem, we know that the
operator 𝜓 is completely continuous. The proof of Lemma 7
is complete.

Lemma 8. Assume that (H
1
)–(H

4
) hold. The existence of

positive 𝜔-periodic solution of the system (12) and (13) is
equivalent to that of nonzero fixed point of 𝐴 in 𝑃.

Proof. Assume that 𝑦 = (𝑦
1
(𝑡), 𝑦

2
(𝑡), . . . , 𝑦

𝑛
(𝑡))

𝑇
∈ 𝑋 is a

periodic solution of (12) and (13). Then, we have

[𝑦
𝑖
(𝑡) 𝑒

−∫
𝑡

0
𝑎𝑖(𝑢)𝑑𝑢

]

= −𝑒
−∫
𝑡

0
𝑎𝑖(𝑢)𝑑𝑢

𝑦
𝑖
(𝑡)

×
[

[

𝐵
𝑖
(𝑡) 𝑦

𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(𝑡) 𝑦

𝛼𝑖𝑗

𝑖
(𝑡 − 𝜌

𝑖𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(𝑡) 𝑦

𝛽𝑖𝑗

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) +

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(𝑡)

× ∫

0

−𝜂𝑖𝑗

𝑘
𝑖𝑗
(𝑠) 𝑦

𝛾𝑖𝑗

𝑗
(𝑡 + 𝑠) 𝑑𝑠 +

𝑛

∑

𝑗=1

𝐹
𝑖𝑗
(𝑡)

× ∫

0

−𝜃𝑖𝑗

𝐾
𝑖𝑗
(𝜉) 𝑦

𝛿𝑖𝑗

𝑖
(𝑡 + 𝜉) 𝑦

𝜎𝑖𝑗

𝑗

× (𝑡 + 𝜉) 𝑑𝜉
]

]

, 𝑖 = 1, 2, . . . , 𝑛.

(32)

Integrating the previous equation over [𝑡, 𝑡 + 𝜔], we can have

[𝑦
𝑖
(V) 𝑒

−∫
V

0
𝑎𝑖(𝑢)𝑑𝑢

]








𝑡+𝜔

𝑡

= −∫

𝑡+𝜔

𝑡

{

{

{

𝑒
−∫

V

0
𝑎𝑖(𝑢)𝑑𝑢

𝑦
𝑖
(V)

×
[

[

𝐵
𝑖
(V) 𝑦

𝑖
(V) +

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(V) 𝑦

𝛼𝑖𝑗

𝑖
(V − 𝜌

𝑖𝑗
(V))

+

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(V) 𝑦

𝛽𝑖𝑗

𝑗
(V − 𝜏

𝑖𝑗
(V)) +

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(V)

× ∫

0

−𝜂𝑖𝑗

𝑘
𝑖𝑗
(𝑠) 𝑦

𝛾𝑖𝑗

𝑗
(V + 𝑠) 𝑑𝑠 +

𝑛

∑

𝑗=1

𝐹
𝑖𝑗
(V)

× ∫

0

−𝜃𝑖𝑗

𝐾
𝑖𝑗
(𝜉) 𝑦

𝛿𝑖𝑗

𝑖
(V + 𝜉) 𝑦

𝜎𝑖𝑗

𝑗

× (V + 𝜉) 𝑑𝜉]

]

}

}

}

𝑑V,

𝑖 = 1, 2, . . . , 𝑛.

(33)

Therefore, we have

𝑦
𝑖
(𝑡) 𝑒

−∫
𝑡

0
𝑎𝑖(𝑢)𝑑𝑢

[1 − 𝑒
−∫
𝜔

0
𝑎𝑖(𝑢)𝑑𝑢

]

= ∫

𝑡+𝜔

𝑡

{

{

{

𝑒
−∫

V

0
𝑎𝑖(𝑢)𝑑𝑢

𝑦
𝑖
(V)

×
[

[

𝐵
𝑖
(V) 𝑦

𝑖
(V) +

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(V) 𝑦

𝛼𝑖𝑗

𝑖
(V − 𝜌

𝑖𝑗
(V))

+

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(V) 𝑦

𝛽𝑖𝑗

𝑗
(V − 𝜏

𝑖𝑗
(V)) +

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(V)

× ∫

0

−𝜂𝑖𝑗

𝑘
𝑖𝑗
(𝑠) 𝑦

𝛾𝑖𝑗

𝑗
(V + 𝑠) 𝑑𝑠 +

𝑛

∑

𝑗=1

𝐹
𝑖𝑗
(V)

