NONLINEAR VARIATIONAL EVOLUTION INEQUALITIES IN HILBERT SPACES

JIN-MUN JEONG, DOO-HOAN JEONG, and JONG-YEOUL PARK

(Received 31 July 1998)

Abstract

The regular problem for solutions of the nonlinear functional differential equations with a nonlinear hemicontinuous and coercive operator A and a nonlinear term $f(\cdot, \cdot): x^{\prime}(t)+A x(t)+\partial \phi(x(t)) \ni f(t, x(t))+h(t)$ is studied. The existence, uniqueness, and a variation of solutions of the equation are given.

Keywords and phrases. Nonlinear variational evolution inequality, maximal monotone operator, subdifferential operator, regularity.

2000 Mathematics Subject Classification. Primary 34G20; Secondary 35F25.

1. Introduction. Let H and V be two real separable Hilbert spaces such that V is a dense subspace of H. Let the operator A be given a single-valued operator, which is hemicontinuous and coercive from V to V^{*}. Here V^{*} stands for the dual space of V. Let $\phi: V \rightarrow(-\infty,+\infty]$ be a lower semicontinuous, proper convex function. Then the subdifferential operator $\partial \phi: V \rightarrow V^{*}$ of ϕ is defined by

$$
\begin{equation*}
\partial \phi(x)=\left\{x^{*} \in V^{*} ; \phi(x) \leq \phi(y)+\left(x^{*}, x-y\right), y \in V\right\} \tag{1.1}
\end{equation*}
$$

where (\cdot, \cdot) denotes the duality pairing between V^{*} and V. We are interested in the following nonlinear functional differential equation on H :

$$
\begin{align*}
\frac{d x(t)}{d t}+A x(t)+\partial \phi(x(t)) & \ni f(t, x(t))+h(t), \quad 0<t \leq T \tag{1.2}\\
x(0) & =x_{0}
\end{align*}
$$

where the nonlinear mapping f is a Lipschitz continuous from $\mathbb{R} \times V$ into H. Equation (1.2) is caused by the following nonlinear variational inequality problem:

$$
\begin{align*}
&\left(\frac{d x(t)}{d t}+A x(t), x(t)-z\right)+ \phi(x(t))-\phi(z) \\
& \leq(f(t, x(t))+h(t), x(t)-z), \quad \text { a.e., } 0<t \leq T, z \in V, \tag{1.3}\\
& x(0)=x_{0} .
\end{align*}
$$

If A is a linear continuous symmetric operator from V into V^{*} and satisfies the coercive condition, then equation (1.2), which is called the linear parabolic variational inequality, is extensively studied in Barbu [5, Sec. 4.3.2] (also see [4, Sec. 4.3.1]). The existence of solutions for the semilinear equation with similar conditions for nonlinear term f have been dealt with in [1, 2, 6]. Using more general hypotheses for
nonlinear term $f(\cdot, x)$, we intend to investigate the existence and the norm estimate of a solution of the above nonlinear equation on $L^{2}(0, T ; V) \cap W^{1,2}\left(0, T ; V^{*}\right)$, which is also applicable to optimal control problem. A typical example was given in the last section.
2. Perturbation of subdifferential operator. Let H and V be two real Hilbert spaces. Assume that V is a dense subspace in H and the injection of V into H is continuous. If H is identified with its dual space we may write $V \subset H \subset V^{*}$ densely and the corresponding injections are continuous. The norm on V (respectively H) will be denoted by $\|\cdot\|$ (respectively $|\cdot|$). The duality pairing between the element v_{1} of V^{*} and the element v_{2} of V is denoted by $\left(v_{1}, v_{2}\right)$, which is the ordinary inner product in H if $v_{1}, v_{2} \in H$. For the sake of simplicity, we may consider

$$
\begin{equation*}
\|u\| \leq|u| \leq\|u\|_{*}, \quad u \in V \tag{2.1}
\end{equation*}
$$

where $\|\cdot\|_{*}$ is the norm of the element of V^{*}.
REMARK 2.1. If an operator A_{0} is bounded linear from V to V^{*} and generates an analytic semigroup, then it is easily seen that

$$
\begin{equation*}
H=\left\{x \in V^{*}: \int_{0}^{T}\left\|A_{0} e^{t A_{0}} x\right\|_{*}^{2} d t<\infty\right\} \quad \text { for the time } T>0 \tag{2.2}
\end{equation*}
$$

Therefore, in terms of the intermediate theory we can see that

$$
\begin{equation*}
\left(V, V^{*}\right)_{1 / 2,2}=H \tag{2.3}
\end{equation*}
$$

where $\left(V, V^{*}\right)_{1 / 2,2}$ denotes the real interpolation space between V and V^{*}.
We note that nonlinear operator A is said to be hemicontinuous on V if

$$
\begin{equation*}
\mathrm{w}-\lim _{t \rightarrow 0} A(x+t y)=A x \quad \text { for every } x, y \in V \tag{2.4}
\end{equation*}
$$

where "w-lim" indicates the weak convergence on V. Let $A: V \rightarrow V^{*}$ be given a single valued and hemicontinuous from V to V^{*} such that

$$
\begin{gather*}
A(0)=0, \quad(A u-A v, u-v) \geq \omega_{1}\|u-v\|^{2}-\omega_{2}|u-v|^{2} \\
\|A u\|_{*} \leq \omega_{3}(\|u\|+1) \tag{2.5}
\end{gather*}
$$

for every $u, v \in V$, where $\omega_{2} \in \mathscr{R}$ and ω_{1}, ω_{3} are some positive constants. Here, we note that if $A(0) \neq 0$ we need the following assumption:

$$
\begin{equation*}
(A u, u) \geq \omega_{1}\|u\|^{2}-\omega_{2}|u|^{2} \quad \text { for every } u \in V \tag{2.6}
\end{equation*}
$$

