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Rationalized Haar functions are developed to approximate the solutions of the nonlinear
Volterra-Hammerstein integral equations. Properties of Rationalized Haar functions are
first presented, and the operational matrix of integration together with the product
operational matrix are utilized to reduce the computation of integral equations to into
some algebraic equations. The method is computationally attractive, and applications
are demonstrated through illustrative examples.
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1. INTRODUCTION

Orthogonal functions have received considerable attention in dealing
with various problems of dynamic systems. The main characteristic of
this technique is that it reduces these problems to those of solving a
system of algebraic equations thus greatly simplifying the problem.
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The approach is based on converting the underlying differential
equations into integral equations through integration, approximating
various signals involved in the equation by truncated orthogonal series
() = [po(1), $1(2), . . ., de—1(D]” and using the operational matrix of
integration P to eliminate the integral operations. The elements ¢g(%),
¢1(0), ..., dr_1(f) are the basis functions, orthogonal on a certain
interval, and the matrix P can be uniquely determined based on the
particular orthogonal functions. Orthogonal functions have also been
proposed to solve linear integral equations. Special attention has been
given to applications of Walsh functions [1], block-pulse functions [2],
Laguerre series [3], Legendre polynomials [4], Chebyshev polynomials
[5] and Fourier series [6].

The orthogonal set of Haar functions is a group of square waves
with magnitude of +2?, —20/2 and 0, i=0,1,2,... [7]. The use of
the Haar functions comes from the rapid convergence feature of
Haar series in expansion of function compared with that of Walsh
series [8]. Lynch et al. [9] and [10] have rationalized the Haar
transform by deleting the irrational numbers and introducing the
integral powers of two. This modification results in what is called the
rationalized Haar (RH) transform. The RH transform preserves all
the properties of the original Haar transform and can be efficiently
implemented using digital pipeline architecture [10]. The correspond-
ing functions are known as RH functions. The RH functions are
composed of only three amplitudes +1, —1 and 0.

In Refs. [11-13] the authors offered a numerical method to solve
linear differential equations and its application to function evaluation.
The method used was based on the stairstep approximation using
Haar functions and on mathematical manipulation using quasi-binary
numbers. However, there are some difficulties for practical use as
in [11—-13]. This is because the Haar functions have magnitudes of
+202 202 and 0,i=0,1,2,..., and an operating system dealing
with quasi-binary numbers is required for speedy manipulation. To
overcome these difficulties, RH functions were used in [14—16]. In
these references the RH functions operational matrix of integration
was applied to solve linear ordinary differential equations [14], first
and second order linear partial differential equations [15] and varia-
tional problems [16].
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In the present paper we are concerned with the application of RH
functions to the numerical solution of nonlinear Volterra-Hammer-
stein integral equations of the form

0 =f0+ [ (1, 9)g(s,y(s)ds, 0<r<1 0

where f, g and « are given continuous functions, with g(s, y) nonlinear
in y. We assume that Eq. (1) has a unique solution y to be determined.

Several numerical methods for approximating the solution of
Hammerstein integral equations are known. For Fredholm-
Hammerstein integral equations, the classical method of successive
approximations was introduced in [17]. A variation of the Nystrom
method was presented in [18]. A collocation-type method was developed
in [19]. In [20], Brunner applied a collocation-type method to Eq. (1) and
integro-differential equations, and discussed its connection with the
iterated collocation method. Guogiang [21] introduced and discussed
the asymptotic error expansion of a collocation-type method for
Volterra-Hammerstein integral equations. The methods in [19] and [21]
transform a given integral equation into a system of nonlinear equa-
tions, which has to be solved with some kind of iterative method. In [19],
only in favorable cases the definite integrals involved in the solution may
be evaluated analytically, while in [21] the integrals involved in the
solution have to be evaluated at each time step of the iteration.

