INTEGRAL OPERATORS OF CERTAIN UNIVALENT FUNCTIONS

O. P. AHUJA

Department of Mathematics University of Papua New Guinea Box 320, University P.O. Papua New Guinea

(Received October 1, 1984)

ABSTRAT. A function f, analytic in the unit disc Δ , is said to be in the family $R_n(\alpha)$ if $\operatorname{Re}\{(z^nf(z))^{(n+1)}/(z^{n-1}f(z))^{(n)}\} > (n+\alpha)/(n+1)$ for some $\alpha(0 < \alpha < 1)$ and for all z in Δ , where $n \in No$, $No = \{0,1,2,\ldots\}$. The The class $R_n(\alpha)$ contains the starlike functions of order α for $n \geq 0$, and the convex functions of order α for $n \geq 1$. We study a class of integral operators defined on $R_n(\alpha)$. Finally an argument theorem is proved.

KEY WORDS AND PHRASES: Univalent, convolution, starlike, convex

1980 AMS SUBJECT CLASSIFICATION CODES: Primary 30C45, 30C99; Secondary 30C55.

I INTRODUCTION.

Let A denote the family of functions f which are analytic in the unit disc $\Delta = \{z: |z| < 1\}$ and normalised such that f(0) = 0 = f'(0) - 1. The Hadamard product or convolution of two functions $f,g \in A$ is denoted by f*g. Let $D^n f = (z/(1-z)^{n+1})*f$, $n \in No = \{0,1,2,\ldots\}$ which implies that

$$D^{n}f = z(z^{n-1}f)^{(n)}/n!$$
, $n \in N_0$.

Denote by $S*(\alpha)$ and $K(\alpha)$ the subfamilies of A whose members are, respectively, starlike of order α and convex of order α , $0 \le \alpha < 1$. Then

$$f \in S \stackrel{:}{\times} (\alpha) \iff Re(D^1 f/D^0 f) > \alpha, z \in \Delta,$$

 $f \in K(\alpha) \iff Re(D^2 f/D^1 f) > (1+\alpha)/2.z \in \Delta$

Ruscheweyh [16] introduced the classes $\{K_n^{}\}$ of functions f ϵ A which satisfy the condition

$${\rm Re}(D^{n+1}f/D^nf)>\frac{1}{2}\;,\;z\;\epsilon\;\Delta \tag{1.1}$$
 so that the definition of K_n is a natural extension of S*(1/2), and K(0)

He proved that $K_{n+1} \subseteq K_n$ for each $n \in \mathbb{N}_0$ Since $K_0 = S*(1/2)$, the elements of K_n are univalent and starlike of order 1/2.

In this paper, we consider the classes of functions $f \in A$ which

satisfy the condition

$$Re(z(D^n f)'/D^n f) > \alpha, z \in \Delta$$
 (1.2)

for some $\alpha(0 \le \alpha < 1)$ We denote these classes by $R_n(\alpha)$ We have $R_0(\alpha) = S^*(\alpha)$ and $R_1(\alpha) = K(\alpha)$ for $0 \le \alpha < 1$. The classes $R_n = R_n(0)$ were considered earlier by Singh and Singh [17]. It is readily seen that for each $n \ge 0$, $R_n(\alpha) \subset R_n(0)$ and for each $n \ge 1$, $R_n(\alpha) \subset K_n$ We note that in definition (1.2), restriction $\alpha \ge 0$ can be replaced by $\alpha \ge (1-n)/2$ for each $n \ge 1$ and, further, that the negative choices of α permit us fully to partition K_n into classes $R_n(\alpha) \subset K_n$ $(n \ge 1)$ such that

$$\cup R_n(\alpha) = K_n .$$

$$\frac{1-n}{2} \le \alpha < 1$$

It can be easily seen that $R_{n+1}(\alpha)\subset R_n(\alpha)$ for each $n\in N_0$ and for all α . These inclusion relations establish that $R_n(\alpha)\subset S^*(\alpha)$ for each $n\geq 0$ and $R_n(\alpha)\subset K(\alpha)$ for each $n\geq 1$.