It is also known that $A+\omega_{2} I$ is maximal monotone and $R\left(A+\omega_{2} I\right)=V^{*}$ where $R(A+$ $\left.\omega_{2} I\right)$ is the range of $A+\omega_{2} I$ and I is the identity operator.

First, let us be concerned with the following perturbation of subdifferential operator:

$$
\begin{equation*}
\frac{d x(t)}{d t}+A x(t)+\partial \phi(x(t)) \ni h(t), \quad 0<t \leq T, \quad x(0)=x_{0} \tag{2.7}
\end{equation*}
$$

To prove the regularity for the nonlinear equation (1.2) without the nonlinear term $f(\cdot, x)$ we apply the method in [5, Sec. 4.3.2].

Proposition 2.1. Let $h \in L^{2}\left(0, T ; V^{*}\right)$ and $x_{0} \in V$ satisfying that $\phi\left(x_{0}\right)<\infty$. Then (2.7) has a unique solution

$$
\begin{equation*}
x \in L^{2}(0, T ; V) \cap C([0, T] ; H) \tag{2.8}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
\|x\|_{L^{2} \cap C} \leq C_{1}\left(1+\left\|x_{0}\right\|+\|h\|_{L^{2}\left(0, T ; V^{*}\right)}\right) \tag{2.9}
\end{equation*}
$$

where C_{1} is a constant and $L^{2} \cap C=L^{2}(0, T ; V) \cap C([0, T] ; H)$.
Proof. Substituting $v(t)=e^{\omega_{2} t} x(t)$ we can rewrite (2.7) as follows:

$$
\begin{gather*}
\frac{d v(t)}{d t}+\left(A+\omega_{2} I\right) v(t)+e^{-\omega_{2} t} \partial \phi(v(t)) \ni e^{-\omega_{2} t} h(t), \quad 0<t \leq T \tag{2.10}\\
v(0)=e^{\omega_{2} t} x_{0}
\end{gather*}
$$

Then the regular problem for (2.7) is equivalent to that for (2.10). Consider the operator $L: D(L) \subset H \rightarrow H$

$$
\begin{align*}
L v & =\left\{A v+e^{-\omega_{2} t} \partial \phi(v)+\omega_{2} v\right\} \cap H \quad \forall v \in D(L), \\
D(L) & =\left\{v \in V ;\left\{A v+e^{-\omega_{2} t} \partial \phi(v)+\omega_{2} v\right\} \cap H \neq 0\right\} \tag{2.11}
\end{align*}
$$

Since $A+\omega_{2} I$ is a monotone, hemicontinuous and bounded operator from V into V^{*} and $e^{-\omega_{2} t} \partial \phi$ is maximal monotone, we infer in [4, Cor. 1.1 of Ch. 2] that L is maximal monotone. Then in [5, Thm. 1.4] (also see [4, Thm. 2.3, Cor. 2.1]), for every $x_{0} \in D(L)$ and $h \in W^{1.1}([0, T] ; H)$, the Cauchy problem (2.10) has a unique solution $v \in W^{1, \infty}([0, T] ; H)$. Let us assume that $x_{0} \in D(L)$ and $h \in W^{1,2}(0, T ; H)$. Multiplying (2.7) by $x-x_{0}$ and using (2.5) and the maximal monotonicity of $\partial \phi$ it holds

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}\left|x(t)-x_{0}\right|^{2} & +\omega_{1}\left\|x(t)-x_{0}\right\|^{2} \tag{2.12}\\
& \leq \omega_{2}\left|x(t)-x_{0}\right|+\left(h(t)-A x_{0}-\partial \phi\left(x_{0}\right), x(t)-x_{0}\right)
\end{align*}
$$

Since

$$
\begin{align*}
\left(h(t)-A x_{0}-\partial \phi\left(x_{0}\right), x(t)-x_{0}\right) & \leq\left\|h(t)-A x_{0}-\partial \phi\left(x_{0}\right)\right\|_{*}\left\|x(t)-x_{0}\right\| \\
& \leq \frac{1}{2 c}\left\|h(t)-A x_{0}-\partial \phi\left(x_{0}\right)\right\|_{*}^{2}+\frac{c}{2}\left\|x(t)-x_{0}\right\|^{2} \tag{2.13}
\end{align*}
$$

for every real number c, so using Gronwall's inequality, the inequality (2.12) implies that

$$
\begin{equation*}
\left|x(t)-x_{0}\right|^{2}+\int_{0}^{t}\left\|x(s)-x_{0}\right\|^{2} d s \leq C_{1}\left(\int_{0}^{t}\|h(s)\|_{*}^{2} d s+\left\|x_{0}\right\|^{2}+1\right) \tag{2.14}
\end{equation*}
$$

for some positive constant C_{1}, that is,

$$
\begin{equation*}
\|x\|_{L^{2}(0, T ; V) \cap C([0, T] ; H)} \leq C_{1}\left(1+\left\|x_{0}\right\|+\|h\|_{L^{2}\left(0, T ; V^{*}\right)}\right) \tag{2.15}
\end{equation*}
$$