In this paper, we apply RH functions to solve the nonlinear Volterra-
Hammerstein integral equations given in Eq. (1). The method is first
applied to an equivalent integral equation z = g(¢, y(¢)), t € [— 1, 1] where
the solution z is approximated by a RH function with unknown co-
efficients. The operational matrices of integration and product together
with Newton-Cotes nodes [22] are then used to evaluate the unknown
coefficients and find approximate solutions for y(¢). It is known that
spectral projection methods provide highly accurate approximations
for the solutions of operator equations in functions spaces, provided
that these solutions are sufficiently smooth [23]. Our approach is
different from the methods initiated in [20] and [21]. The major
difference between our analysis and those of [20] and [21] being the fact
that for polynomial interpolation, uniform convergence of interpolants
can not be guaranteed for every continuous function. regardless of the
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choice of the interpolation nodes [24]. Moreover, the uniform
convergence under suitable conditions using the spectral methods is
established in [24] and [25] for nonlinear Fredholm-Hammerstein [24]
and nonlinear Volterra-Hammerstein [25] integral equations. The
advantages of the proposed method are that:

(1) using RH functions properties the integrals involved in the
solution are calculated once and a set of nonlinear algebraic
equations are obtained.

(2) using Newton-Cotes nodes, these nonlinear equations are solved
and as a result the solution to Eq. (1) is calculated. The Haar
transform is much faster than the Fourier transform, and it is even
faster than the Walsh transform [26].

Illustrative examples are included to demonstrate the validity and
applicability of the technique.

2. PROPERTIES OF RATIONALIZED HAAR FUNCTIONS

2.1. Rationalized Haar Functions

The RH functions RH(r,t),r=1,2,3,... are composed of three values
+1, —1 and 0 and can be defined on the interval [0, 1) as [14]

1, K <t<dayp
RH(r,t) = ¢ —1, Japy <t<Jo (2)
0, otherwise
where
_j—u a1
Ju— 2 u—O,E, 1.

The value of r is defined by two parameters i and j as
r=2+j-1, i=0,1,2,3,... j=1,273,...,2.
RH(0, ?) is defined for i=;=0 and is given by
RH(0,f) =1, 0<t<]l. (3)

A set of the first eight RH functions is shown in Figures 1-8, where,
r=0,1,2,...,7. The first two functions are nonzero over the whole
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FIGURE 1 RH(0,1) obtained for i=0 and j=0.

-1

FIGURE 2 RH(1,1) obtained for i=0 and j=1.

1
—
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FIGURE 3 RH(2,t) obtained for i=1 and j=1.

—

g
FIGURE 4 RH(3,t) obtained for i=1 and j=2.
r1_
=

FIGURE 5 RH(4,1t) obtained for i=2 and j=1.

—
I

FIGURE 6 RH(5,1) obtained for i=2 and j=2.

interval on 0 <7< 1, the rest are nonzero only over a portion on
0<t< 1. Haar functions become increasingly localized as their
number increases and can be generated recursively [27].
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FIGURE 7 RH(6,t) obtained for i=2 and j=3.

I T T ]
t

FIGURE 8 RH(7,1) obtained for i=2 and j=4.

The orthogonality property is given by

1 1
27" forr=v
/0 RH(r,t)RH(v,t)dt—{ o ey
where

v=2"+m-1, n=0,1,2,... m=12,...,2".

2.2. Function Approximation

A function f(¢) defined over the interval [0, 1) may be expanded into
RH functions as

+00
(O = aRH(r,1), (4)

r=0

where
ol
a, = 2’/ f(ORH(r,t)dt, r=0,1,2,...
0

with

r=2+j-1, i=0,1,2,3,... j=1,2,3,...,2"and r=0 fori=;=0.
()

The series in Eq. (4) contains an infinite number of terms. If we let
i=0,1,2,...,a then the infinite series in Eq. (4) is truncated up to its
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first k terms as
k-1
F(0) =" aRH(r, 1) = AT¢(1), (6)
r=0
where
k=21 a=0,1,2,...

The RH function coefficient vector 4 and RH function vector ¢(z)
are defined as

A = [ag,a,... ,ak_l]T, (7

¢(2) = [po(t), 61(8), - .., 1 (1)), (8)
where
é:.(t) =RH(r,t), r=0,1,2,....k—1.

