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Three approximation levels of Koopmans’ theorem are explored and applied: the first referring to the inner quantum behavior of the
orbitalic energies that depart from the genuine ones in Fock space when the wave-functions’ Hilbert-Banach basis set is specified to
solve the many-electronic spectra of spin-orbitals’ eigenstates; it is the most subtle issue regarding Koopmans’ theorem as it brings
many critics and refutation in the last decades, yet it is shown here as an irrefutable “observational” effect through computation,
specific to any in silico spectra of an eigenproblem; the second level assumes the “frozen spin-orbitals” approximation during the
extracting or adding of electrons to the frontier of the chemical system through the ionization and affinity processes, respectively;
this approximation is nevertheless workable for great deal of chemical compounds, especially organic systems, and is justified for
chemical reactivity and aromaticity hierarchies in an homologue series; the third and the most severe approximation regards the
extension of the second one to superior orders of ionization and affinities, here studied at the level of chemical hardness compact-
finite expressions up to spectral-like resolution for a paradigmatic set of aromatic carbohydrates.

1. Introduction

In modern structural chemistry [1], the Aufbau principle
for atomic periodicity [2], Hückel molecular orbital theory
[3], reinforced by Hartree-Fock theory [4, 5] and then com-
pleted by the density functional theory (DFT) [6–12], are all
cornerstones in modeling and predict physical behavior of
many electronic systems, from atoms to molecules and solid
states. However, the chemical regime of this wide physical
range of many-electronic manifestation was often reduced to
the frontier electrons [13, 14] targeting the chemical reactivity
as a special and specific way of interaction thus defining
a proper chemical orthogonal space, while generalizing the
custom Cartesian-physical one [15]. In this context, the
density functional theory (DFT) developed in the celebrated
conceptual chemical reactivity theory where, for instance, the
classical concept of electronegativity [16, 17] acquired new
and fruitful shape and formulation [18, 19] along promoting
other informational indices as such chemical hardness [20–
24], chemical action [25, 26], and electrophilicity [27–29],

with the allied principles [30–36] which ultimately delivered
the present rationalization of chemical bond by min-max
variational principles in a coupled interrelation within the
bonding chemical scenario [37, 38]. However, apart from
these somehow global frontier indices, there remains the
inquiring behavior of frontier orbitals themselves, during
the electronic charge transfer encountering in chemical
reactivity, which, at the limit, obey the Koopmans theorem
(KT) [39], since approximately not depending on the number
of electrons they host in the course of chemical reaction
[14, 40]. Of course, historically, the Koopmans theorem was
developed within Hartree-Fock theory giving the route to
predict ionization potentials [41], while giving simple phys-
ical interpretation to the eigen value of the Fock matrix and
justifying the existence of the “orbitals” by their observable
energies [42, 43].

Although criticized [44, 45] because its inner definition
excludes electronic relaxation effects at the orbitals’ levels,
that is, neglecting the electronic correlation, Koopmans
theorem resisted through time since proving versatile ways
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for avoiding or including the “missing correlation infor-
mation” by remarkable methods. Among most preeminent
approaches in this direction are

(i) the electron propagation theory (through considering
the self-energy operator) [46];

(ii) disproving the existence of ionization potential as the
lowest eigenvalues of KT but generalizing it to the
arbitrarily close value to IP [43];

(iii) interpreting the self-consistent Hartree-Fock field as
coupled harmonic oscillators evolving in a nonlinear
potential [47];

(iv) variationally extending KT to restricted open-sells
canonical orbitals which nevertheless overestimate
the Aufbau principle [48];

(v) differentiating between vertical and adiabatic ioniza-
tion potentials for the strongest line of the band and
for the 0 → 0 band transition, respectively [49];

(vi) establishing the connectionwithDFT through Janak’s
theorem and proving its reliability for largemolecular
systems (including fullerenes or boron nitride nan-
otubes B

48
N
48
) [50];

(vii) including the negative electron affinity extensions
within DFT for halogenated small organic molecules
[51];

(viii) establishing the direct connection of the frontier
orbitals with the pi-electrons and of the electronic
transfer of conjugated aromatic systems [52];

(ix) driving the electronic transfer in alfa-substituted
organic polymers [53], providing with optical spec-
tra analysis for intervalence complexes formed by
organic bridges between radical ions [54];

(x) till the modeling of anti-inflammatory activities of
clinical drugs acting through ionization processes in
special [55] and by chemical reactivity indices and
DFT in general [56–62].