Hence we have proved (2.9). Let $x_{0} \in V$ such that $\partial \phi\left(x_{0}\right)<\infty$ and $h \in L^{2}\left(0, T ; V^{*}\right)$. Then there exist sequences $\left\{x_{0 n}\right\} \subset D(L)$ and $\left\{h_{n}\right\} \subset W^{1,2}(0, T ; H)$ such that $x_{0 n} \rightarrow x_{0}$
in V and $h_{n} \rightarrow h$ in $L^{2}\left(0, T ; V^{*}\right)$ as $n \rightarrow \infty$. Let $x_{n} \in W^{1, \infty}(0, T ; H)$ be the solution of (2.7) with initial value $x_{0 n}$ and with h_{n} instead of h. Since $\partial \phi$ is monotone, we have

$$
\begin{align*}
\left.\frac{1}{2} \frac{d}{d t} \right\rvert\, x_{n}(t) & -\left.x_{m}(t)\right|^{2}+\omega_{1}\left\|x_{n}(t)-x_{m}(t)\right\|^{2} \\
& <\left(h_{n}(t)-h_{m}(t), x_{n}(t)-x_{m}(t)\right)+\omega_{2}\left|x_{n}(t)-x_{m}(t)\right|^{2} \\
& \leq \frac{1}{2 c}\left\|h_{n}(t)-h_{m}(t)\right\|_{*}^{2}+\frac{c}{2}\left\|x_{n}(t)-x_{m}(t)\right\|^{2} \tag{2.16}\\
& +\omega_{2}\left|x_{n}(t)-x_{m}(t)\right|^{2}, \quad \text { a.e., } t \in(0, T)
\end{align*}
$$

for every real number c. Therefore, if we choose $\omega_{1}-(c / 2)$ then by integrating over $[0, T]$ and using Gronwall's inequality it follows that

$$
\begin{align*}
\left|x_{n}(t)-x_{m}(t)\right| & +2\left(\omega_{1}-\frac{c}{2}\right)\left\|x_{n}(t)-x_{m}(t)\right\|_{L^{2}(0, T ; V)} \tag{2.17}\\
& \leq e^{2 \omega_{2} T_{1}}\left(\left|x_{0 n}-x_{0 m}\right|+c^{-1}\left\|h_{n}-h_{m}\right\|_{L^{2}\left(0, T ; V^{*}\right)}\right)
\end{align*}
$$

and hence, we have that $\lim _{n \rightarrow \infty} x_{n}(t)=x(t)$ exists in H. Furthermore, x satisfies (2.7). Indeed, for all $0 \leq s<t \leq T$ and $y \in \partial \phi(x)$, multiplying (2.7) by $x(t)-x$ and integrating over [s, t] we have

$$
\begin{align*}
\frac{1}{2}\left(|x(t)-x|^{2}-|x(s)-x|^{2}\right) \leq & \int_{s}^{t}(h(\tau)-A x-y, x(\tau)-x) d \tau \\
& +\omega_{2} \int_{s}^{t}|x(\tau)-x|^{2} d \tau \tag{2.18}
\end{align*}
$$

and, therefore,

$$
\begin{align*}
\left(\frac{x(t)-x(s)}{t-s}, x(s)-x\right) \leq & \frac{1}{t-s} \int_{s}^{t}(h(\tau)-A x-y, x(\tau)-x) d \tau \tag{2.19}\\
& +\frac{\omega_{2}}{t-s} \int_{s}^{t}|x(\tau)-x|^{2} d \tau
\end{align*}
$$

This implies

$$
\begin{equation*}
\left(\frac{d}{d t} x(t), x(t)-x\right) \leq\left(h(t)-A x-y+\omega_{2}(x(t)-x), x(t)-x\right) \tag{2.20}
\end{equation*}
$$

a.e., $t \in(0, T)$, that is,

$$
\begin{equation*}
\left(\frac{d}{d t} x(t)-h(t)-\omega_{2} x(t)+\left(A x+y+\omega_{2} x\right), x(t)-x\right) \leq 0 \tag{2.21}
\end{equation*}
$$

Since $A+\partial \phi+\omega_{2} I$ is maximal monotone, we have

$$
\begin{equation*}
\frac{d}{d t} x(t)-h(t)-\omega_{2} x(t) \in-\left(A+\partial \phi+\omega_{2} I\right) x(t), \quad \text { a.e., } t \in(0, T) \tag{2.22}
\end{equation*}
$$

Thus, the proof is complete.
COROLLARY 2.1. Assume the hypotheses as in Proposition 2.1, in addition, assume that $\partial \phi$ satisfies the growth condition as follows:

$$
\begin{equation*}
\|z\|_{*} \leq M(|x|+1), \quad \text { a.e., } x \in D(\phi), z \in \partial \phi(x) \tag{2.23}
\end{equation*}
$$