× ∫

0

−𝜃𝑖𝑗

𝐾
𝑖𝑗
(𝜉) 𝑦

𝛿𝑖𝑗

𝑖
(V + 𝜉) 𝑦

𝜎𝑖𝑗

𝑗
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× (V + 𝜉) 𝑑𝜉]

]

}

}

}

𝑑V,

𝑖 = 1, 2, . . . , 𝑛,

(34)

which can be transformed into

𝑦
𝑖
(𝑡) = ∫

𝑡+𝜔

𝑡

{
{

{
{

{

𝑒
−∫

V

0
𝑎𝑖(𝑢)𝑑𝑢

𝑒
−∫
𝑡

0
𝑎𝑖(𝑢)𝑑𝑢

[1 − 𝑒
−∫
𝜔

0
𝑎𝑖(𝑢)𝑑𝑢

]

𝑦
𝑖
(V)

×
[

[

𝐵
𝑖
(V) 𝑦

𝑖
(V) +

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(V) 𝑦

𝛼𝑖𝑗

𝑖
(V − 𝜌

𝑖𝑗
(V))

+

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(V) 𝑦

𝛽𝑖𝑗

𝑗
(V − 𝜏

𝑖𝑗
(V)) +

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(V)

× ∫

0

−𝜂𝑖𝑗

𝑘
𝑖𝑗
(𝑠) 𝑦

𝛾𝑖𝑗

𝑗
(V + 𝑠) 𝑑𝑠 +

𝑛

∑

𝑗=1

𝐹
𝑖𝑗
(V)

× ∫

0

−𝜃𝑖𝑗

𝐾
𝑖𝑗
(𝜉) 𝑦

𝛿𝑖𝑗

𝑖
(V + 𝜉) 𝑦

𝜎𝑖𝑗

𝑗

× (V + 𝜉) 𝑑𝜉]

]

}

}

}

𝑑V

= ∫

𝑡+𝜔

𝑡

{

{

{

𝐺
𝑖
(𝑡, V) 𝑦

𝑖
(V)

×
[

[

𝐵
𝑖
(V) 𝑦

𝑖
(V) +

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(V) 𝑦

𝛼𝑖𝑗

𝑖
(V − 𝜌

𝑖𝑗
(V))

+

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(V) 𝑦

𝛽𝑖𝑗

𝑗
(V − 𝜏

𝑖𝑗
(V)) +

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(V)

× ∫

0

−𝜂𝑖𝑗

𝑘
𝑖𝑗
(𝑠) 𝑦

𝛾𝑖𝑗

𝑗
(V + 𝑠) 𝑑𝑠 +

𝑛

∑

𝑗=1

𝐹
𝑖𝑗
(V)

× ∫

0

−𝜃𝑖𝑗

𝐾
𝑖𝑗
(𝜉) 𝑦

𝛿𝑖𝑗

𝑖
(V + 𝜉) 𝑦

𝜎𝑖𝑗

𝑗

× (V + 𝜉) 𝑑𝜉]

]

}

}

}

𝑑V

= ∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, V) (𝑇𝑦)

𝑖
(V) 𝑑V, 𝑖 = 1, 2, . . . , 𝑛.

(35)

Thus, 𝑦
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) is a periodic solution for system

(12) and (13).

If 𝑦 = (𝑦
1
(𝑡), 𝑦

2
(𝑡), . . . , 𝑦

𝑛
(𝑡))

𝑇
∈ 𝑋, and 𝐴𝑦 =

((𝐴𝑦)
1
, (𝐴𝑦)

2
, . . . , (𝐴𝑦)

𝑛
)
𝑇
= 𝑦 with 𝑦 ̸= 0, then for any 𝑡 = 𝑡

𝑘

derivative the two sides of (20) about 𝑡,
𝑑 [(𝐴𝑦)

𝑖
(𝑡)]

𝑑𝑡

= 𝐺
𝑖
(𝑡, 𝑡 + 𝜔) (𝑇𝑦)

𝑖
(𝑡 + 𝜔) − 𝐺

𝑖
(𝑡, 𝑡) (𝑇𝑦)

𝑖
(𝑡)

+ ∫

𝑡+𝜔

𝑡

𝑑𝐺
𝑖
(𝑡, V)

𝑑𝑡

(𝑇𝑦)
𝑖
(V) 𝑑V

= −(𝑇𝑦)
𝑖
(𝑡) + 𝑎

𝑖
(𝑡) ∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, V) (𝑇𝑦)

𝑖
(V) 𝑑V

= 𝑎
𝑖
(𝑡) 𝑦

𝑖
(𝑡) − (𝑇𝑦)

𝑖
(𝑡)