It is the last context in which the present work is placed
too: it reviews the Koopmans method with the Hartree-Fock
theory while emphasizing on the generality of the method
there where a limitation was previously identified; it will
be connected then with chemical hardness by means of
LUMO-HOMO gap that eventually cancels the correlations
and relaxation opposite effects appareling on the successive
highest occupied and lowest unoccupied molecular orbitals;
it will end with an illustration on how chemical hardness
analysis based onKoopmans superior orders orbitals is fitting
with compact-finite difference expression of it in the highest
analytical accuracy of spectral-like resolution (SLR) and how
these two faces of the chemical hardness generally asses the
aromaticity hierarchy along a homological series of organic
molecules.

2. Reviewing the Koopmans Method

2.1. Nature of Koopmans’ Theorem within Hartree-Fock For-
malism. Consider the many-electronic wave-function ket-
vector in N-dimensional Hilbert spin-orbitals’ space
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Note in the exchange energy (5) the appearance of the inter-
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Altogether this formalism allows for expressing the total
eigenenergy of the N-electronic system to be successively
written as follows:
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The issue appears while noticing the Fock operator functional
dependency on the occupied spin orbitals; once the functions
𝜓
𝑏
(2) are known (say as a basis set),𝑓 becomes a well-defined

Hermitic operator with infinite eigenstates and functions: it
allows therefore distinction between

(i) the first lowestN spin-orbitals occupied in the overall
wave-function |Ψ(𝑁)
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(ii) the rest (from N up to infinity) virtual of unoccupied
orbitals, formally denoted as 𝜓

𝑟
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𝑠
, . . ..

In this computational context, the orbitals extend their spec-
trum with the general eigenenergies as follows:

𝜀
𝑖=1,...,∞

= ⟨𝜓
𝑖


𝑓

𝜓
𝑖
⟩

= ⟨𝜓
𝑖



(ℎ̂ +

𝑁

∑

𝑏=1

[𝐽
𝑏
− �̂�
𝑏
])



𝜓
𝑖
⟩

= ⟨𝜓
𝑖


ℎ̂

𝜓
𝑖
⟩ +

𝑁

∑

𝑏=1

[⟨𝜓
𝑖


𝐽
𝑏


𝜓
𝑖
⟩ − ⟨𝜓

𝑖


�̂�
𝑏


𝜓
𝑖
⟩]

≡ ⟨𝑖

ℎ̂

𝑖⟩ +

𝑁

∑

𝑏=1

[⟨𝑖𝑖 | 𝑏𝑏⟩ − ⟨𝑖𝑏 | 𝑏𝑖⟩]

≡ ⟨𝑖

ℎ̂

𝑖⟩ +

𝑁

∑

𝑏=1

⟨𝑖𝑏 | 𝑖𝑏⟩ .

(9)

The important point here is that when turning the last
equation into the orbital eigen-energies of the occupied
orbitals
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the summation upon the energies of the occupied spin
orbitals yields the interesting result
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Equation (12) does not exactly recovering the previous total
energy of the N-occupied spin-orbitals Equation (8), when
they were considered “free (not depending)” of computation
(basis set); however, this may be considered as in silico
manifestation of quantum “observability” (once a basis set
representation applies) which destroys the quantum system
in itself ’s (or eigen) manifestation. Here the mathematical
properties of eigenfunction computed upon a given basis on
Hilbert-Banach spaces determine the “shift” or the “unre-
alistic” energies of orbitals since spanning those occupied
and unoccupied alike; from the present dichotomy basically
follows all critics on theHartree-Fock formalism and of allied
molecular orbital theory, Koopmans’ “theorem” included;
instead, there seems that such departure of the computed
from the exact energy orbitals is inherent to quantum
formalism and not necessary a weakness of the Hartree-
formalism itself, since it will appear to any quantum many-
particle problem involving eigenproblems.

Now, returning to the previous occupied and unoccupied
orbital energy, one may assume (Koopmans’ ansatz) that, on
the frontier levels of a many-electronic system, extracting
or adding of an electron (or even few of them, but lesser
than the total number of valence electrons) will not affect the
remaining (or𝑁±1,𝑁±1±1, . . ., electronic orbitals) states,
on successive levels and not successive electrons on levels (see
Figure 1).

