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Introduction and preliminaries
The best proximity point problems and best proximity point theorems are basic part of 
nonlinear analysis and applications. In the recent years, many authors are studying the 
best proximity point problems. a lot of the best proximity point theorems and relatively 
results have been obtained in the metric spaces or normed spaces (see Fan 1969; Reich 
1978; Prolla 1983; Sehgal and Singh 1988, 1989; Vetrivel et al. 1992; Basha 2000, 2011a, 
b; Kirk et al. 2003; Veeramani et al. 2005; Eldred and Veeramani 2006; Gabeleh 2013a, b, 
2014; Sankar Raj 2011; Abkar and Gabeleh 2013a, b; Kosuru and Veeramani 2011; Lova-
glia 1955; Opial 1967; Al-Thagafi and Shahzad 2009; Zhang et al. 2013; Chen et al. 2015; 
Hussain and Hezarjaribi 2016; Shayanpour et al. 2016; Yongfu and Yao 2015; AlNemer 
et al. 2016; Samet 2015; Yongfu et al. 2015; Kiran et al. 2015; Binayak 2015; Kong et al. 
2015; Yongfu and Zhang 2014; Sun et al. 2014).

Let T :A → B, where A,  B are two nonempty subsets of a metric space (X,  d). Note 
that if A ∩ B = ∅, the equation Tx = x might have no solution. Under this circum-
stance it is meaningful to find a point x ∈ A such that d(x, Tx) is minimum. Essentially, 
if d(x,Tx) = dist(A,B) = inf{d(x, y): x ∈ A, y ∈ B}, d(x, Tx) is the global minimum value 
dist(A, B) and hence x is an approximate solution of the equation Tx = x with the least 
possible error. Such a solution is known as a best proximity point of the mapping T. A 
point x ∈ A is called the best proximity point of T if

d(x,Tx) = dist(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.

Abstract 

The purpose of this paper is to the best proximity point theorems for the proximal non-
expansive mapping on the starshaped sets by using a clever and simple method. The 
results improve and extend the recent results of Chen et al. (Fixed Point Theory Appl 
2015:19, 2015). It should be noted that, the complex method is used by Jianren Chen 
et al. can be replaced by the clever and simple method presented in this paper.
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It is easy to see that if A ∩ B �= ∅ , the best proximity point just is the fixed point of T. 
We can find an early classical work in Fan (1969), and afterward, there have been many 
interesting results such as in Reich (1978), Prolla (1983), Sehgal and Singh (1988, 1989), 
Vetrivel et al. (1992), Basha (2000, 2011a, b), Kirk et al. (2003), Veeramani et al. (2005) 
and Eldred and Veeramani (2006), and many others ( for example Gabeleh 2013a, b, 
2014; Sankar Raj 2011; Abkar and Gabeleh 2013a, b; Kosuru and Veeramani 2011; Lova-
glia 1955; Opial 1967; Al-Thagafi and Shahzad 2009; Zhang et al. 2013; Chen et al. 2015; 
Hussain and Hezarjaribi 2016; Shayanpour et al. 2016; Yongfu and Yao 2015; AlNemer 
et al. 2016; Samet 2015; Yongfu et al. 2015; Kiran et al. 2015; Binayak 2015; Kong et al. 
2015; Yongfu and Zhang 2014; Sun et al. 2014).

Recently, Gabeleh introduced a new notion which is called the proximal nonexpansive 
mapping in Gabeleh (2013).

Definition 1 (Gabeleh 2013a) Let (A,  B) be a pair of nonempty subsets of a metric 
space (X, d). A mapping T :A → B is said to be proximal nonexpansive if

for all x1, x2,u1,u2 ∈ A.

Definition 2 (Basha 2011a) Let (A, B) be a pair of nonempty subsets of a metric space 
(X, d). A mapping T :A → B is said to be proximal contraction if there exists a constant 
0 < α < 1 such that

for all x1, x2,u1,u2 ∈ A.

Definition 3 (Kosuru and Veeramani 2011) Let (A, B) be a pair of nonempty subsets of 
a metric space (X, d). The pair (A, B) is said to be a semi-sharp proximinal pair if for each 
x ∈ A (respectively, in B) there exists at most one x∗ ∈ B (respectively, in A) such that 
d(x, x∗) = dist(A,B).

The following notions are presented in Chen et al. (2015).

Definition 4 (Chen et al. 2015) A nonempty subset A of a linear space X is called a 
p-starshaped set if there exists a point p ∈ A such that αp+ (1− α)x ∈ A , for all x ∈ A, 
α ∈ [0, 1], and p is called the center of A.