= 𝑦
𝑖
(𝑡) [𝑎

𝑖
(𝑡) − 𝐵

𝑖
(𝑡) 𝑦

𝑖
(𝑡)

−

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(𝑡) 𝑦

𝛼𝑖𝑗

𝑖
(𝑡 − 𝜌

𝑖𝑗
(𝑡))

−

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(𝑡) 𝑦

𝛽𝑖𝑗

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) −

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(𝑡)

× ∫

0

−𝜂𝑖𝑗

𝑘
𝑖𝑗
(𝑠) 𝑦

𝛾𝑖𝑗

𝑗
(𝑡 + 𝑠) 𝑑𝑠 −

𝑛

∑

𝑗=1

𝐹
𝑖𝑗
(𝑡)

×∫

0

−𝜃𝑖𝑗

𝐾
𝑖𝑗
(𝜉) 𝑦

𝛿𝑖𝑗

𝑖
(𝑡 + 𝜉) 𝑦

𝜎𝑖𝑗

𝑗
(𝑡 + 𝜉) 𝑑𝜉]

=

𝑑𝑦
𝑖
(𝑡)

𝑑𝑡

.

(36)

Hence, 𝑦(𝑡) = (𝑦
1
(𝑡), 𝑦

2
(𝑡), . . . , 𝑦

𝑛
(𝑡))

𝑇
∈ 𝑋 is a positive 𝜔-

periodic solution of (12) and (13).Thuswe complete the proof
of Lemma 8.

3. Existence of Periodic Solution of the System

Now, we are at the position to study the existence of positive
periodic solutions of system (9) and (10). We mainly apply
the Krasnoselskii fixed-point theorem in the cone of Banach
space under some conditions to prove the mainTheorem 9.

Theorem 9. Assume (H
1
)–(H

4
). System (9) and (10) has at

least one positive𝜔-periodic solution if and only if the condition

𝑙
0
= min

1≤𝑖≤𝑛

{

{

{

𝐵
𝑖
+

𝑛

∑

𝑗=1

(𝐶
𝑖𝑗
+ 𝐷

𝑖𝑗
+ 𝐸

𝑖𝑗
+ 𝐹

𝑖𝑗
)

}

}

}

> 0 (37)

holds.

Proof (sufficiency). Let

𝐿
0
= max

𝑖∈[1,𝑛]

{

{

{

𝑏
𝑖
+

𝑛

∑

𝑗=1

(𝐶
𝑖𝑗
+ 𝐷

𝑖𝑗
+ 𝐸

𝑖𝑗
+ 𝐹

𝑖𝑗
)

}

}

}

, (38)
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by condition (37), we know that 𝐿
0
≥ 𝑙

0
> 0. Choose a

constant 𝐿 ≥ 𝐿
0
such that 1/𝜔𝛽

𝑖
𝐿 < 1. Let 𝑟 = 1/𝜔𝛽

𝑖
𝐿 and

Ω
𝑟
= {𝑦 (𝑡) = (𝑦

1
(𝑡) , 𝑦

2
(𝑡) , . . . , 𝑦

𝑛
(𝑡))

𝑇

∈ 𝑋 :




𝑦
𝑖




0

< 𝑟, 𝑖 = 1, 2, . . . , 𝑛} .

(39)

For any 𝑦 = 𝑦(𝑡) ∈ 𝑃 ∩ 𝜕Ω
𝑟
, 𝜎|𝑦

𝑖
|
0
≤ 𝑦

𝑖
(𝑡) ≤ |𝑦

𝑖
|
0
, from (20),

we obtain





(𝐴𝑦)

𝑖




0
≤ 𝛽

𝑖
∫

𝜔

0

(𝑇𝑦)
𝑖
(𝑡) 𝑑𝑡

= 𝛽
𝑖
∫

𝜔

0

𝑦
𝑖
(𝑡)
[

[

𝐵
𝑖
(𝑡) 𝑦

𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(𝑡) 𝑦

𝛼𝑖𝑗

𝑖
(𝑡 − 𝜌

𝑖𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(𝑡) 𝑦

𝛽𝑖𝑗

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) +

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(𝑡)

× ∫

0

−𝜂𝑖𝑗

𝑘
𝑖𝑗
(𝑠) 𝑦

𝛾𝑖𝑗

𝑗
(𝑡 + 𝑠) 𝑑𝑠 +

𝑛

∑

𝑗=1

𝐹
𝑖𝑗
(𝑡)