This approach allows simplifying of the common terms
and emphasizing only on the involving frontier orbitals
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𝜀

Figure 1:The paradigmatic in silico spectra of the first three highest
occupied and lowest unoccupied molecular orbitals illustrating the
respective, successive, ionization and affinities energies as provided
by Koopmans’ theorem. Note that KT implies ionization and affinity
of one electron on successive levels and not of successive electrons
on levels; see the marked occupied and virtual spin orbitals.

participating in chemical reactivity. Accordingly, for the first
ionization potential one successively obtains (see Figure 1)

𝐼𝑃
1
= 𝐸
𝑁−1
− 𝐸
𝑁

= ⟨Ψ
(𝑁−1)

𝑐


�̂�

Ψ
(𝑁−1)

𝑐
⟩ − ⟨Ψ

(𝑁)

0


�̂�

Ψ
(𝑁)

0
⟩

=

{{{

{{{

{

𝑁

∑

𝑎=1

𝑎 ̸= 𝑐

⟨𝑎

ℎ̂

𝑎⟩ +

1

2

𝑁

∑

𝑎=1,𝑏=1

𝑎 ̸= 𝑐,𝑏 ̸= 𝑐

⟨𝑎𝑏 | 𝑎𝑏⟩

}}}

}}}

}

−

{{

{{

{

[
[

[

𝑁

∑

𝑎=1

𝑎 ̸= 𝑐

⟨𝑎

ℎ̂

𝑎⟩ + ⟨𝑐


ℎ̂

𝑐⟩
]
]

]

+
1

2

[
[
[

[

𝑁

∑

𝑎=1,𝑏=1

𝑎 ̸= 𝑐,𝑏 ̸= 𝑐

⟨𝑎𝑏 | 𝑎𝑏⟩ +

𝑁

∑

𝑎=1,𝑏=1

𝑎 ̸= 𝑐,𝑏=𝑐

⟨𝑎𝑐 | 𝑎𝑐⟩

+

𝑁

∑

𝑎=1,𝑏=1

𝑎=𝑐,𝑏 ̸= 𝑐

⟨𝑐𝑏 | 𝑐𝑏⟩

]
]
]

]

}}}

}}}

}

= −⟨𝑐

ℎ̂

𝑐⟩ −

𝑁

∑

𝑏=1

⟨𝑐𝑏 | 𝑐𝑏⟩

= −𝜀
𝑐
= −𝜀HOMO(1).

(13)

Remarkable, in this analytics, one starts with in se quantum
expression of total energies of the N and (𝑁 − 1) systems
and ends up with a result characteristic to the computational
(shifted) realm since recovering the orbital energy of the in
silico state fromwhich the electronwas removed. Yet, onemay
ask how such in se to in silico quantum chemical passage is
possible; the answer is naturally positive since the previous
derivation associates with the ionization process which is
basically an observer intervention to the genuine quantum
system, from where the final result will reflect the energetic
deviation from in se to in silico as an irrefutable quantum
manifestation of electronic system.

Similarly, for electronic affinity, one will act on the
in se quantum system to add an electron at the frontier
level and, under the “frozen spin-orbitals” physical-chemical
assumption, one gets the energetic turn from the genuine HF
expression to the in silico orbital energy on which the “action”
was undertaken (see Figure 1):
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These results are usually considered as defining the popular
Koopmans theorem, used for estimating the observable
quantities as ionization potential and electronic affinity in
terms of “artefactual” computed orbital energies (first appro-
ximation) and in the spin-orbitalic frozen framework during
the electronic extraction or addition (the second approxima-
tion).

2.2. Compact-Finite Chemical Hardness: Koopmans’ Approa-
ches. In modern quantum chemical reactivity approaches
chemical hardness plays a preeminent role due to fruitful
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connections it establishes with principles of hard and soft
acids and bases (HSAB) andmaximumhardness prescription
for stabilizing a reactive compound [30–32, 36, 37]. Mutatis
mutandis also gives a reliable measure for the degree of aro-
maticity a chemical structure displays in isolate or interaction
states [63–66]. While being defined, within the conceptual
density functional theory as the second-order derivative or
the total N-electronic energy with respect to the number of
changing charges, it recently acquired a significant extended
working form by considering its compact-finite difference
unfolding up to the third ionization and affinity order of
electronic removing and attaching processes [15, 24, 36, 63]:
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Note that this expansion may in principle corresponding
to the parabolic expansion of the energy containing dou-
ble charged cations/anions which considerably expand the
chemical reactivity analysis towards considering ceding/

accepting electronic pairing (dications/dianions) or trans-
ferring entire chemical bonds in molecular interactions;
while the accuracy depends on how one refines the finite
differentiation schemes (see below), the limits are restricted
to the frontier or valence electrons in bonding.