Then equation (2.7) has a unique solution

$$
\begin{equation*}
x \in L^{2}(0, T ; V) \cap W^{1,2}\left(0, T ; V^{*}\right) \cap C([0, T] ; H) \tag{2.24}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
\|x\|_{L^{2} \cap W^{1,2} \cap C} \leq C\left(1+\left\|x_{0}\right\|+\|h\|_{L^{2}\left(0, T ; V^{*}\right)}\right) . \tag{2.25}
\end{equation*}
$$

Proof. From (2.7) and (2.23) it follows that

$$
\begin{equation*}
\left\|\frac{d}{d t} x(t)\right\|_{*}+\omega_{1}\|x(t)\| \leq \omega_{2}|x(t)|+M(|x(t)|+1)+\|h(t)\|_{*} . \tag{2.26}
\end{equation*}
$$

Hence, by virtue of (2.15) we have that

$$
\begin{equation*}
\|x\|_{W^{1,2}(0, T ; H)} \leq C_{2}\left(1+\left\|x_{0}\right\|+\|h\|_{L^{2}\left(0, T ; V^{*}\right)}\right) . \tag{2.27}
\end{equation*}
$$

Remark 2.2. If V is compactly imbedded in H, the imbedding $L^{2}(0, T ; V) \cap W^{1,2}(0, T$; $\left.V^{*}\right) \subset L^{2}(0, T ; H)$ is compact in Aubin [3, Rem. 1, Thm. 2]. Hence, the mapping $h \mapsto x$ is compact from $L^{2}(0, T ; H)$ to $L^{2}(0, T ; H)$.
3. Nonlinear integrodifferential equation. Let $f:[0, T] \times V \rightarrow H$ be a nonlinear mapping satisfying the following variational evolution inequality:

$$
\begin{equation*}
|f(t, x)-f(t, y)| \leq L\|x-y\|, \quad f(t, 0)=0 \tag{3.1}
\end{equation*}
$$

for a positive constant L.
Theorem 3.1. Let (2.5) and (3.1) be satisfied. Then (1.2) has a unique solution

$$
\begin{equation*}
x \in L^{2}(0, T ; V) \cap C([0, T] ; H) . \tag{3.2}
\end{equation*}
$$

Furthermore, there exists a constant C_{2} such that

$$
\begin{equation*}
\|x\|_{L^{2} \cap C} \leq C_{2}\left(1+\left\|x_{0}\right\|+\|h\|_{L^{2}\left(0, T ; V^{*}\right)}\right) . \tag{3.3}
\end{equation*}
$$

If $\left(x_{0}, h\right) \in V \times L^{2}\left(0, T ; V^{*}\right)$, then $x \in L^{2}(0, T ; V) \cap C([0, T] ; H)$ and the mapping

$$
\begin{equation*}
V \times L^{2}\left(0, T ; V^{*}\right) \ni\left(x_{0}, h\right) \longmapsto x \in L^{2}(0, T ; V) \cap C([0, T] ; H) \tag{3.4}
\end{equation*}
$$

is continuous.
Proof. Let $y \in L^{2}(0, T ; V)$. Then from (3.1), $f(\cdot, y(\cdot)) \in L^{2}(0, T ; H)$. Thus, by virtue of Proposition 2.1 we know that the problem

$$
\begin{align*}
\frac{d x(t)}{d t}+A x(t)+\partial \phi(x(t)) & \ni f(t, y(t))+h(t), \quad 0<t \leq T, \tag{3.5}\\
x(0) & =x_{0}
\end{align*}
$$

has a unique solution $x_{y} \in L^{2}(0, T ; V) \cap C([0, T] ; H)$, where x_{y} is the solution of (3.5).
Let us choose a constant $c>0$ such that

$$
\begin{equation*}
\omega_{1}-\frac{c}{2}>0 \tag{3.6}
\end{equation*}
$$

and let us fix $T_{0}>0$ so that

$$
\begin{equation*}
\left(2 c \omega_{1}-c^{2}\right)^{-1} e^{2 \omega_{2} T_{0}} L<1 \tag{3.7}
\end{equation*}
$$

Let $x_{i}, i=1,2$, be the solution of (3.5) corresponding to y_{i}. Then, by the monotonicity of $\partial \phi$, it follows that

$$
\begin{align*}
\left(\dot{x}_{1}(t)-\dot{x}_{2}(t), x_{1}(t)-x_{2}(t)\right) & +\left(A x_{1}(t)-A x_{2}(t), x_{1}(t)-x_{2}(t)\right) \\
& \leq\left(f\left(t, y_{1}(t)\right)-f\left(t, y_{2}(t)\right), x_{1}(t)-x_{2}(t)\right) \tag{3.8}
\end{align*}
$$

and hence, using the assumption (2.5), we have that

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left|x_{1}(t)-x_{2}(t)\right|^{2}+\omega_{1}\left\|x_{1}(t)-x_{2}(t)\right\|^{2} \tag{3.9}\\
& \quad \leq \omega_{2}\left|x_{1}(t)-x_{2}(t)\right|^{2}+\left\|f\left(t, y_{1}(t)\right)-f\left(t, y_{2}(t)\right)\right\|_{*}\left\|x_{1}(t)-x_{2}(t)\right\|
\end{align*}
$$