An important problem in univalent functions is the following: Given a compact family F and an operator J defined on F, is $J(f) \in F$ for every $f \in F$? Libera [11] established that the operator

$$J(f) = \frac{2}{z} \int_{0}^{z} f(t) dt$$
 (1.3)

preserves convexity, starlikeness, and close-to-convexity. Bernardi [5] greatly generalised Libera's results. Many authors [1,2,7,8,12,15,17] studied operators of the form

$$J(f) = \frac{1+\gamma}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} f(t) dt , \qquad (1.4)$$

where γ is a real (or complex) constant and f belongs to some favoured class of univalent functions from A . Recently, operators (1 4) have been studied in more general form by Causey and White [6], Miller, Mocanu and Reade [14], Barnard and Kellogg [3], and Bajpai [2]

In this paper, we study a class of integral operators of the form $(1.4) \ defined \ on \ our \ family \ R_n(\alpha) \qquad We \ also \ obtain \ an \ argument \ theorem \ for the class \ R_n(\alpha) \ .$

INTEGRAL OPERATORS.

Let γ be a complex number with $\operatorname{Re}\gamma \neq -1$ We define h_{γ} by

$$h_{\gamma}(z) = \sum_{j=1}^{\infty} \frac{\gamma + 1}{\gamma + j} z^{j}, z \in \Delta.$$
 (2.1)

Let the operator $J:A \rightarrow A$ be defined by F = J(f), where

$$F(z) = \frac{1+\gamma}{z^{\gamma}} \int_{0}^{z} f(t)t^{\gamma-1} dt$$
 (2.2)

Then the function F can also we written in the form

$$F(z) = f(z) * h_{\gamma}(z)$$
.

We need the following result of Jack [9] which is also due to Suffridge [18]

LEMMA. Let w be nonconstant and analytic in $\left|z\right| < r < 1, w(0) = 0$ If $\left|w\right|$ attains its maximum value on the circle $\left|z\right| = r$ at z_{o} , then $z_{o}w'(z_{o}) = kw(z_{o}) \text{ , where } k \text{ is a real number and } k \geq 1$

We first give a condition on $\ f \ \epsilon \ A \ \ for which the function \ \ J(f)$ belongs to $\ R_n(\alpha)$

THEOREM 1. Let $0 \le \alpha < 1$, and $\gamma \ne -1$ be a complex constant such that $\text{Re}\gamma \ge -\alpha$, $\text{Im}\gamma \ge 0$, and $|\gamma|^2 + 2\alpha(1 + \text{Re}\gamma) \ge 1$. If for a given $n \in \mathbb{N}$ 0, $f \in A$ satisfies the condition

$$\operatorname{Re} \frac{z(D^{n}f(z))'}{D^{n}f(z)} > \alpha - \frac{(1-\alpha)(\alpha + \operatorname{Re}\gamma)}{2\{|\gamma|^{2} + 2\alpha\operatorname{Re}\gamma + \alpha^{2} + (1-\alpha)\operatorname{Im}\gamma\}}$$
(2.3)

for all $~z~\epsilon~\Delta,$ then ~F(z)~ given by (2.2) belongs to $~R_{n}(\alpha)\,.$

PROOF From (2.2), we obtain

$$z(D^{n}F(z))'+\gamma D^{n}F(z) = (\gamma+1)D^{n}f(z).$$
 (2.4)

Define w in Δ by

$$\frac{z(D^{n}F(z))'}{D^{n}F(z)} = \frac{1+(2\alpha-1)w(z)}{1+w(z)}.$$
 (2.5)

Here w(z) is analytic in Δ with w(0) = 0 and w(z) \neq -1, z \in Δ We need to show that |w(z)| < 1 for all z \in Δ . In view of (2.4), (2.5) yields

$$\frac{D^{n}f(z)}{D^{n}F(z)} = \frac{(1+\gamma)+(2\alpha-1+\gamma)w(z)}{(1+\gamma)(1+w(z))}$$
(2.6)