Let A, B be two nonempty subsets of a metric space (X, d). We denote by A0 and B0 the 
following sets:

where d(A,B) = inf{d(x, y) : x ∈ A and y ∈ B}.

{

d(u1,Tx1) = dist(A,B)
d(u2,Tx2) = dist(A,B)

⇒ d(u1,u2) ≤ d(x1, x2).

{

d(u1,Tx1) = dist(A,B)
d(u2,Tx2) = dist(A,B)

⇒ d(u1,u2) ≤ αd(x1, x2).

A0 = {x ∈ A : d(x, y) = d(A,B) for some y ∈ B}

B0 = {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}
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Remark 5 (Chen et al. 2015) It is easy to see that in a normed space (X , � · �), if A is a 
p-starshaped set and B is a q-qstarshaped set and �p− q� = dist(A,B), A0 is a p-star-
shaped set, and B0 is a q-starshaped set, respectively. If both of A and B are closed and 
A0 is nonempty, A0 is closed.

The purpose of this paper is to the best proximity point theorems for the proximal 
nonexpansive mapping on a starshaped sets by using a clever and simple method. The 
results improve and extend the recent results of Chen et al. (2015). It should be noted 
that, the complex method is used by Jianren Chen et al. can be replaced by the clever 
and simple method presented in this paper.

A clever and simple method of proof
In Chen et al. (2015), authors proved the following conclusion, which plays an important 
role in the proof of their main results. However, the method used in the proof is rela-
tively complicated. In this section, we will give a clever and simple method of proof.

Conclusion 1 (Chen et al. 2015, Lemma 3.1) Let (A, B) be a pair of nonempty closed 
subsets of a complete metric space (X, d) and A0 be closed and nonempty. Assume that 
T :A → B satisfies the following conditions:

(a) T is a proximal contraction;
(b) T (A0) ⊂ B0.Then there exists a unique x∗ ∈ A such that d(x∗,Tx∗) = dist(A,B).

Simple proof For any x ∈ A0, since T is a proximal contraction, if d(u1,Tx) = dist(A,B) 
and d(u2,Tx) = dist(A,B), then u1 = u2, hence there exists a unique u ∈ A0 such that 
d(u,Tx) = dist(A,B), we denote by u = PTx this relation. That is, we define a mapping 
P from T (A0) into A0. Hence PT is a mapping from complete metric subspace A0 into it-
self. From (a) we know that,

By using Banach contraction mapping principle, there exists a unique point x∗ ∈ A0 such 
that x∗ = PTx∗, this equivalent to d(x∗,Tx∗) = dist(A,B). The proof is completes.  �

The following conclusion is a main result of Jianren Chen et al. The method used in 
the proof is also complicated. In this section, we also give a very simple method of proof.

Conclusion 2 (Chen et al. 2015, Theorem 3.3) Let (A, B) be a pair of nonempty, closed 
subsets of a Banach space X such that A is a p-starshaped set, B is a q-starshaped set, and 
�p− q� = dist(A,B). Suppose A is compact, and (A, B) is a semi-sharp proximinal pair. 
Assume that T :A → B satisfies the following conditions:

(a) T is a proximal nonexpansive;
(b) T (A0) ⊂ B0.Then there exists an element x∗ ∈ A such that �x∗ − Tx∗� = dist(A,B).

d(PTx1,PTx2) ≤ αd(x1, x2), ∀ x1, x2 ∈ A0.
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Simple proof For any x ∈ A0, since T is a proximal nonexpansive, there exists a unique 
u ∈ A0 such that d(u,Tx) = dist(A,B), we denote by u = PTx this relation. Hence PT is a 
mapping from complete metric subspace A0 into it-self. From (a) we know that,

Hence PT is a nonexpansive mapping from A0 into it-self. We define a mapping 
S : A0 → A0 by

where 0 < � < 1, then S is a contraction. From Remark 5, we know that A0 is closed, by 
using Banach contraction mapping principle, there exists a unique element x� ∈ A0 such 
that

for any 0 < � < 1. Therefore, there exists a sequence {xn} such that

which implies that

as n → ∞, since A is compact. On the other hand, there exists a subsequence 
{xnk } to converge a element x∗ ∈ A. Therefore x∗ = PTx∗, this is equivalent to 
d(x∗,Tx∗) = dist(A,B). The proof is completes.  �

Further generalized results
By using the same method as in the Conclusion 2, we can get the following further gen-
eralized results without assume the (A, B) is a semi-sharp proximinal pair, and the A is 
compact.