Since

$$
\begin{align*}
& \left\|f\left(t, y_{1}(t)\right)-f\left(t, y_{2}(t)\right)\right\|_{*}\left\|x_{1}(t)-x_{2}(t)\right\| \\
& \quad \leq \frac{1}{2 c}\left\|f\left(t, y_{1}(t)\right)-f\left(t, y_{2}(t)\right)\right\|_{*}^{2}+\frac{c}{2}\left\|x_{1}(t)-x_{2}(t)\right\|^{2} \tag{3.10}
\end{align*}
$$

for every $c>0$ and by integrating (3.9) over $\left(0, T_{0}\right)$ we have

$$
\begin{align*}
& \left|x_{1}\left(T_{0}\right)-x_{2}\left(T_{0}\right)\right|^{2}+\left(2 \omega_{1}-c\right) \int_{0}^{T_{0}}\left\|x_{1}(t)-x_{2}(t)\right\|^{2} d t \tag{3.11}\\
& \quad \leq \frac{1}{c}\left\|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right\|_{L^{2}\left(0, T_{0} ; V^{*}\right)}+2 \omega_{2} \int_{0}^{T_{0}}\left|x_{1}(t)-x_{2}(t)\right|^{2} d t
\end{align*}
$$

and by Gronwall's inequality,

$$
\begin{equation*}
\left\|x_{1}-x_{2}\right\|_{L^{2}\left(0, T_{0} ; V\right)}^{2} \leq\left(2 c \omega_{1}-c^{2}\right)^{-1} e^{2 \omega_{2} T_{0}}\left\|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right\|_{L^{2}\left(0, T_{0} ; V^{*}\right)}^{2} \tag{3.12}
\end{equation*}
$$

Thus, from (3.1) it follows that

$$
\begin{equation*}
\left\|x_{1}-x_{2}\right\|_{L^{2}} \leq\left(2 c \omega_{1}-c^{2}\right)^{-1} e^{2 \omega_{2} T_{0}} L\left\|y_{1}-y_{2}\right\|_{L^{2}\left(0, T_{0} ; V\right)} \tag{3.13}
\end{equation*}
$$

Hence we have proved that $y \mapsto x$ is a strictly contraction from $L^{2}\left(0, T_{0} ; V\right)$ to itself if condition (3.7) is satisfied. It shows that (1.2) has a unique solution in $\left[0, T_{0}\right]$.
Let y be the solution of

$$
\begin{equation*}
\frac{d y(t)}{d t}+A y(t)+\partial \phi(y(t)) \ni 0, \quad 0<t \leq T_{0}, \quad y(0)=x_{0} \tag{3.14}
\end{equation*}
$$

Then, since

$$
\begin{equation*}
\frac{d}{d t}(x(t)-y(t))+(A x(t)-A y(t))+(\partial \phi(x(t))-\partial \phi(y(t))) \ni f(t, x(t))+h(t), \tag{3.15}
\end{equation*}
$$

multiplying by $x(t)-y(t)$ and using the monotonicity of $\partial \phi$, we obtain

$$
\begin{align*}
\left.\frac{1}{2} \frac{d}{d t} \right\rvert\, x(t) & -\left.y(t)\right|^{2}+\omega_{1}\|x(t)-y(t)\|^{2} \tag{3.16}\\
& \leq \omega_{2}|x(t)-y(t)|^{2}+\|f(t, x(t))+h(t)\|_{*}\|x(t)-y(t)\|
\end{align*}
$$

Therefore, putting

$$
\begin{equation*}
N=\left(2 c \omega_{1}-c^{2}\right)^{-1} e^{2 \omega_{2} T_{0}} \tag{3.17}
\end{equation*}
$$

from (3.1), it follows that

$$
\begin{align*}
\|x-y\|_{L^{2}\left(0, T_{0} ; V\right)} & \leq N\|f(\cdot, x)+h\|_{L^{2}\left(0, T_{0} ; V^{*}\right)} \tag{3.18}\\
& \leq N L\|x\|_{L^{2}\left(0, T_{0} ; V\right)}+N\|h\|_{L^{2}\left(0, T_{0} ; V^{*}\right)}
\end{align*}
$$

and hence

$$
\begin{align*}
\|x\|_{L^{2}\left(0, T_{0} ; V\right)} & \leq \frac{1}{1-N L}\|y\|_{L^{2}\left(0, T_{0} ; V\right)}+N\|h\|_{L^{2}\left(0, T_{0} ; V^{*}\right)} \\
& \leq \frac{C_{1}}{1-N L}\left(1+\left\|x_{0}\right\|+N\|h\|_{L^{2}\left(0, T_{0} ; V^{*}\right)}\right) \tag{3.19}\\
& \leq C_{2}\left(1+\left\|x_{0}\right\|+\|h\|_{L^{2}\left(0, T_{0} ; V^{*}\right)}\right)
\end{align*}
$$

for some positive constant C_{2}. Since condition (3.7) is independent of the initial values, the solution of (1.2) can be extended to the interval [$0, n T_{0}$] for natural number n, i.e., for the initial value $x\left(n T_{0}\right)$ in the interval $\left[n T_{0},(n+1) T_{0}\right]$, as analogous estimate (3.19) holds for the solution in [0, $\left.(n+1) T_{0}\right]$. Furthermore, similar to (2.12) and (2.15) in Section 2, the estimate (3.3) is easily obtained.