The last equation may be rewritten in terms of the
observational quantities, as the ionization potential (IP) and
electronic affinity (EA) of the involved eigen-energies of 𝑖th
(𝑖 = 1, 2, 3) order

IP
𝑖
= 𝐸
𝑁−𝑖
− 𝐸
𝑁−𝑖+1

EA
𝑖
= 𝐸
𝑁+𝑖−1

− 𝐸
𝑁+𝑖

(16)

through the energetic equivalents for the respective sums

𝐸
𝑁+1
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1
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𝑁
,

𝐸
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= (IP
1
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1
) + (IP

2
− EA
2
) + 2𝐸

𝑁
,

𝐸
𝑁+3
+ 𝐸
𝑁−3

= (IP
1
− EA
1
) + (IP

2
− EA
2
) + (IP

3
− EA
3
) + 2𝐸

𝑁

(17)

to provide the working expression [15, 24, 36, 63]
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]
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𝛽
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IP
3
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(18)

whose coefficients are given in Table 1, being obtained by
matching the previous expansion (15) with Taylor series
expansions in various orders (from second to tenth order);
the results are not system dependent being susceptible to a
variety of the boundary conditions [67].

It is worth remarking that when particularizing this
formula for the fashioned two-point central finite difference,
that is, when having 𝑎

2
= 1, 𝑏

2
= 𝑐
2
= 𝛼
2
= 𝛽
2
= 0 of Table 1,

one recovers the basic chemical hardness as prescribed by the
celebrated Pearson nucleophilic-electrophilic reactivity gap
[20–22]

𝜂
2C =

IP
1
− EA
1

2
(19)

already used as measuring the aromaticity through the
molecular stability against the reaction propensity [64, 65].

At this point, the third level of Koopmans’ approximation
may be considered, namely, through extending the second
part of Koopmans’ theorem as given by the identification of
the IP andEAwith the (minus) energies of the in silico highest
occupied (molecular) orbital (HOMO

1
) and with the lowest

unoccupied (molecular) orbital (LUMO
1
) to superior levels

of HOMO
𝑖=1,2,3

and LUMO
𝑖=1,2,3

, respectively,

IP
𝑖
= −𝜀HOMO(𝑖),

EA
𝑖
= −𝜀LUMO(𝑖).

(20)
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Table 1: Numerical parameters for the compact finite second (2C)-,
fourth (4C)-, and sixth (6C)-order central differences; standardPadé
(SP) schemes; sixth (6T)- and eight (8T)-order tridiagonal schemes;
eighth (8P)- and tenth (10P)-order pentadiagonal schemes up to
spectral-like resolution (SLR) schemes for chemical hardness of (18)
[15, 24, 36, 63].

Scheme 𝑎
2

𝑏
2

𝑐
2

𝛼
2

𝛽
2

2C 1 0 0 0 0
4C 1.333 −0.333 0 0 0
6C 1.091 0.273 0 0.182 0
SP 1.2 0 0 0.1 0
6T 1.5 −0.6 0.2 0 0
8T 0.967 0.537 −0.03 0.237 0
8P 0.814 0.789 0 0.292 0.01
10P 0.592 1.155 0.044 0.372 0.024
SLR 0.216 1.723 0.177 0.502 0.056

With this assumption, one yields the in silico-superior order-
freezing spin-orbitals compact-finite difference (CFD) form of
chemical hardness [15, 24, 36, 63] as follows:

𝜂
LUMO-HOMO
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.

(21)

However, one may ask whether this approximation is valid
and in which conditions. This can be achieved by reconsid-
ering the previous Koopmans first-order IP and EA to the
superior differenceswithinHartree-Fock framework; as such,
for the second order of ionization potential one gets (see
Figure 1)
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Note that this derivation eventually employs the equivalency
for the Coulombic and exchange terms for orbitals of the
same nature (with missing the same number of spin orbitals;
see Figure 1). However, in the case this will be further
refined to isolate the first two orders of highest occupied
molecular orbitals, the last expression will be corrected with
HOMO

1
/HOMO

2
(Coulombic and exchange) interaction to

successively become
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However, reloading this procedure for electronic affinity
process too, one gets

EA
2
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1
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(24)

When combining (24) with its IP counterpart (23) within
the chemical hardness extended CFD analysis of (18),
there appears that the simple Koopmans’ orbitals energy
difference is corrected by the HOMO

1
/HOMO

2
versus

LUMO
1
/LUMO

2
as follows:
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This expression is usually reduced to the superior order
LUMO-HOMO difference

IP
2
− EA
2
≅ 𝜀LUMO(2) − 𝜀HOMO(2) (26)

due to the energetic spectra symmetry of Figure 1 relaying
on the bonding versus antibonding displacements of orbitals,
specific to molecular orbital theory. Therefore, with the
premise that molecular orbital theory itself is correct, or at
least a reliable quantum undulatory modeling of multielec-
tronic systems moving in a nuclei potential, the above IP-EA
differences in terms of Koopmans’ in silico LUMO-HOMO
energetic gaps hold also for superior orders.