×∫

0

−𝜃𝑖𝑗

𝐾
𝑖𝑗
(𝜉) 𝑦

𝛿𝑖𝑗

𝑖
(𝑡 + 𝜉) 𝑦

𝜎𝑖𝑗

𝑗
(𝑡 + 𝜉) 𝑑𝜉

]

]

𝑑𝑡

≤ 𝜔𝛽
𝑖





𝑦
𝑖




0
[

[

𝐵
𝑖
𝑟 +

𝑛

∑

𝑗=1

(𝐶
𝑖𝑗
𝑟
𝛼𝑖𝑗
+ 𝐷

𝑖𝑗
𝑟
𝛽𝑖𝑗

+𝐸
𝑖𝑗
𝑟
𝛾𝑖𝑗
+ 𝐹

𝑖𝑗
𝑟
𝛿𝑖𝑗+𝜎𝑖𝑗

)
]

]

≤ 𝜔𝛽
𝑖





𝑦
𝑖




0
[

[

𝐵
𝑖
+

𝑛

∑

𝑗=1

(𝐶
𝑖𝑗
+ 𝐷

𝑖𝑗
+ 𝐸

𝑖𝑗
+ 𝐹

𝑖𝑗
)
]

]

𝑟

≤ 𝜔𝛽
𝑖





𝑦
𝑖




0
𝐿

0
𝑟 ≤





𝑦
𝑖




0
.

(40)

Hence, for any 𝑦 = 𝑦(𝑡) ∈ 𝑃 ∩ 𝜕Ω
𝑟
, 𝜎|𝑦

𝑖
|
0
≤ 𝑦

𝑖
(𝑡) ≤ |𝑦

𝑖
|
0
, we

have





𝐴𝑦




=

𝑛

∑

𝑗=1





(𝐴𝑦)

𝑖




0
≤

𝑛

∑

𝑗=1





𝑦
𝑖




0
=




𝑦




, (41)

which implies that condition (1) in Lemma 4 is satisfied.
On the other hand, we choose 0 < 𝑙 ≤ 𝑙

0
such that

1/𝜔𝜎𝛼
𝑖
𝑙 > 1. Let 𝑅 = 1/𝜔𝜎𝛼

𝑖
𝑙 > 1 and suppose 𝑢 =

(𝑢
1
, 𝑢

2
, . . . , 𝑢

𝑛
)
𝑇
∈ 𝑃/{0}. We show that, for any 𝑦 = 𝑦(𝑡) ∈

𝑃 ∩ 𝜕Ω
𝑅
and 𝜆 > 0, 𝑦 ̸= 𝜓𝑦 + 𝜆𝑢. Otherwise, there exist

𝑦
0
= 𝑦

0
(𝑡) ∈ 𝑃 ∩ 𝜕Ω

𝑅
and 𝜆

0
> 0, such that 𝑦

0
= 𝜓𝑦

0
+ 𝜆

0
𝑢.

Let 𝑢
𝑖0

̸= 0 (1 ≤ 𝑖
0
≤ 𝑛); since 𝑦

𝑖0
(𝑡) ≥ 𝜎|𝑦

𝑖0
|
0
, it follows that

𝑦
𝑖0
= (𝐴𝑦)

𝑖0
(𝑡) + 𝜆

0
𝑢
𝑖0

= ∫

𝑡+𝜔

𝑡

𝐺
𝑖0
(𝑡, V) (𝑇𝑦)

𝑖0
(V) 𝑑V + 𝜆

0
𝑢
𝑖0

≥ 𝜎𝛼
𝑖






𝑦
𝑖0





0
∫

𝜔

0

[𝐵
𝑖
(𝑡) 𝑦

𝑖
(𝑡)

+

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(𝑡) 𝑦

𝛼𝑖𝑗

𝑖
(𝑡 − 𝜌

𝑖𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(𝑡) 𝑦

𝛽𝑖𝑗

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) +

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(𝑡)

× ∫

0

−𝜂𝑖𝑗

𝑘
𝑖𝑗
(𝑠) 𝑦

𝛾𝑖𝑗

𝑗
(𝑡 + 𝑠) 𝑑𝑠 +

𝑛

∑

𝑗=1

𝐹
𝑖𝑗
(𝑡)

× ∫

0

−𝜃𝑖𝑗

𝐾
𝑖𝑗
(𝜉) 𝑦

𝛿𝑖𝑗

𝑖
(𝑡 + 𝜉) 𝑦

𝜎𝑖𝑗

𝑗

× (𝑡 + 𝜉) 𝑑𝜉] 𝑑𝑡 + 𝜆
0
𝑢
𝑖0

≥ 𝜔𝜎𝛼
𝑖






𝑦
𝑖0





0

[

[

𝐵
𝑖
𝑅 +

𝑛

∑

𝑗=1

(𝐶
𝑖𝑗
𝑅

𝛼𝑖𝑗
+ 𝐷

𝑖𝑗
𝑅

𝛽𝑖𝑗

+𝐸
𝑖𝑗
𝑅

𝛾𝑖𝑗
+ 𝐹

𝑖𝑗
𝑅

𝛿𝑖𝑗+𝜎𝑖𝑗
)
]