Now we prove the last result.If $\left(x_{0}, h\right) \in V \times L^{2}\left(0, T ; V^{*}\right)$ then x belongs to $L^{2}(0, T ; V)$. Let $\left(x_{0 i}, h_{i}\right) \in V \times L^{2}\left(0, T ; V^{*}\right)$ and x_{i} be the solution of (1.2) with $\left(x_{0 i}, h_{i}\right)$ in place of (x_{0}, u) for $i=1$, 2. Multiplying (1.2) by $x_{1}(t)-x_{2}(t)$, we have

$$
\begin{align*}
\left.\frac{1}{2} \frac{d}{d t} \right\rvert\, & x_{1}(t)-\left.x_{2}(t)\right|^{2}+\omega_{1}\left\|x_{1}(t)-x_{2}(t)\right\|^{2} \\
\leq & \omega_{2}\left|x_{1}(t)-x_{2}(t)\right|^{2}+\left\|f\left(t, x_{1}(t)\right)-f\left(t, x_{2}(t)\right)\right\|_{*}\left\|x_{1}(t)-x_{2}(t)\right\| \tag{3.20}\\
& +\left\|h_{1}(t)-h_{2}(t)\right\|_{*}\left\|x_{1}(t)-x_{2}(t)\right\|
\end{align*}
$$

If $\omega_{1}-c / 2>0$, we can choose a constant $c_{1}>0$ so that

$$
\begin{gather*}
\omega_{1}-\frac{c}{2}-\frac{c_{1}}{2}>0 \\
\left\|h_{1}(t)-h_{2}(t)\right\|_{*}\left\|x_{1}(t)-x_{2}(t)\right\| \leq \frac{1}{2 c_{1}}\left\|h_{1}(t)-h_{2}(t)\right\|_{*}^{2}+\frac{c_{1}}{2}\left\|x_{1}(t)-x_{2}(t)\right\|^{2} \tag{3.21}
\end{gather*}
$$

Let $T_{1}<T$ be such that

$$
\begin{equation*}
2 \omega_{1}-c-c_{1}-c^{-1} e^{2 \omega_{2} T_{1}} L>0 \tag{3.22}
\end{equation*}
$$

Integrating (3.20) over [$0, T_{1}$], where $T_{1}<T$ and as seen in the first part of the proof, it follows that

$$
\begin{align*}
\left(2 \omega_{1}\right. & \left.-c-c_{1}\right)\left\|x_{1}-x_{2}\right\|_{L^{2}\left(0, T_{0} ; V\right)}^{2} \\
& \leq e^{2 \omega_{2} t_{1}}\left\{\left\|x_{01}-x_{02}\right\|+\frac{1}{c}\left\|f\left(t, x_{1}\right)-f\left(t, x_{2}\right)\right\|_{L^{2}\left(0, T_{0} ; V^{*}\right)}^{2}+\frac{1}{c_{1}}\left\|h_{1}-h_{2}\right\|_{L^{2}\left(0, T_{0} ; V^{*}\right)}\right\} \\
& \leq e^{2 \omega_{2} T_{1}}\left\{\left\|x_{01}-x_{02}\right\|+\frac{1}{c} L\left\|x_{1}-x_{2}\right\|_{L^{2}\left(0, T_{0} ; V\right)}^{2}+\frac{1}{c_{1}}\left\|h_{1}-h_{2}\right\|_{L^{2}\left(0, T_{0} ; V^{*}\right)}\right\} . \tag{3.23}
\end{align*}
$$

Putting

$$
\begin{equation*}
N_{1}=2 \omega_{1}-c-c_{1}-c^{-1} e^{2 \omega_{2} T_{1}} L \tag{3.24}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left\|x_{1}-x_{2}\right\|_{L^{2}} \leq \frac{e^{2 \omega_{2} T_{1}}}{N_{1}}\left(\left\|x_{01}-x_{02}\right\|+\frac{1}{c_{1}}\left\|h_{1}-h_{2}\right\|\right) \tag{3.25}
\end{equation*}
$$

Suppose $\left(x_{0 n}, h_{n}\right) \rightarrow\left(x_{0}, h\right)$ in $V \times L^{2}\left(0, T ; V^{*}\right)$, and let x_{n} and x be the solutions of (1.2) with $\left(x_{0 n}, h_{n}\right)$ and $\left(x_{0}, h\right)$, respectively. Then, by virtue of (3.25) and (3.20), we see that $x_{n} \rightarrow x$ in $L^{2}\left(0, T_{1}, V\right) \cap C\left(\left[0, T_{1}\right] ; H\right)$. This implies that $x_{n}\left(T_{1}\right) \rightarrow x\left(T_{1}\right)$ in V. Therefore the same argument shows that $x_{n} \rightarrow x$ in

$$
\begin{equation*}
L^{2}\left(T_{1}, \min \left\{2 T_{1}, T\right\} ; V\right) \cap C\left(\left[T_{1}, \min \left\{2 T_{1}, T\right\}\right] ; H\right) \tag{3.26}
\end{equation*}
$$

Repeating this process, we conclude that $x_{n} \rightarrow x$ in $L^{2}(0, T ; V) \cap C([0, T] ; H)$.
If $\partial \phi$ satisfies the growth condition (2.23) as is seen in Corollary 2.1, we can obtain the following result.