An illustrative analysis for homologues organic aromatic
hydrocarbons regarding how much the second and the third
orders, respectively, of the IP-EA or LUMO-HOMO gaps
affect the chemical hardness hierarchies, and therefore their
ordering aromaticity will be exposed and discussed in the
next section.

3. Application on Aromatic Basic Systems

It is true that Koopmans theorem seems having some
limitations for small molecules and for some inorganic
complexes [44, 45]; however, one is interested here in testing
Koopmans’ superior orders’ HOMO-LUMO behavior on
the systems that work, such as the aromatic hydrocarbons.
Accordingly, in Table 2 a short series of paradigmatic
organics is considered, with one and two rings and various
basic ring substitutions or additions, respectively [66].
For them, the HOMO and LUMO are computed, within
semiempirical AM1 framework [68], till the third order of
Koopmans frozen spin-orbitals’ approximation; they are then
combinedwith the various finite difference forms (from 2C to
SLR) of chemical hardness as mentioned above (see Table 1)
and grouped also in sequential order respecting chemical
hardness gap contributions (i.e., separately for {LUMO1-
HOMO1}, {LUMO1-HOMO1, LUMO2-HOMO2}, and
{LUMO1-HOMO1, LUMO2-HOMO2, LUMO3-HOMO3});
the results are systematically presented in Tables 3–5. The

results of Tables 3–5 reveal very interesting features, in
the light of considering the aromaticity as being reliably
measured by chemical hardness alone, since both associate
with chemical resistance to reactivity or the terminus of
a chemical reaction according to the maximum chemical
hardness principle [30, 31].

Moreover, the benchmark-ordering hierarchywas chosen
as produced by Hückel theory and approximation since
closely related with pi-electrons delocalized at the ring
level as the main source of the experimentally recorded
aromaticity of organic compounds under study [69]. Note
that although computational method used here is of low
level, it nevertheless responds to present desiderate hav-
ing a non (orbitalic) basis-dependent computational output
and discussion, whereas further (Hartree-Fock) ab initio,
(Møller-Plesset) perturbation methods, and basis set depen-
dency considerations, as HF, MP2, and DFT, respectively, for
instance, can be further considered for comparative analysis.
In these conditions, themainKoopmans’ analysis of chemical
hardness or aromaticity behavior for the envisagedmolecules
leaves with relevant observations:

(i) In absolutely all cases, analytical or computational,
the first two molecules, Benzene (I) and Pyrim-
idine (II), are inversed for their chemical hard-
ness/aromaticity hierarchies respecting the bench-
marking Hückel one, meaning that even in the most
simple case (say 2C/{LUMO1-HOMO1}), double sub-
stitution of carbon with nitrogen increases the ring
stability, most probably due to the additional pairing
of electrons entering the pi-system as coming from
the free valence of nitrogen atoms in molecular ring.
This additional pair of electrons eventually affects by
shielding also the core of the hydrocarbon rings, that
is, the sigma system of Pyrimidine (II), in a specific
quantum way, not clearly accounted by the Hückel
theory.

(ii) The same behavior is recorded also for the couple of
molecules I and III (Pyridine), however, only for the
SLR of chemical hardness computed with second and
the third orders of Koopmans frozen spin-orbitals;
this suggests the necessary insight the spectral like
resolution analysis may provide respecting the other
forms of finite compact differences in chemical hard-
ness computation, yet only when it is combined with
higher Koopmans HOMO and LUMO orbitals.