Differentiating (2.6) logarithmically and simplifying, we obtain

$$\frac{z(D^{n}f(z))'}{D^{n}f(z)} = \alpha + (1-\alpha)\frac{1-w(z)}{1+w(z)} - \frac{2(1-\alpha)zw'(z)}{(1+w(z))(1+\gamma+(2\alpha-1+\gamma)w(z))}$$
(2.7)

Now (2.7) should yield |w(z)| < 1 for all $z \in \Delta$ for otherwise, there exists a point $z_0 \in \Delta$ at which $|w(z_0)| = 1$ and by Lemma, we have $z_0w'(z) = kw(z_0)$, $k \ge 1$. For this value of $z = z_0$, we find that (2.7) yields

$$\operatorname{Re} \frac{z_{Q}(D^{n}f(z_{Q}))'}{D^{n}f(z_{Q})} = \alpha - \frac{2k(1-\alpha)(\alpha+\operatorname{Re}\gamma)}{\left|(1+\gamma)+(2\alpha-1+\gamma)w(z_{Q})\right|^{2}}$$
 (2.8)

$$\leq \alpha - \frac{(1-\alpha)(\alpha + \text{Re}\gamma)}{2\{|\gamma|^2 + 2\alpha\text{Re}\gamma + \alpha^2 + (1-\alpha)\text{Im}\gamma\}}$$

which contradicts (2.3) Hence |w(z)| < 1 for all $z \in \Delta$ and by (2.5), it follows that $F(z) \in R_n(\alpha)$.

COROLLARY. If for a given $n \in N_0$, $f \in A$ satisfies the condition

$$\operatorname{Re} \frac{z(D^{n}f(z))'}{D^{n}f(z)} > \frac{2\alpha(\gamma+\alpha)-(1-\alpha)}{2(\gamma+\alpha)}, z \in \Delta, \qquad (2.9)$$

where (α, γ) is any point in the set

$$D = \left\{ (\alpha, \gamma) \ : \ \gamma + 2\alpha \ \ge \ 1, \ 0 \ \le \alpha \ < \ 1, \ \gamma \ > \ -1 \right\} \ ,$$

then F(z) given by (2.2) belongs to $R_n(\alpha)$.

PROOF. If $\gamma \neq -1$ is a real constant such that $\gamma + \alpha \geq 0$, then $|\gamma|^2 + 2\alpha(1 + \text{Re}\gamma) \ge 1$ implies $(\gamma + 1)(\gamma + 2\alpha - 1) \ge 0$. The result follows from Theorem 1

It is easy to show that if $f \in R_n(\alpha)$, then f satisfies the condition (2 3). Thus it follows from Theorem 1 that $J(R_n(\alpha)) \subset R_n(\alpha)$ More precisely, we state the result in THEOREM 2 If $f \in R_{n}(\alpha),$ then the function

$$J(f) = \frac{\gamma+1}{z^{\gamma}} \int_{0}^{z} f(t) t^{\gamma-1} dt$$

is again an element of $R_n(\alpha)$, where $\gamma \neq -1$ is a complex constant with restrictions as stated in Theorem 1.

REMARK 1 Letting $n = 0 = \gamma - 1$ and $n = 1 = \gamma$, in Theorem 1, we get $L(S*(\beta)) \subset S*(\alpha)$ and $L(K(\beta)) \subset K(\alpha)$ respectively, where L is the Libera transform defined in (1.3), and

$$\beta = ((2\alpha^2 + 3\alpha - 1)/2(1+\alpha)) < \alpha$$
.