COROLLARY 3.1. Let (2.5), (3.1), and the growth condition (2.23) be satisfied. Then (1.2) has a unique solution

$$
\begin{equation*}
x \in L^{2}(0, T ; V) \cap W^{1,2}\left(0, T ; V^{*}\right) \subset C([0, T] ; H) \tag{3.27}
\end{equation*}
$$

Furthermore, there exists a constant C_{2} such that

$$
\begin{equation*}
\|x\|_{L^{2}(0, T ; V) \cap W^{1,2}\left(0, T ; V^{*}\right)} \leq C_{2}\left(1+\left\|x_{0}\right\|+\|h\|_{L^{2}\left(0, T ; V^{*}\right)}\right) \tag{3.28}
\end{equation*}
$$

If $\left(x_{0}, h\right) \in V \times L^{2}\left(0, T ; V^{*}\right)$, then $x \in L^{2}(0, T ; V) \cap W^{1,2}\left(0, T ; V^{*}\right)$ and the mapping

$$
\begin{equation*}
V \times L^{2}\left(0, T ; V^{*}\right) \ni\left(x_{0}, h\right) \longmapsto x \in L^{2}(0, T ; V) \cap W^{1,2}\left(0, T ; V^{*}\right) \tag{3.29}
\end{equation*}
$$

is continuous.
ExAMPLE. Let Ω be a region in an n-dimensional Euclidean space \mathbb{R}^{n} with boundary $\partial \Omega$ and closure $\bar{\Omega}$. For an integer $m \geq 0, C^{m}(\Omega)$ is the set of all m-times continuously differentiable functions in Ω, and $C_{0}^{m}(\Omega)$ is its subspace consisting of functions with compact supports in Ω. If $m \geq 0$ is an integer and $1 \leq p \leq \infty, W^{m, p}(\Omega)$ is the set of all functions f whose derivative $D^{\alpha} f$ up to degree m in the distribution sense belong to $L^{p}(\Omega)$. As usual, the norm of $W^{m, p}(\Omega)$ is given by

$$
\begin{equation*}
\|f\|_{m, p}=\left(\sum_{|\alpha| \leq m}\left\|D^{\alpha} f\right\|_{p}^{p}\right)^{1 / p}=\left\{\sum_{|\alpha| \leq m} \int_{\Omega}\left|D^{\alpha} f(x)\right|^{p} d x\right\}^{1 / p} \tag{3.30}
\end{equation*}
$$

where $1 \leq p<\infty$ and $D^{0} f=f$. In particular, $W^{0, p}(\Omega)=L^{p}(\Omega)$ with the norm $\|\cdot\|_{0, p}$.
$W_{0}^{m, p}(\Omega)$ is the closure of $C_{0}^{\infty}(\Omega)$ in $W^{m, p}(\Omega)$. For $p^{\prime}=p /(p-1), 1<p<\infty, W^{-m, p}(\Omega)$ stands the dual space $W_{0}^{m, p^{\prime}}(\Omega)$ of $W_{0}^{m, p^{\prime}}(\Omega)$ whose norm is denoted by $\|\cdot\|_{-m, p}$.

We take $V=W_{0}^{m, 2}(\Omega), H=L^{2}(\Omega)$ and $V^{*}=W^{-m, 2}(\Omega)$ and consider a nonlinear differential operator of the form

$$
\begin{equation*}
A x=\sum_{|\alpha| \leq m}(-D)^{\alpha} A_{\alpha}\left(u, x, \ldots, D^{m} x\right) \tag{3.31}
\end{equation*}
$$

where $A_{\alpha}(u, \xi)$ are real functions defined on $\Omega \times \mathbb{R}^{N}$ and satisfy the following conditions:
(1) A_{α} are measurable in u and continuous in ξ. There exists $k \in L^{2}(\Omega)$ and a positive constant C such that

$$
\begin{equation*}
A_{\alpha}(u, 0)=0, \quad\left|A_{\alpha}(u, \xi) \leq C(|\xi|+k(u))\right|, \quad \text { a.e., } u \in \Omega \tag{3.32}
\end{equation*}
$$

where $\xi=\left(\xi_{\alpha} ;|\alpha| \leq m\right)$.
(2) For every $(\xi, \eta) \in \mathbb{R}^{N} \times \mathbb{R}^{N}$ and for almost every $u \in \Omega$ the following condition holds:

$$
\begin{equation*}
\sum_{|\alpha| \leq m}\left(A_{\alpha}(u, \xi)-A_{\alpha}(u, \eta)\right)\left(\xi_{\alpha}-\eta_{\alpha}\right) \geq \omega_{1}\|\xi-\eta\|_{m, 2}-\omega_{2}\|\xi-\eta\|_{0,2} \tag{3.33}
\end{equation*}
$$

where $\omega_{2} \in \mathbb{R}$ and ω_{1} is a positive constant.
Let the sesquilinear form $a: V \times V \rightarrow \mathbb{R}$ be defined by

$$
\begin{equation*}
a(x, y)=\sum_{|\alpha| \leq m} \int_{\Omega} A_{\alpha}\left(u, x, \ldots, D^{m} x\right) D^{\alpha} y d u \tag{3.34}
\end{equation*}
$$