]

≥ 𝜔𝜎𝛼
𝑖





𝑦
𝑖




0
[

[

𝐵
𝑖
+

𝑛

∑

𝑗=1

(𝐶
𝑖𝑗
+ 𝐷

𝑖𝑗
+ 𝐸

𝑖𝑗
+ 𝐹

𝑖𝑗
)
]

]

𝑅 + 𝜆
0
𝑢
𝑖0

≥ 𝜔𝜎𝛼
𝑖
𝑙
0
𝑅




𝑦
𝑖




0
+ 𝜆

0
𝑢
𝑖0
≥






𝑦
𝑖0





0
+ 𝜆

0
𝑢
𝑖0
>






𝑦
𝑖0





0
,

(42)

which is a contradiction. This proves that condition (2) in
Lemma 4 is also satisfied. By Lemmas 4 and 8, system (12)
and (13) has at least one positive omega-periodic solution.
From Lemma 2, system (9) and (10) has at least one positive
𝜔-periodic solution.

(Necessity). Suppose that (37) does not hold.Then, there exists
at least an 𝑖

0
(1 ≤ 𝑖

0
≤ 𝑛) such that

𝐵
𝑖0
= 0, 𝐶

𝑖0𝑗
= 𝐷

𝑖0𝑗
= 𝐸

𝑖0𝑗
= 𝐹

𝑖0𝑗
= 0, 𝑗 ∈ [1, 𝑛] .

(43)

If system (12) and (13) has a positive 𝜔-periodic solution
𝑦(𝑡) = (𝑦

1
(𝑡), 𝑦

2
(𝑡), . . . , 𝑦

𝑛
(𝑡))

𝑇, then we have

𝑑𝑦
𝑖0
(𝑡)

𝑑𝑡

= 𝑎
𝑖0
(𝑡) 𝑦

𝑖0
(𝑡) . (44)

Integrating the previous equation over [𝑡, 𝑡 + 𝜔], we can have

0 = ln
𝑦
𝑖0
(𝑡 + 𝜔)

𝑦
𝑖0
(𝑡)

= ∫

𝜔

0

𝑎
𝑖0
(𝑡) 𝑑𝑡 > 0, (45)

which is a contradiction.The proof ofTheorem 9 is complete.
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4. Applications

In this section, we apply the results obtained in the previous
section to some n-species competition systems which are
mentioned in Section 1. If we consider the environmental or
biological factors, the assumption of the periodic oscillation
of the parameters and impulse functions seems realistic and
reasonable in view of any seasonal phenomena which they
might be subject to, for example, mating habits, availability of
food, weather conditions, and so forth.

Application 1. We consider the following three classes of
periodic n-species competition systems with impulses:

𝑑𝑥
𝑖
(𝑡)

𝑑𝑡

= 𝑥
𝑖
(𝑡)
[

[

𝑏
𝑖
(𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑥

𝑗
(𝑡)
]

]

, 𝑡 ∈ 𝑅,

𝑡 ̸= 𝑡
𝑘
, 𝑖 = 1, 2, . . . , 𝑛,

Δ𝑥
𝑖
(𝑡

𝑘
) = ℎ

𝑖𝑘
𝑥
𝑖
(𝑡

𝑘
) , 𝑘 ∈ 𝑍

+
, 𝑖 = 1, 2, . . . , 𝑛;

(46)

𝑑𝑥
𝑖
(𝑡)

𝑑𝑡

= 𝑥
𝑖
(𝑡)
[

[

𝑏
𝑖
(𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑥

𝜃𝑖𝑗

𝑗
(𝑡)
]

]

, 𝑡 ∈ 𝑅,

𝑡 ̸= 𝑡
𝑘
, 𝑖 = 1, 2, . . . , 𝑛,

Δ𝑥
𝑖
(𝑡

𝑘
) = ℎ

𝑖𝑘
𝑥
𝑖
(𝑡

𝑘
) , 𝑘 ∈ 𝑍

+
, 𝑖 = 1, 2, . . . , 𝑛;

(47)

𝑑𝑥
𝑖
(𝑡)