(iii) In the same line of discussion, only for the second
and the third Koopmans orders and only for the
SLR chemical hardness development, that is, the
last columns of Tables 4 and 5, one records similar
reversed order of the molecules 2-Napthol (VII) and
1-Naphtol (VIII), with the more aromatic character
for the last case when having the OH group more
closely to the middy of the naphthalene structure;
it is explained as previous, due to the electronic
pair of chemical-bonding contribution more close
to the “core” of the system with direct influence
to increase the shielding electrons of the sigma
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Table 2: Molecular structures of paradigmatic aromatic hydrocarbons [66], ordered downwards according with their Hückel first-order
HOMO-LUMO gap [69], along their first three highest occupied (HOMOs) and lowest unoccupied (LUMOs) (in electron-volts (eV))
computationally recorded levels within semiempirical AM1 method [68].

Formula
Name
CAS
Index (mw [g/mol])

Molecular
Structure HOMO(1) HOMO(2) HOMO(3) LUMO(1) LUMO(2) LUMO(3)

C6H6
Benzene
71-43-2
I (78.11)

−9.652904 −9.653568 −11.887457 0.554835 0.555246 2.978299

C4H4N2
Pyrimidine
289-95-2
II (80.088)

−10.578436 −10.614932 −11.602985 −0.234993 −0.081421 2.543489

C5H5N
Pyridine
110-86-1
III (79.10)

−9.932324 −10.642881 −10.716373 0.138705 0.278273 2.791518

C6H6O
Phenol
108-95-2
IV (94.11)

−9.114937 −9.851116 −11.940266 0.397517 0.507986 2.839472

C6H7N
Aniline
62-53-3
V (93.13)

−8.213677 −9.550989 −11.501620 0.758436 0.888921 2.828224

C10H8
Naphthalene
91-20-3
VI (128.17)

−8.710653 −9.340973 −10.658237 −0.265649 0.180618 1.210350

C10H8O
2-Naphthol
135-19-3
VII (144.17)

−8.641139 −9.194596 −10.673578 −0.348490 0.141728 1.117961

C10H8O
1-Naphthol
90-15-3
VIII (144.17)

−8.455599 −9.454717 −10.294406 −0.247171 0.100644 1.184179
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Table 2: Continued.

Formula
Name
CAS
Index (mw [g/mol])

Molecular
Structure HOMO(1) HOMO(2) HOMO(3) LUMO(1) LUMO(2) LUMO(3)

C10H9N
2-Naphthalenamine
91-59-8
IX (143.19)

−8.230714 −8.984826 −10.346699 −0.177722 0.278785 1.298534

C10H9N
1-Naphthalenamine
134-32-7
X (143.19)

−8.109827 −9.343444 −9.940875 −0.176331 0.230424 1.235745

Table 3: Chemical hardness values (in eV) as computed for molecules of Table 2 with first-order LUMO(1)-HOMO(1) gap order of (21) with
parameters of Table 1.

Molecule 𝜂2C 𝜂4C 𝜂6C 𝜂SP 𝜂6T 𝜂8T 𝜂8P 𝜂10P 𝜂SLR

I 5.10387 6.379837 4.903511 5.512179 7.003643 4.434762 4.030827 3.542746 2.971354
II 5.171722 6.464652 4.968699 5.585459 7.096751 4.493719 4.084414 3.589844 3.010856
III 5.035515 6.294393 4.837839 5.438356 6.909845 4.375368 3.976843 3.495299 2.931559
IV 4.756227 5.945284 4.569516 5.136725 6.5266 4.132695 3.756273 3.301437 2.768964
V 4.486057 5.607571 4.309951 4.844941 6.155866 3.897943 3.542904 3.113904 2.611677
VI 4.222502 5.278128 4.056743 4.560302 5.794211 3.66894 3.334759 2.930963 2.458242
VII 4.146325 5.182906 3.983556 4.47803 5.689679 3.60275 3.274597 2.878086 2.413893
VIII 4.104214 5.130268 3.943098 4.432551 5.631894 3.56616 3.24134 2.848856 2.389378
IX 4.026496 5.03312 3.868431 4.348616 5.525247 3.49863 3.179962 2.794909 2.344132
X 3.966748 4.958435 3.811029 4.284088 5.44326 3.446715 3.132775 2.753437 2.309348

Table 4: Chemical hardness values (in eV) as computed for molecules of Table 2 with first-order LUMO(1)-HOMO(1) and second-order
LUMO(2)-HOMO(2) gaps of (21) with parameters of Table 1.