Now let k(2, 5) be a function of two independent variables defined
for ¢t€[0,1) and 5€[0,1). Then x can be expanded into RH func-
tions as

k=1 k-1
K(t, S) = Zzhvr¢r(t)¢v(s)v

v=0 r=0

where

1 1
oy = 247 / / (t,5) 80 (1) (s)dtds,
0 0

with v defined similarly to r in Eq. (5) and i, n=0,1,2,...,a. Hence
we have

K(t,s) = ¢" (NH(s), 9)
where

H= (), (10)
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If each waveform is divided into eight intervals, the magnitude of the
waveform can be represented as

111 1 1 11

11 1 1 -1 -1 -1 -1

io 1 1 -1 -1 0 0 0 0

. il oo o 0o 1 1 -1 -1
®exs=1.1=11 -1 0 0o 0 o o o] (D

o 00 1 -1 0 0 0 o0

00 0 0 1 -1 0 0

000 0 0 0 0 1 -1

In Eq. (11) the row denotes the order of the Haar function. The matrix
& ok can be expressed as

bii = [9(1/2K), 6(3/2K), ..., (2 — 1)/26)).  (12)
Using Eq. (6) we get

[F(1/2K),£(3/2K), ... F(2k = 1)/2K)] = ATy r. (13)
From Egs. (10) and (13) we have

Tao—1

a1
H= ((I)kxk) Hq)kxk’ (14)

where

A

H= (hp)xpy hp=r((2=1)/2k,(2p - 1)/2k), p,l=12,... k.

2.3. Operational Matrix of Integration

The integration of the ¢(¢) defined in Eq. (8) is given by

/ St = Po(s), (15)

where P= Py , , is the k x k operational matrix for integration and is
given in [14] as
1 leP(k/Z) x (k/2) _&’(kﬂ) x (k/2)

.1

Pk xk = 37 P
2k | Dgesa) x k2 0



VOLTERRA-HAMMERSTEIN EQUATION AND HAAR FUNCTIONS 213

where &; = 11, P1=[1/2), &, . ;. can be obtained similarly to dg . g in
Eq. (11), and

s —1 .17
Ppx k= (']E)q)kxkdlag‘

(1,1,2,2,22,...,22,23,...,23,... .. )
22 23 “"V"'k/z

2.4. The Product Operational Matrix

Let the product of ¢(r)¢”(2) be called the RH product matrix Wy, » ().
That is,

$(1)¢" (1) = Wie x &(1).
To illustrate the calculation procedures we choose k£ =8. Using Egs.
(2) and (3) we get
do(1)pq(1) = ¢o(2), ¢=0,1,...,7
and for p < g, we have
bp(£)q (1)
@q(t),  if ¢4(1) occurs during the first positive half wave of ¢,(f)

= —p4(t), if ¢,(t) occurs during the second negative half wave of ¢,(?)
0, otherwise.

Also, the square of any RH functions is a block pulse with
magnitude of 1 during both the positive and negative half waves of RH
functions. Thus we get

g g(f) =

b0 h 2} ) ¢4 ¢s ®6 [
é1 b [23 ) ¢4 #s —¢6 -
¢ ¢ (do+¢1)/2 0 4 —¢s 0 0
3 —¢s 0 (¢o~¢1)/2 0 0 [ -#
b $a ¢4 0 (d0+ 1 +262)/4 0 0 0
¢s b5 —os 0 0 (o + b1 —2¢2)/4 0 0
6 —¢o 0 [ 0 0 (do — o1+ 2¢3)/4 0

¢ —d7 0 -7 0 0 0 (@0 — @1 — 2¢3)/4
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In general we have

Yies2) x te/2)(8)  Hiyepay o (k/2)(t)> (16)

lIlk k (t) = *T *
: Hiery w9 Diges) x /) (D)

where

Uy 1(f) = o,
Hi o /2 (8) = Ry x e/2) diagldir) (1), Sesoy+1 (D), - -, dier (1),
. . sl
Doy x () (1) = diag[® g ), /) [60(0), 61(2), -, Bay) 1 ()]

Furthermore, by multiplying the matrix ¥, . x(¢) in Eq. (16) by the
vector A4 in Eq. (7) we obtain

Ui w k(1)A = A x k9(2), (17)

where Ay  x is a k x k matrix given by

A= | A®2xwn Hemxwn )
Hucpy) x k) Diwes2) x e/2)

with

Al x 1 = 4y,
Hioy x /2) = Q) x (72 diaglagsa), agesayts - - - » ak-1],
. . a—1
Hpo) x e2) = diaglayz), ageaye1s - - @112 ks2) x e/2),

and

D2 x /2y = diagllao, ar, - . ., ags2)-112k/2) x k/2))-

For k=4 we have

21y} ai a as
A _ a qap a —as
4x4= a2/2 02/2 ap + ay 0
as/2 —az/2 0 ag — a;
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3. NONLINEAR VOLTERRA-HAMMERSTEIN
INTEGRAL EQUATIONS