𝑑𝑡

= 𝑥
𝑖
(𝑡)
[

[

𝑏
𝑖
(𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑥

𝜃𝑖𝑗

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))

]

]

, 𝑡 ∈ 𝑅,

𝑡 ̸= 𝑡
𝑘
, 𝑖 = 1, 2, . . . , 𝑛,

Δ𝑥
𝑖
(𝑡

𝑘
) = ℎ

𝑖𝑘
𝑥
𝑖
(𝑡

𝑘
) , 𝑘 ∈ 𝑍

+
, 𝑖 = 1, 2, . . . , 𝑛,

(48)

which are special cases of system (9), where 𝑏
𝑖
(𝑡), 𝑎

𝑖𝑗
(𝑡), 𝜏

𝑖𝑗
(𝑡),

𝜃
𝑖𝑗
, ℎ

𝑖𝑘
are the same as in (𝐻

1
)–(𝐻

4
). We denote

𝐴
𝑖𝑗
(𝑡) = 𝑎

𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑖𝑘
) ,

𝐴∗
𝑖𝑗
(𝑡) = 𝑎

𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜏𝑖𝑗(𝑡)

(1 + ℎ
𝑖𝑘
) ,

(49)

fromTheorem 9, we have the following results.

Corollary 10. Assume that (H
1
)–(H

4
) hold. The systems (46)

and (47) have at least one positive 𝜔-periodic solution if and
only if the following condition

min
1≤𝑖≤𝑛

{𝐴
𝑖𝑗
} > 0 (50)

holds.

Corollary 11. Assume that (H
1
)–(H

4
) hold. The system (48)

has at least one positive 𝜔-periodic solution if and only if the
following condition

min
1≤𝑖≤𝑛

{𝐴∗
𝑖𝑗
} > 0 (51)

holds.

Application 2. We consider the following n-species Gilpin-
Ayala type competition systems with impulses:

𝑦


𝑖
(𝑡) = 𝑦

𝑖
(𝑡)
[

[

𝑟
𝑖
(𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑦

𝛼𝑖𝑗

𝑗
(𝑡)

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑦

𝛽𝑖𝑗

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) −

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡)

×∫

0

−𝜎𝑖𝑗

𝑘
𝑖𝑗
(𝑠) 𝑦

𝛾𝑖𝑗

𝑗
(𝑡 + 𝑠) 𝑑𝑠

]

]

,

a.e, 𝑡 > 0, 𝑡 ̸= 𝑡
𝑘
, 𝑖 = 1, 2, . . . , 𝑛,

𝑦
𝑖
(𝑡

+

𝑘
) − 𝑦

𝑖
(𝑡

−

𝑘
) = ℎ

𝑖𝑘
𝑦
𝑖
(𝑡

𝑘
) , 𝑖 = 1, 2, . . . , 𝑛, 𝑘 ∈ 𝑍

+
,

(52)

which is a special case of system (9), where 𝑟
𝑖
(𝑡), 𝑎

𝑖𝑗
(𝑡), 𝑏

𝑖𝑗
(𝑡),

𝑐
𝑖𝑗
(𝑡), 𝜏

𝑖𝑗
(𝑡) ∈ 𝐶(𝑅, 𝑅

+
) are 𝜔-periodic, 𝑘

𝑖𝑗
∈ 𝐶([−𝜂

𝑖𝑗
, 0], 𝑅

+
)

are constants such that ∫0

−𝜂𝑖𝑗

𝑘
𝑖𝑗
(𝑡)𝑑𝑡 = 1, and 𝛼

𝑖𝑗
≥ 0, 𝛽

𝑖𝑗
≥ 0,

𝛾
𝑖𝑗
≥ 0, 𝑖 = 1, 2, . . . , 𝑛. We denote

𝐴
𝑖𝑗
(𝑡) = 𝑎

𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑖𝑘
) ,

𝐵
𝑖𝑗
(𝑡) = 𝑏

𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜏𝑖𝑗(𝑡)

(1 + ℎ
𝑖𝑘
) ,

𝐶
𝑖𝑗
(𝑡) = 𝑐

𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜎𝑖𝑗

(1 + ℎ
𝑖𝑘
) ,

(53)

fromTheorem 9, we have the following result.

Corollary 12. Assume that (H
1
)–(H

4
) and the condition

𝑅
2
= min

1≤𝑖≤𝑛

{

{

{

𝑛

∑

𝑗=1

(𝐴
𝑖𝑗
+ 𝐵

𝑖𝑗
+ 𝐶

𝑖𝑗
)

}

}

}

> 0 (54)

hold, the system (52) has at least one positive 𝜔-periodic
solution.