Molecule 𝜂2C 𝜂4C 𝜂6C 𝜂SP 𝜂6T 𝜂8T 𝜂8P 𝜂10P 𝜂SLR

I 5.10387 5.95447 4.239094 4.89965 6.351413 3.933493 3.865279 3.990091 4.778726
II 5.171722 6.025756 4.283151 4.953449 6.423777 3.976506 3.9136 4.051417 4.875712
III 5.035515 5.839345 4.127062 4.783086 6.212105 3.839122 3.799743 3.973858 4.865044
IV 4.756227 5.513655 3.895318 4.515179 5.864769 3.624046 3.588288 3.755367 4.602943
V 4.486057 5.172574 3.630494 4.218546 5.488872 3.385327 3.373608 3.571375 4.459963
VI 4.222502 4.881395 3.437052 3.989007 5.185887 3.201415 3.180355 3.348194 4.143948
VII 4.146325 4.793892 3.375923 3.917851 5.093191 3.144321 3.123197 3.287199 4.066799
VIII 4.104214 4.732127 3.32121 3.859229 5.021412 3.096976 3.086388 3.267567 4.081062
IX 4.026496 4.647136 3.265531 3.792799 4.933405 3.043772 3.029741 3.200836 3.984165
X 3.966748 4.559524 3.187936 3.709656 4.831596 2.976622 2.977523 3.172958 4.004309
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Table 5: Chemical hardness values (in eV) as computed for molecules of Table 2 with first-order LUMO(1)-HOMO(1), second-order
LUMO(2)-HOMO(2), and third-order LUMO(3)-HOMO(3) gaps of (21) with parameters of Table 1.

Molecule 𝜂2C 𝜂4C 𝜂6C 𝜂SP 𝜂6T 𝜂8T 𝜂8P 𝜂10P 𝜂SLR

I 5.10387 5.95447 4.239094 4.89965 6.516588 3.908499 3.806245 3.921086 4.834997
II 5.171722 6.025756 4.283151 4.953449 6.58096 3.952722 3.857423 3.985751 4.929261
III 5.035515 5.839345 4.127062 4.783086 6.362192 3.816411 3.746102 3.911156 4.916176
IV 4.756227 5.513655 3.895318 4.515179 6.028988 3.599197 3.529596 3.686762 4.658889
V 4.486057 5.172574 3.630494 4.218546 5.648093 3.361234 3.316702 3.504858 4.514206
VI 4.222502 4.881395 3.437052 3.989007 5.31776 3.18146 3.133223 3.293101 4.188874
VII 4.146325 4.793892 3.375923 3.917851 5.224208 3.124496 3.076372 3.232464 4.111434
VIII 4.104214 4.732127 3.32121 3.859229 5.148952 3.077677 3.040805 3.214284 4.124512
IX 4.026496 4.647136 3.265531 3.792799 5.062797 3.024193 2.983496 3.14678 4.028246
X 3.966748 4.559524 3.187936 3.709656 4.955781 2.957831 2.933139 3.121078 4.046616

systems, while leading with smoothly increased sta-
bilization contribution (enlarging also the sigma-pi
chemical gap); yet this is manifested when all the
spectral-like resolution complexity is considered in
chemical hardness expression and only in superior
Koopmans orders (second and third), otherwise not
being recorded. However, this result advocates the
meaningful of considering the SLR coupled with
superiorKoopmans analysis in revealing subtle effects
in sigma-pi aromatic systems.

(iv) In the rest of cases the Hückel downward hierarchy of
Table 2 is recovered in Tables 3–5 in a systematic way.

(v) When going from 2C to SLR chemical hardness
analytical forms of any of Koopmans orders, on the
horizontal axis through the Tables 3–5, one system-
atically records an increasing of the average chemical
hardness/aromaticity values from 2C to 6T schemes
of computations while going again down towards SLR
scheme of Table 1.

All in all, one may compare the extreme 2C and SLR
outputs of Tables 3–5 for a global view for the Koopmans’
behavior respecting various orders and chemical hardness
schemes of (compact-finite forms) computations: the result
is graphically presented in Figure 2. The analysis of Figure 2
yields a fundamental result for the present study, that is, the
practical identity among

(i) all Koopmans superior orbitals-based chemical hard-
ness computations;

(ii) the simplest 2C and the complex SLR analytical forms
for compact-finite difference schemes of chemical
hardness for the superior HOMO-LUMO gap exten-
sions.

By contrary to someone expecting the first order of Koop-
mans theorem being more systematic, only in this order, the
2C values are practically doubled respecting SLR counterpart;
such double behavior becomes convergent when superior
Koopmans orders of valence orbitals are considered either in
simpler or complex forms of 2C and SLR, respectively.