These results improve the earlier results due to Libera [11] and Bernardi [5] in the sense that their results hold under much weaker conditions

In [2], Bajpai has established that $J(S^*) \subseteq S^*(\alpha)$ for some α . We generalize this result in

THEOREM 3. Let J:A \rightarrow A be defined as in (2 2), where γ is a complex constant. If $f \in R_n$, then $J(f) \in R_n(\alpha)$, where α satisfies the inequality

$$\alpha[|1+\gamma|+|2\alpha-1+\gamma|]^2 \le 2(1-\alpha)(\alpha+Re\gamma)$$
, and $0 \le \alpha < 1$

PROOF Proceeding as in Theorem 1 and applying Lemma, we have

$$\operatorname{Re} \ \frac{z_{O}(D^{n}f(z_{O})')}{D^{n}f(z_{O})} \ \leq \ \alpha \ - \ \frac{2(1-\alpha)(\alpha + \operatorname{Re}\gamma)}{\left|(1+\gamma) + (2\alpha - 1 + \gamma)w(z_{O})\right|^{2}}$$

$$\leq \quad \alpha \quad - \quad \frac{2 \, (\, 1 - \alpha) \, (\, \alpha + Re \, \gamma\,)}{\, (\, \left|\, 1 + \gamma\,\right| \, + \, \left|\, 2 \, \alpha - 1 + \gamma\,\right|\,)^{\, 2}} \ ,$$

where $\operatorname{Re}\gamma \geq -\alpha$. Since the right hand side is ≤ 0 , we have a contradiction for $f \in R_n \equiv R_n(0)$. Thus we must have $\left| w(z) \right| \leq 1$ for all z in Δ and by (2.5), it follows that $J(f) \in R_n(\alpha)$.

REMARK | If we let $n=0=\gamma-1$ in the above theorem, then $L(S^*) \subset S^*(\frac{\sqrt{17}-3}{4}), \text{ where } L(f) = (2/z) \int_0^z f(t) dt \quad \text{Thus we have recovered a}$ result of Miller, Mocanu and Reade ([14], pp 162-163).

REMARK 2 If n = 1, γ is a real constant such that $\gamma+\alpha\geq 0$, and $f\in K$, then it follows from Theorem 3 that the function F(z) in (2 2) is an element of $K(\alpha)$, where

$$\alpha = \frac{-(2\gamma+1) + \sqrt{(2\gamma-1)^2+8(1+\gamma)}}{4}$$

This result was proved by Miller, Mocanu and Reade ([14], pp 165)

Further, this is an improvement of an earlier result due to Bernardi [5], who proved that f ϵ K implies F ϵ K .

For γ = n, where n ϵ N $_{_{\rm O}}$, we have an improvement over Theorem 2 THEOREM 4. Let

$$F(z) = f(z) * h_n(z) = \frac{n+1}{z} \int_0^z f(t)t^{n-1} dt$$
 (2.10)

If $f \in R_n(\alpha)$, then $F \in R_{n+1}(\alpha)$

PROCF. From (2.10), we obtain

$$z(D^{n+1}F(z))' + nD^{n+1}F(z) = (n+1)D^{n+1}f(z)$$
 (2.11)

$$z(D^{n}F(z))' + nD^{n}F(z) = (n+1)D^{n}f(z)$$
 (2.12)

Using the identity

$$z(D^{n}f(z))' = (n+1)D^{n+1}f(z) - nD^{n}f(z)$$
 (2.13)

in (2.11) and (2.12), we obtain

$$(n+1)D^{n+1}f(z) = (n+2)D^{n+2}F(z) - D^{n+1}F(z)$$
 (2.14)

and

$$D^{n}f(z) = D^{n+1}F(z)$$
 (2.15)

In view of the identity (2–13) and the relations (2.14) and (2–15), $f \in R_n(\alpha) \quad \text{yields}$

Re
$$\left\{\frac{(n+2)D^{n+2}F(z) - (n+1)D^{n+1}F(z)}{D^{n+1}F(z)}\right\} > \alpha$$

which implies that

Re
$$\left\{\frac{z(D^{n+1}F(z))'}{D^{n+1}F(z)}\right\} > \alpha$$
, $z \in \Delta$

This proves that $F \in R_{n+1}(\alpha)$.