Application 3. We study the following periodic nonlinear n-
species competitive Lotka-Volterra models with impulses:

𝑦


𝑖
(𝑡) = 𝑦

𝑖
(𝑡)
[

[

𝑟
𝑖
(𝑡) −

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑦

𝛼𝑖𝑗

𝑗
(𝑡)

−

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑦

𝛽𝑖𝑗

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))

−

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑦

𝛾𝑖𝑗

𝑖
(𝑡) 𝑦

𝛿𝑖𝑗

𝑗
(𝑡)
]

]

,

a.e, 𝑡 > 0, 𝑡 ̸= 𝑡
𝑘
, 𝑖 = 1, 2, . . . , 𝑁,

𝑦
𝑖
(𝑡

+

𝑘
) − 𝑦

𝑖
(𝑡

−

𝑘
) = ℎ

𝑖𝑘
𝑦
𝑖
(𝑡

𝑘
) , 𝑖 = 1, 2, . . . , 𝑁, 𝑘 ∈ 𝑍

+
,

(55)
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which is a special case of system (9), where 𝑟
𝑖
(𝑡), 𝑎

𝑖𝑗
(𝑡), 𝑏

𝑖𝑗
(𝑡),

𝑐
𝑖𝑗
(𝑡), 𝜏

𝑖𝑗
(𝑡) ∈ 𝐶(𝑅, 𝑅

+
) are 𝜔-periodic, and 𝛼

𝑖𝑗
≥ 0, 𝛽

𝑖𝑗
≥ 0,

𝛾
𝑖𝑗
≥ 0, 𝛿

𝑖𝑗
≥ 0. We denote

𝐴
𝑖𝑗
(𝑡) = 𝑎

𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑖𝑘
)
𝛼𝑖𝑗
,

𝐵
𝑖𝑗
(𝑡) = 𝑏

𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜏𝑖𝑗(𝑡)

(1 + ℎ
𝑖𝑘
)
𝛽𝑖𝑗
,

𝐶
𝑖𝑗
(𝑡) = 𝑐

𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑖𝑘
)
𝛾𝑖𝑗+𝛿𝑖𝑗

,

(56)

fromTheorem 9, we have the following result.

Corollary 13. Assume that (H
1
)–(H

4
) and the condition

𝑅
3
= min

1≤𝑖≤𝑁

{

{

{

𝑁

∑

𝑗=1

(𝐴
𝑖𝑗
+ 𝐵

𝑖𝑗
+ 𝐶

𝑖𝑗
)

}

}

}

> 0 (57)

hold, the system (55) has at least one positive 𝜔-periodic
solution.

Application 4. We study the following generalized periodic
n-species Gilpin-Ayala type competition models in periodic
environments with deviating arguments of the form and
impulses:

𝑦


𝑖
(𝑡) = 𝑦

𝑖
(𝑡)
[

[

𝑟
𝑖
(𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑦

𝛼𝑖𝑗

𝑗
(𝑡)

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑦

𝛽𝑖𝑗

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) −

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡)

× ∫

0

−𝜎𝑖𝑗

𝐾
𝑖𝑗
(𝜉) 𝑦

𝛾𝑖𝑗

𝑖
(𝑡 + 𝜉) 𝑦

𝛿𝑖𝑗

𝑗

× (𝑡 + 𝜉) 𝑑𝜉
]

]

, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑦
𝑖
(𝑡

𝑘
) = 𝜃

𝑘
𝑦 (𝑡

𝑘
) , 𝑖 = 1, 2, . . . , 𝑛, 𝑘 ∈ 𝑍

+
, 𝑡 = 𝑡

𝑘
,

(58)

which is a special case of system (9), where 𝑟
𝑖
(𝑡), 𝑎

𝑖𝑗
(𝑡), 𝑏

𝑖𝑗
(𝑡),

𝑐
𝑖𝑗
(𝑡), 𝜏

𝑖𝑗
(𝑡) ∈ 𝐶(𝑅, 𝑅

+
) are 𝜔-periodic,

𝐾
𝑖𝑗
∈ 𝐶([−𝜎

𝑖𝑗
, 0], 𝑅

+
) are constants such that ∫0

−𝜎𝑖𝑗

𝐾
𝑖𝑗
(𝑡)𝑑𝑡 =

1, and 𝛼
𝑖𝑗
≥ 0, 𝛽

𝑖𝑗
≥ 0, 𝛾

𝑖𝑗
≥ 0, 𝛿

𝑖𝑗
≥ 0, 𝑖 = 1, 2, . . . , 𝑛, 1+𝐻

𝑖𝑘
>

0. We denote

𝐴
𝑖𝑗
(𝑡) = 𝑎

𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑖𝑘
)
𝛼𝑖𝑗
,

𝐵
𝑖𝑗
(𝑡) = 𝑏

𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜏𝑖𝑗(𝑡)

(1 + ℎ
𝑖𝑘
)
𝛽𝑖𝑗
,

𝐶
𝑖𝑗
(𝑡) = 𝑐

𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜎𝑖𝑗(𝑡)

(1 + ℎ
𝑖𝑘
)
𝛾𝑖𝑗+𝛿𝑖𝑗

,

(59)

fromTheorem 9, we have the following result.