Then by Lax-Milgram theorem we know that the associated operator $A: V \rightarrow V^{*}$, defined by

$$
\begin{equation*}
(A x, y)=a(x, y), \quad x, y \in V \tag{3.35}
\end{equation*}
$$

is monotone and semicontinuous and satisfies conditions (2.5) in Section 2.
Let $g(t, u, x, p), p \in \mathbb{R}^{m}$, be assumed that there is a continuous $\rho(t, r): \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}^{+}$ and a real constant $1 \leq \gamma$ such that

$$
\begin{gather*}
g(t, u, 0,0)=0 \\
|g(t, u, x, p)-g(t, u, x, q)| \leq \rho(t,|x|)\left(1+|p|^{\gamma-1}+|q|^{\gamma-1}\right)|p-q| \tag{3.36}\\
|g(t, u, x, p)-g(t, u, y, p)| \leq \rho(t,|x|+|y|)\left(1+|p|^{\gamma}\right)|x-y|
\end{gather*}
$$

Let

$$
\begin{equation*}
f(t, x)(u)=g\left(t, u, x, D x, D^{2} x, \ldots, D^{m} x\right) \tag{3.37}
\end{equation*}
$$

Then noting that

$$
\begin{align*}
\|f(t, x)-f(t, y)\|_{0,2}^{2} \leq & 2 \int_{\Omega}|g(t, u, x, p)-g(t, u, x, q)|^{2} d u \tag{3.38}\\
& +2 \int_{\Omega}|g(t, u, x, q)-g(t, u, y, q)|^{2} d u
\end{align*}
$$

where $p=\left(D x, \ldots, D^{m} x\right)$ and $q=\left(D y, \ldots, D^{m} y\right)$, it follows from (3.36) that

$$
\begin{equation*}
\|f(t, x)-f(t, y)\|_{0,2}^{2} \leq L\left(\|x\|_{m, 2},\|y\|_{m, 2}\right)\|x-y\|_{m, 2} \tag{3.39}
\end{equation*}
$$

where $L\left(\|x\|_{m, 2},\|y\|_{m, 2}\right)$ is a constant depending on $\|x\|_{m, 2}$ and $\|y\|_{m, 2}$.
Let $\phi: V \rightarrow(-\infty,+\infty]$ be a lower semicontinuous, proper convex function. Then for $x_{0} \in W_{0}^{m, 2}(\Omega)$ satisfying that $\phi\left(x_{0}\right)<\infty$ and $h \in L^{2}\left(0, T ; W^{-m, 2}(\Omega)\right)$, (1.2) is caused by the following nonlinear variational inequality problem:

$$
\begin{align*}
&\left(\frac{d x(t)}{d t}+A x(t), x(t)-z\right)+ \phi(x(t))-\phi(z) \\
& \leq(f(t, x(t))+h(t), x(t)-z), \quad \text { a.e., } 0<t \leq T, z \in W_{0}^{m, 2}(\Omega), \tag{3.40}\\
& x(0)=x_{0}
\end{align*}
$$

has a unique solution

$$
\begin{equation*}
x \in L^{2}\left(0, T ; W_{0}^{m, 2}(\Omega)\right) \cap C\left([0, T] ; L^{2}(\Omega)\right) . \tag{3.41}
\end{equation*}
$$

References

[1] N. U. Ahmed and X. Xiang, Existence of solutions for a class of nonlinear evolution equations with nonmonotone perturbations, Nonlinear Anal. 22 (1994), no. 1, 81-89. MR 94k:34117. Zbl 806.34051.
[2] S. Aizicovici and N. S. Papageorgiou, Infinite dimensional parametric optimal control problems, Japan J. Indust. Appl. Math. 10 (1993), no. 2, 307-332. MR 94h:49043. Zbl 797.49021.
[3] J. P. Aubin, Un théorème de compacité, C. R. Acad. Sci. Paris 256 (1963), 5042-5044. MR 27\#2832. Zbl 195.13002.
[4] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Leiden, Netherland, 1976. MR 52 11666. Zbl 328.47035.
[5] ___ Analysis and Control of Nonlinear Infinite Dimensional Systems, Mathematics in Science and Engineering, vol. 190, Academic Press, Inc., Boston, MA, 1993. MR 93j:49002. Zbl 776.49005.
[6] J. M. Yong and L. P. Pan, Quasi-linear parabolic partial differential equations with delays in the highest order spatial derivatives, J. Austral. Math. Soc. Ser. A 54 (1993), no. 2, 174-203. MR 93k:34170. Zbl 804.35139.

Jeong: Division of Mathematical Sciences, Pukyong National University, Pusan 608737, Korea
E-mail address: jmjeong@pknu.dolphin.ac.kr
Jeong: Dongeui Technical Junior College, Pusan 614-053, Korea
Park: Department of Mathematics, Pusan national University, Pusan 609-739, Korea
E-mail address: jyepark@hyowon.pusan.ac.kr

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