REMARK For n = 0, Theorem 4 gives the well known result: $J(S^{*}(\alpha)) \subseteq K(\alpha), \text{ where } J(f) = \int_{0}^{z} (f(t)/t)dt$

We now investigate the converse of Theorem 2. In fact, we find the sharp radius of the disc in which $f \in R_n(\beta)$ when F, defined in (2.2), is in $R_n(\alpha)$ for $0 \le \alpha < 1$, $0 < \beta \le 1$: In [12], Libera and Livingston have solved this converse problem for the case n=0, $\gamma=1$ when $\alpha \le \beta < 1$. These authors were not able to obtain suitable results for the complementary case when $\beta < \alpha$. However, the method used in the next theorem gives results that are more general and also covers both $\beta \ge \alpha$ and $\beta < \alpha$.

THEOREM 5. If F is an element of $R_n(\alpha)$ for $n \ge 0$ and $0 \le \alpha < 1$,

$$F(z) = \frac{1+\gamma}{z^{\gamma}} \int_{0}^{z} f(t)t^{\gamma-1} dt$$
 (2.16)

with $z \in \Delta$, $\text{Re}\gamma \ge -\alpha$, and $0 \le \beta < 1$, then the function f is an element of $R_n(\beta)$ for $|z| < r_o$, where r_o is the smallest positive root in (0,1) of the equation

$$(\gamma + 2\alpha - 1)(2\alpha - \beta - 1)r^{2} + 2((\gamma + \alpha)(\alpha - \beta) - (1 - \alpha)(2 - \alpha))r + (\gamma + 1)(1 - \beta) = 0$$
 (2.17)

The result is sharp

PROOF Since $F \in R_n(\alpha)$, we can write

$$\frac{z(D^n F(z))'}{D^n F(z)} = \alpha + (1-\alpha) P_n(z), \qquad (2.18)$$

where $P_n(z)$ is analytic in Δ and satisfies the conditions $P_n(0) = 1$

 $ReP_n(z) > 0$ for $z \in \Delta$ Using the identity

$$z(D^{n}F(z))' = (n+1)D^{n+1}F(z) - nD^{n}F(z)$$
 (2.19)

in (2.18) and then taking logarithmic derivative, we obtain

$$z(D^{n+1}F(z))' = D^{n+1}F(z)[\alpha + (1-\alpha)P_n(z) + \frac{(1-\alpha)zP_n'(z)}{n+\alpha + (1-\alpha)P_n(z)}]$$
 (2.20)

From (2 16) we obtain

$$z(D^{n+1}F(z))' + \gamma D^{n+1}F(z) = (\gamma+1)D^{n+1}f(z).$$
 (2.21)

From (2 20) and (2 21) we have

$$(\gamma+1)D^{n+1}f(z) = D^{n+1}F(z) \left[\alpha+\gamma+(1-\alpha)P_{n}(z) + \frac{(1-\alpha)zP'_{n}(z)}{n+\alpha+(1-\alpha)P_{n}(z)}\right]$$
 (2.22)

Also (2.18) together with the identity (2 4) yields

$$(1+\gamma)D^{n}f(z) = D^{n}F(z)(\alpha+\gamma+(1-\alpha)P_{n}(z)).$$
(2.23)

Now from the relations (2 22), (2 23), and (2.18) we conclude that

$$\frac{z(D^{n}f(z))'}{D^{n}f(z)} - \beta = \alpha - \beta + (1-\alpha)P_{n}(z) + \frac{(1-\alpha)zP_{n}'(z)}{\alpha+\gamma+(1-\alpha)P_{n}(z)}.$$
 (2.24)

Using the well known estimates

$$\left|zP_{n}'(z)\right| \leq (2r/(1-r^{2}))\operatorname{Re}P_{n}(z)$$

and

$$ReP_n(z) \ge (1-r)/(1+r), |z| = r$$

in (2 24), we obtain

Re
$$\left[\frac{z(D^{n}f(z))'}{D^{n}f(z)} - \beta\right] \ge (\alpha-\beta) + \frac{(1-\alpha)((1-r)(\gamma+1+(\gamma+2\alpha-1)r)-2r)}{(1-r)((\gamma+2\alpha-1)r+\gamma+1)}$$
 (2.25)

where $Re\gamma \ge -\alpha$. Therefore,

Re
$$\left\{\frac{z(D^n f(z))'}{D^n f(z)}\right\} > \beta$$

if the right side of (2.25) is positive, which is satisfied provided that $r < r_0$, where r_0 is the smallest positive root in (0,1) of (2.17).