Corollary 14. Assume that (H
1
)–(H

4
) and the condition

𝑅
4
= min

1≤𝑖≤2

{𝐴
𝑖
+

𝑛

∑

𝑖=1

(𝐵
𝑖𝑗
+ 𝐶

𝑖𝑗
)} > 0 (60)

hold, the system (58) has at least one positive 𝜔-periodic
solution.

Application 5.Westudy the following two-species competitive
systems with impulses:

𝑦


1
(𝑡) = 𝑦

1
(𝑡)
[

[

𝑟
1
(𝑡) − 𝑎

1
(𝑡) 𝑦

1
(𝑡)

−

𝑛

∑

𝑗=1

𝑏
1𝑗
(𝑡) 𝑦

𝛼1𝑗

1
(𝑡 − 𝜏

𝑗
(𝑡))

−

𝑛

∑

𝑗=1

𝑐
1𝑗
(𝑡) 𝑦

𝛽2𝑗

2
(𝑡 − 𝜌

𝑗
(𝑡))

]

]

,

𝑦


2
(𝑡) = 𝑦

2
(𝑡)
[

[

𝑟
2
(𝑡) − 𝑎

2
(𝑡) 𝑦

2
(𝑡)

−

𝑛

∑

𝑗=1

𝑏
2𝑗
(𝑡) 𝑦

𝛼2𝑗

2
(𝑡 − 𝜂

𝑗
(𝑡))

−

𝑛

∑

𝑗=1

𝑐
2𝑗
(𝑡) 𝑦

𝛽1𝑗

1
(𝑡 − 𝜎

𝑗
(𝑡))

]

]

, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑦
𝑖
(𝑡

𝑘
) = ℎ

𝑖𝑘
𝑦
𝑖
(𝑡

𝑘
) , 𝑖 = 1, 2, 𝑘 ∈ 𝑍

+
, 𝑡 = 𝑡

𝑘
,

(61)

which is a special case of system (9), where 𝑟
𝑖
(𝑡), 𝑎

𝑖𝑗
(𝑡), 𝑏

𝑖𝑗
(𝑡),

𝑐
𝑖𝑗
(𝑡), 𝜏

𝑗
(𝑡), 𝜌

𝑗
(𝑡), 𝜂

𝑗
(𝑡), 𝜎

𝑗
(𝑡) ∈ 𝐶(𝑅, 𝑅

+
) (𝑖 = 1, 2) are 𝜔-

periodic. We denote

𝐴
𝑖
(𝑡) = 𝑎

𝑖
(𝑡) ∏

0<𝑡𝑘<𝑡

(1 + 𝜃
𝑖𝑘
) ,

𝐵
𝑖𝑗
(𝑡) = 𝑏

𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜏𝑗(𝑡)

(1 + 𝜃
𝑖𝑘
)
𝛼𝑖𝑗

(𝑖 = 1, 2) ,

𝐶
1𝑗
(𝑡) = 𝐶

1𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜌𝑗(𝑡)

(1 + 𝜃
𝑖𝑘
)
𝛽2𝑗
𝐶

2𝑗
(𝑡)

= 𝑐
2𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜎𝑗(𝑡)

(1 + 𝜃
𝑖𝑘
)
𝛽1𝑗
,

(62)

fromTheorem 9, we have the following result.

Corollary 15. Assume that (H
1
)–(H

4
) and the condition

𝑅
4
= min

1≤𝑖≤2

{𝐴
𝑖
+

𝑛

∑

𝑖=1

(𝐵
𝑖𝑗
+ 𝐶

𝑖𝑗
)} > 0 (63)

hold, the system (61) has at least one positive 𝜔-periodic
solution.
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Remark 16. We apply the main results obtained in the
previous section to study some examples which have some
biological implications; from the previous corollaries, we
see that, under the appropriate conditions, the impulsive
perturbations do not affect the existence of periodic solution
of systems. However, if the impulsive perturbations are
unbounded, some properties of the solution of systems could
be changed significantly, which will be our further work.
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