Theorem 1 Let (A, B) be a pair of nonempty, closed subsets of a Banach space X such 
that A is a p-starshaped set, B is a q-starshaped set, and �p− q� = dist(A,B). Suppose A 
is weakly compact. Assume that T :A → B satisfies the following conditions:

(a) T is a proximal nonexpansive;
(b) T (A0) ⊂ B0.Then there exists an element x∗ ∈ A such that �x∗ − Tx∗� = dist(A,B).

Proof Since A is weak compact, there exists a subsequence {xnk } to converge weakly 
a element x∗ ∈ A. Noting that, the nonexpansive mapping PE is demi-closed, then 
x∗ = PTx∗, this is equivalent to d(x∗,Tx∗) = dist(A,B). The proof is completes.  �

Theorem 2 Let X be a uniformly convex Banach space with the Opail’s condition. Let 
(A, B) be a pair of nonempty, closed subsets of X such that A is a p-starshaped set, B is a 

�PTx1 − PTx2� ≤ �x1 − x2�, ∀ x1, x2 ∈ A0.

Sx = �p+ (1− �)PTx

x� = �p+ (1− �)PTx�

xn =
1

n
p+

(

1−
1

n

)

PTxn

�xn − PTxn� =

(

1−
1

n

)

�p− PTxn� → 0.
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q-starshaped set, and �p− q� = dist(A,B). Suppose A is bounded. Assume that T :A → B 
satisfies the following conditions:

(a) T is a proximal nonexpansive;
(b) T (A0) ⊂ B0.Then there exists an element x∗ ∈ A such that �x∗ − Tx∗� = dist(A,B).

Proof Since A is bounded so it is weak compact, there exists a subsequence {xnk } to 
converge weakly a element x∗ ∈ A. Noting that, since X satisfies Opail’s condition, the 
nonexpansive mapping PE must be demi-closed (see Lemma 2 in Opial 1967), then 
x∗ = PTx∗, this is equivalent to d(x∗,Tx∗) = dist(A,B). The proof is completes.  �

Let g :A0 → A0 be an isometry, we replace by S = g−1PT  the S = PT , respectively in 
Theorems 1 and 2, we can get the following results which are further generalized forms 
to the result of Chen et al. (2015, Theorem 3.4).

Theorem 3 Let (A, B) be a pair of nonempty, closed subsets of a Banach space X such 
that A is a p-starshaped set, B is a q-starshaped set, and �p− q� = dist(A,B). Suppose A 
is weakly compact. Assume that T :A → B, g : A0 → A0 satisfy the following conditions:

(a) T is a proximal nonexpansive;
(b) T (A0) ⊂ B0.
(c) g is an isometry.
Then there exists an element x∗ ∈ A such that �gx∗ − Tx∗� = dist(A,B).

Theorem  4 Let X be a uniformly convex Banach space with the Opail’s condition. 
Let (A, B) be a pair of nonempty, closed subsets of X such that A is a p-starshaped set, 
B is a q-starshaped set, and �p− q� = dist(A,B). Suppose A is bounded. Assume that 
T :A → B, g :A0 → A0 satisfy the following conditions:

(a) T is a proximal nonexpansive;
(b) T (A0) ⊂ B0.
(c) g is an isometry.
Then there exists an element x∗ ∈ A such that �gx∗ − Tx∗� = dist(A,B).

Definition 6 (Chen et al. 2015) Let (A, B) be a pair of nonempty subsets of a metric 
space (X, d). The pair (A, B) is said to have the weak P-property if

for all x1, x2 ∈ A0, y1, y2 ∈ B0.
By using the well-known Schauder fixed point theorem, we can improve the result of 

(Theorem 4.1, Chen et al. 2015) to the following generalized result.

Theorem 5 Let (A, B) be a pair of nonempty, closed, and convex subsets of a Banach 
space X such that A is compact. Suppose that A0 is nonempty and (A, B) has the weak 

{

d(x1, y1) = dist(A,B)
d(x2, y2) = dist(A,B)

⇒ d(x1, x2) ≤ d(y1, y2).
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P-property. Let T :A → B be a nonexpansive non-self-mapping such that T (A0) ⊂ B0. 
Then T has at least one best proximity point in A.

Proof In this case, the mapping PT defined in Conclusion 2 is also a nonexpansive 
mapping from A0 into it-self. Since A is compact and convex, by using Schauder fixed 
point theorem, there exists a element x∗ ∈ A such that x∗ = PTx∗, this is equivalent to 
�x∗ − Tx∗� = dist(A,B). This completes the proof.  �
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