The result in the theorem is sharp with the function f defined by

$$f(z) = (1/(1+c))z^{1-c}(z^{c}F(z))',$$
 (2.26)

where $c = Re\gamma \ge -\alpha$, and F is given by

$$\frac{z}{D^{n}F(z)} = \frac{1 - (2\alpha - 1)z}{1 - z}$$
 (2.27)

REMARK. By specializing choices of α,β,γ , and n , theorem 5 gives rise to the corresponding results obtained earlier in [3,4,8,12,13,15] and by many others

3 AN ARGUMENT THEOREM.

THEOREM 6 If $f \in R_n(\alpha)$, then

$$\left| \arg \frac{D^{k} f(z)}{z} \right| \le 2(1-\alpha) \sin^{-1} r + \sum_{m=0}^{k-1} \sin^{-1} (\frac{2(1-\alpha)r}{m+1-(m+2\alpha-1)r^{2}})$$

for each $k(0 \le k \le n+1)$.

PROOF We may write

$$\frac{D^{k}f(z)}{z} = \frac{f(z)}{z} \prod_{m=0}^{k-1} \frac{D^{m+1}f(z)}{D^{m}f(z)}, 0 \le k \le m+1,$$

which yields

$$\left|\arg \frac{D^{k}f(z)}{z}\right| \leq \left|\arg \frac{f(z)}{z}\right| + \sum_{m=0}^{k-1} \left|\arg \frac{D^{m+1}f(z)}{D^{m}f(z)}\right|.$$
 (3.1)

Since $R_{n+1}(\alpha) \subset R_n(\alpha) \ \forall_n \in N_o$, it follows that $f \in R_m(\alpha)$ for each

 $m(0 \le m \le n)$ Setting

$$\frac{D^{m+1}f(z)}{D^{m}f(z)} = q_{m}(z) , \qquad (0 \le m \le n), \qquad (3.2)$$

we note that $Re(q_m(z)) \ge (m+\alpha)/(m+1)$

Therefore, the function

$$w(z) = \frac{(q_m(z) - \frac{m+\alpha}{m+1}) - (1 - \frac{m+\alpha}{m+1})}{(q_m(z) - \frac{m+\alpha}{m+1}) + (1 - \frac{m+\alpha}{m+1})}$$
$$= \frac{q_m(z) - 1}{q_m(z) - (\frac{2(m+\alpha)}{m+1} - 1)}$$

is analytic with w(0)=0 and $\left|w(z)\right|<1$ in Δ Hence by Schwarz's Lemma,

$$\left| \frac{q_m(z) - 1}{q_m(z) + 1 - 2(m+\alpha)/(m+1)} \right| < |z|$$

for z in Δ Now it is easy to see that the values of $q_m(z)$ are contained in the circle of Appolonius whose centre is at the point $(m+1-(m+2\alpha-1)r^2)/((1+m)(1-r^2))$ and has radius $2(1-\alpha)r/((m+1)(1-r^2))$

Thus $\max_{z \in \Lambda} |\arg q_m(z)|$ is attained at the points where

arg
$$q_m(z) = \pm \sin^{-1}(\frac{2(1-\alpha)r}{m+1-(m+2\alpha-1)r})$$

which gives

$$\left|\arg \frac{D^{m+1}f(z)}{D^{m}f(z)}\right| \leq \sin^{-1}(\frac{2(1-\alpha)r}{m+1-(m+2\alpha-1)r}),$$
 (3.3)

for $0 \le m \le n$, and $z \in \Delta$

Next, note that $R_n(\alpha) \leftarrow S^*(\alpha)$, $n \geq 0$, and $f \in S^*(\alpha)$ if and only if $F(z) = \int (f(z)/z)dz$ is in $K(\alpha)$ But for $F \in K(\alpha)$, we have

$$|\arg F'(z)| \leq 2(1-\alpha)\sin^{-1}r \qquad (|z| = r)$$

Thus $f \in R_n(\alpha)$ implies

$$\left|\arg\frac{f(z)}{z}\right| \le 2(1-\alpha)\sin^{-1}r$$
 (3.4)

Applying (3 3) and (3.4) to (3.1) we obtain the result.