Consider Volterra-Hammerstein integral equations given in Eq. (1).
To solve for y(¢), we first approximate the solution not to the Eq. (1),
but rather to an equivalent equation

z(t) = g(t,y(2)), 0<t<1. (18)

From Eq. (1) we get

t
2(0) = s(0f(0) + [ w(5)2(5)ds). (19)
0
Suppose z(¢) can be expressed approximately as

2(1) = AT (1), (20)

where 4 and ¢(¢) are given in Eqgs. (7) and (8) respectively. Using
Eqgs. (9), (17) and (20) we have

| s 56)ds = [ " 0HAd)ds
0 0
From Egs. (15) and (19) we get

2(t) = g(t,£(t) + ¢” () HAP¢(1)) (21)

In order to construct the approximations for z(¢) we collocate Eq. (21)
in k points. For a suitable collocation points we choose Newton-Cotes
nodes as

2p—1
LT

By using Eqgs. (12) and (22) we have

p=123, .k (22)

B(ty) = Srxrep, p=12,...,k (23)

where

0,0,...,0,1,0,....0
— N——r

p—1 k-p

L’pz
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Equation (21) can be expressed as

2(ty) = 8(1p, f(tp) + €8y (HAP®L x k€y), P =1,2,3,...,k. (24)
Equation (24) can be solved for the unknowns a,, r=0,1,2,...,k—1.

The required approximations to the solution y(f) in Eq. (1) are
obtained and y(¢) is given by

() = (1) + / et 9)z(s)ds, 0<t<1.
0
Using Eqgs. (9), (15) and (17) we get

y(t) =£(1) + ¢ ()HAP(1) (25)
where the matrices H and A can be calculated from Eqs. (14) and (24).

4. ILLUSTRATIVE EXAMPLES

4.1. Example 1

Consider the nonlinear Volterra-Hammerstein integral equation

t
() = () + / K(t,s)2(s)ds, 0<rt<1 (26)
0
where k(z,s)=ts+1, and
_ L 24 35
fly=—z8-3t" -2t £+1.

By using the method in Section 3, Eq. (26) is solved. The
computational results for k=8 and k=16 together with the exact
solution y(f)=1t+1 are given in Table I.

4.2, Example 2

Consider

y(t) =1+ sin?(f) — /t 3sin (t — 8)y*(s)ds, 0<t<1 (27)
0
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TABLE I Approximate and exact solutions for Example 1

t Approximate k=8 Approximate k=16 Exact
0.0 1.034 1.005 1.0
0.1 1.089 1.112 1.1
0.2 1.191 1.204 1.2
0.3 1.325 1.301 1.3
0.4 1.411 1.400 1.4
0.5 1.521 1.502 1.5
0.6 1.594 1.599 1.6
0.7 1.710 1.700 1.7
0.8 1.849 1.801 1.8
0.9 1.941 1.912 1.9
1 1.987 1.999 2.0

TABLE II Approximates and exact solutions for

Example 2

t Approximate k=16 Exact
0.0 1 1

0.1 .9952 .9950
0.2 0.9800 0.9801
0.3 0.9554 0.9553
04 0.9210 0.9211
0.5 0.8775 0.8776
0.6 0.8255 0.8253
0.7 0.7648 0.7648
0.8 0.6969 0.6967
0.9 0.6217 0.6216
1 0.5405 0.5403

We solve Eq. (27) using the method in Section 3. The computational
results for k£ =16 together with the exact solution y(f) = cos ¢ are given
in Table II.

5. CONCLUSION

The double rationalized Haar functions and the associated matrices of
integration and product are applied to solve nqnlinear VolEer]ra—
Hammerstein integral equations. The matrices ®; . and &,
introduced in Egs. (12) and (14) contain many zeros, and thesc zcros
make the Haar transform faster than other square functions such as
Walsh and block-pulse functions, hence making rationalized Haar



218

M. RAZZAGHI AND Y. ORDOKHANI

functions computationally very attractive. Examples with satisfactory
results are used to demonstrate the application of this method.
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