This may lead to the fruitful result according which the
Koopmans theorem works better when superior HOMO-
LUMO frozen spin orbitals are considered, probably due to
compensating correlating effects that such extension implies;
see analytical discussion in the last section. In any case, the
present molecular illustration of Koopmans’ approximations
to chemical harness computation clearly shows that, at least
for organic aromatic molecules, it works better for superior
orders of “freezing” spin orbitals and is not limitative to
the first valence orbitals, as would be the common belief.
Moreover, it was also clear that the Koopmans theorem finely
accords also with more complex ponder of its superior order
orbitals in chemical hardness expansions equation (21), when
subtle effects in lone pairing electrons (since remained orbital
is frozen upon successive electronic attachment/removals
on/from it) or chemical bonding pair of electrons influence
the aromatic ring core towards increasing its shielding and
the overall molecular reactivity resistance. All these concep-
tual and computational results should be further extended
and tested on increased number of molecules, enlarging their
variety too, as well as by considering more refined quantum
computational frameworks as the density functional theory
and (Hartree-Fock) ab initio schemes are currently compared
and discussed for various exchange-correlation and parame-
terization limits and refutations.

4. Conclusions

Koopmans’ theorem entered on the quantum chemistry as
a versatile tool for estimating the ionization potentials for
closed-shells systems, and it waswidely confirmed for organic
molecular systems, due to the inner usually separation
between sigma (core) and pi (valence) subelectronic systems,
allowing to treat the “frozen spin orbitals” as orbitals not
essentially depending on the number of electrons in the
valence shells, when some of them are extracted (via ioniza-
tion) or added (via negative attachments); this approximation
ultimately works for Hartree-Fock systems when electronic
correlationmay be negligible or cancels with the orbital relax-
ations during ionization or affinity processes, respectively;
naturally, it works less when correlation is explicitly counted,
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Figure 2: Representation of the 2C and SLR chemical hardness hierarchies for the set of molecules of Table 1 upon the first, second, and third
orders of Koopmans’ theorem applications as presented din Tables 3, 4, and 5, respectively.

as in density functional theory, where instead the exchange
energies are approximated or merely parameterized so that
“loosing” somehow on the genuine spin-orbital nature of the
mono-determinantal approach of the Hartree-Fock, with a
natural energetic hierarchy included. Despite the debating
context in which Koopmans theorem is valid or associates
with a physical-chemical sense, the present work gives some
insight in this matter by clarifying upon some key features of
Koopmans analysis, namely;

(i) the Hartree-Fock spin orbitals involved in Koop-
mans’ theorem are of computational nature, emerged
through solving an eigen-problem in a given basis
set, so that being characterized by a sort of “quantum
shift” related with quantum uncertainty when the free
system is affected by observation—here by computa-
tion, so this behavior is at its turn computationally
naturally and not viewed as a conceptual error in
structurally assessing a many-electronic structure;

(ii) the Koopmans theorem not restrictedly refers to the
first ionization potential and may be extended to suc-
cessive ionization potentials (and electronic affinities)
as far the valence shell is not exhausted by the pi-
collective electrons, such that the sigma-pi separation
may be kept reliable and the “frozen spin-orbitals”
may be considered as such through cancellation of
the relaxation effects with the electronic correlations,

both explicitly escaping to Hartree-Fock formalism;
this was, however, here emphasized by the appearance
of the quantum terms of type ⟨HOMO

1
HOMO

2
|

HOMO
1
HOMO

2
⟩ in (23) and ⟨LUMO

1
LUMO

2
|

LUMO
1
LUMO

2
⟩ in (24) which were considered as

reciprocal annihilating in chemical hardness’ IP-EA
differences in (25) due to symmetrical bonding ver-
sus antibonding spectra displacements in molecular
orbital theory—as a simplified version of Hartree-
Fock theory;

(iii) the Koopmans theorem goes at best with chemi-
cal harness or aromaticity evaluation by means of
LUMO-HOMO gaps when they manifested surpris-
ingly the same for superior orders of IPs-EAs, this way
confirming the previous point.

Application on a paradigmatic set of mono and double
benzoic rings molecules supported these conclusions, yet
leaving enough space for furthermolecular set extensions and
computational various frameworks comparison.

Abbreviations

𝜂: Chemical hardness
CFD: Compact-finite difference
EA: Electronic affinity
HOMO: Highest occupied molecular orbital
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HSAB: Hard-and-soft acids and bases
IP: Ionization potential
KT: Koopmans theorem
LUMO: Lowest unoccupied molecular orbital
SLR: Spectral like resolution
DFT: Density functional theory.
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