For n = 0, we obtain

COROLLARY If $f \in S*(\alpha)$, then (3.4)

and

$$|\arg f'(z)| \le 2(1-\alpha)\sin^{-1}r + \sin^{-1}(\frac{2(1-\alpha)r}{1-(2\alpha-1)r^2})$$

REMARK The case n = 0, $\alpha = 0$ way proved by Krzyz [10].

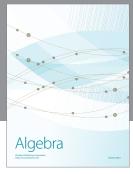
The author is grateful to the referee for his suggestions which greatly helped in presenting this paper in a compact form.

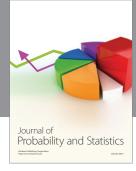
REFERENCES

- AL-AMIRI, H.S.: Certain generalizations of pre-starlike functions, J. Australian Math. Soc (Serie A) 28(1979), 325-334
- BAJPAI, S.K: Spirallike integral operators, <u>Internat. J. Math. & Math. Sci.</u>, Vol 2 (1981), 337-351.

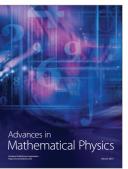
0.P. AHULA

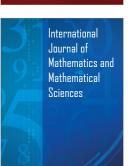
- BARNARD, R W and KELLOGG C.: Applications of convolution operators to problems in univalent function theory, Mich. Math J. 27 (1980), no 1, 81-94
- BERNARDI, S D.: The radius of univalence of certain analytic functions, <u>Proc Amer Math. Soc 24</u> (1970), 312-318.
- 5 BERNARDI, S.D.: Convex and starlike univalent functions, <u>Trans. Amer.</u>
 Math. Soc. 135 (1969), 429-446
- 6 CAUSEY, W.M and WHITE W.L.: Starlikeness of certain functions with integral representations, J. Math. Anal. Appl. 64 (1978), 458-466.
- 7. GOODMAN, A.W: Univalent functions, Vol II, Mariner Publishing Company, Inc, 1983.
- 8. GUPTA, V P. and JAIN, P K.: On starlike functions, Rendiconti di Mat 9 (1976), 433-437.
- 9 JACK, I S.: Functions starlike and convex of order α, <u>J. London</u> Math <u>Soc.</u>, <u>3</u>(1971), 469-474.
- 10 KRZYZ, J.: On the derivative of close-to-convex of order α , <u>J. London Math. Soc.</u>, <u>3</u> (1971), 469-474.
- LIBERA, J.R.: Some classes of regular univalent functions, <u>Proc. Amer.</u> Math. Soc. <u>16</u> (1965), 755-758.
- 12 LIBERA, R.J. and LIVINGSTON, A.E.: On the univalence of some classes of regular functions, <u>Proc. Amer. Math. Soc.</u> 30 (1971), 327-336
- 13 LIVINGSTON, A.E.: On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 17 (1966), 352-357.
- 14 MILLER, S.S., MOCANU, P.T. and READE, MAXWELL O.: Starlike integral operators, <u>Pacific J. Math.</u> 79 (1978), 157-168
- PADMANABHAN, K.S.: On the radius of univalence of certain classes of analytic functions, <u>J. London Math. Soc.</u> (2) <u>1</u> (1969), 225-231
- 16 RUSCHEWEYH, S.: New criteria for univalent functions, <u>Proc. Amer. Math.</u> Soc. 49 (1975), 109-115.
- SINGH, R. and SINGH, S.: Integrals of certain univalent functions, <u>Proc. Amer Math. Soc.</u> 77 (1979), 336-340.
- 18 SUFFRIDGE, T.J.: Some remarks on convex maps of the unit disk, $\underline{\underline{Duke}}$ $\underline{\underline{Math}}$ J. $\underline{\underline{37}}$ (1970), 775-777





Submit your manuscripts at http://www.hindawi.com





Journal of Discrete Mathematics

