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Abstract
We consider the boundary value problem

{
�gu + up = 0 in �R,
u = 0 on ∂�R,

�R being a smooth bounded domain diffeomorphic to the expanding domain
AR := {x ∈ M,R < r(x) < R + 1} in a Riemannian manifoldM of dimension n≥ 2
endowed with the metric g = dr2 + S2(r)gSn–1 . After recalling a result about existence,
uniqueness, and non-degeneracy of the positive radial solution when �R = AR, we
prove that there exists a positive non-radial solution to the aforementioned problem
on the domain �R. Such a solution is close to the radial solution to the corresponding
problem on AR.

MSC: 35B32; 35J60; 58J32

1 Introduction
Many authors studied the following boundary value problem:

⎧⎪⎨
⎪⎩

�u + λu + up =  in A,
u >  in A,
u =  on ∂A,

()

where A ⊂R
n, n ≥ , is an annulus, that is,

A =
{

x ∈R
n : R < r(x) < R

}
,

with r(x) equal to the distance to the origin. The radial solution always exists for any p > ,
it is unique and radially non-degenerate. This result is shown in [] by Ni and Nussbaum.

We would like also to mention the work [] by Kabeya, Yanagida, and Yotsutani where
general structure theorems about positive radial solutions to semilinear elliptic equa-
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tions of the form Lu + h(|x|, u) =  on radially symmetric domains (a, b) × S
n–, –∞ ≤

a < b ≤ +∞, with various boundary conditions are shown. Precisely, if u = u(r) then
Lu = (g(r)u′(r))′, with r = |x|. A classification result for positive radial solutions to the
scalar field equation �u + K(r)up =  on R

n according to their behavior as r → +∞ has
been shown by Yanagida and Yotsutani in []. Furthermore in [] the same authors proved
some existence results for positive radial solutions to �u + h(r, u) =  on radially symmet-
ric domains for different non-linearities.

The invariance of the annulus with respect to different symmetry groups has been ex-
ploited by several authors to show the existence of non-radial positive solutions in expand-
ing annuli with R, R big enough.

In the recent work [] Gladiali et al. considered the problem () on expanding annuli,

AR :=
{

x ∈R
n : R < r(x) < R + 

}
,

λ < λ,AR , λ,AR being the first eigenvalue of –� on AR. They have showed the existence of
non-radial solutions which arise by bifurcation from the positive radial solution.

On the other hand in recent years an increasing number of authors turned their attention
to the study of elliptic partial differential equations on Riemannian manifolds. We mention
only the following work: [] by Mancini and Sandeep, where the existence and uniqueness
of the positive finite energy radial solution to the equation �Hn u + λu + up =  in the
hyperbolic space are studied; [] by Bonforte et al., which deals the study of infinite energy
radial solutions to the Emden-Fowler equation in the hyperbolic space; [] by Berchio,
Ferrero, and Grillo, where stability and qualitative properties of radial solutions to the
Emden-Fowler equation in radially symmetric Riemannian manifolds are investigated.

In [], under the assumption λ < , the results shown in [] have been extended to annu-
lar domains in an unbounded Riemannian manifold M of dimension n ≥  endowed with
the metric g := dr +S(r)gSn– . gSn– denotes the standard metric of the (n–)-dimensional
unit sphere Sn–; r ∈ [, +∞) is the geodesic distance measured from a point O. In this case
� is replaced by the Laplace-Beltrami operator �g.

Problem () has been studied also in the case where the expanding annulus is replaced by
an expanding domain in R

n which is diffeomorphic to an annulus. For example in [, ]
the existence is shown of an increasing number of solutions as the domain expands. Fur-
thermore in [] the authors show such solutions are not close to the radial one, indeed
they exhibit a finite number of bumps.

In [] Bartsch et al. show instead the existence of a positive solution to the problem ()
on an expanding annular domain �R, which is close to the radial solution to the corre-
sponding problem on the annulus AR to which �R is diffeomorphic.

In this article we extend the result of [] to the case of an unbounded Riemannian
manifold M of dimension n ≥  with metric g given above. The function S(r) enjoys the
following properties:

• S(r) ∈ C([, +∞)); S(r) >  for r >  and increasing;
• limr→+∞ S′(r)

S(r) = l < +∞, ( S′(R)
S(R) )′ = o();

• (( S′(R)
S(R) )′Sn–(R))′ = o(S′(R)Sn–(R)).

All Lp-norms are computed with respect to the Riemannian measure on M given by the
density dvol = Sn–(r) dr dθ , with θ ∈ S

n–.
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The function S(r) satisfies sufficient conditions (see Lemma . in []) which allow us to
show that λ,CR

, the first eigenvalue of –�g on CR := {x ∈ M : r(x) ≥ R}, is non-negative.
Such a lemma also provides sufficient conditions to show that λ,M , the first eigenvalue on
M, is non-negative. Since the first eigenvalue on A, λ,A, is a decreasing function of R and
CR = limR→+∞ A, the first eigenvalue on A satisfies λ,A > λ,CR

≥ .
In this work we consider the case λ =  but some of the results presented here are valid

also for  < λ < λ,A.
First we recall the result concerning the existence, the uniqueness, and the non-

degeneracy of the radial solution to the problem

⎧⎪⎨
⎪⎩

�gu + up =  in A,
u >  in A,
u =  on ∂A,

()

with p >  and A := {x ∈ M | R < r(x) < R} ⊂ M. This is done in Section .
The existence of the radial positive solution u in an annulus suggests that a positive

solution exists also on a domain which is diffeomorphic to an annulus and is close to it,
and such a solution is a small deformation of u.

Let g : Sn– → R be a positive C∞-function and �R ⊂ M be the set

�R :=
{

(r, θ ) ∈R
+ × S

n– : R + g(θ )S–δ(R) < r < R +  + g(θ )S–δ(R)
}

for R > ,

max

{
,




(n – )
}

< δ ≤ 


(n – ). ()

In [] δ is chosen to be equal to  if  ≤ n ≤ . The reason why we make a different choice
is explained in Remark .. The upper bound is used in Section ..

Then the following map is a diffeomorphism between �R and the annulus AR = {x ∈ M :
R < r(x) < R + }:

T(r, θ ) =
(
r – g(θ )S–δ(R), θ

)
.

Clearly if R 	  then �R is a small deformation of AR.
If wR ∈ H

(AR) denotes the positive radial solution to

⎧⎪⎨
⎪⎩

�gu + up =  in AR,
u >  in AR,
u =  on ∂AR,

()

then we define

ũR := wR ◦ T ∈ H
(�R),

ũR(r, θ ) = wR
(
r – g(θ )S–δ(R), θ

)
.

()

The main result of this article shown in Section  is the following.
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Theorem . There exists a sequence of radii {Rk}k divergent to +∞ with the property that
for every δ >  there exists kδ ∈ N such that for any k ≥ kδ and for R ∈ [Rk + δ, Rk+ – δ], the
problem

⎧⎪⎨
⎪⎩

�gu + up =  in �R,
u >  in �R,
u =  on ∂�R,

()

admits a positive solution

uR = ũR + φR

for some φR ∈ H
(�R). Moreover, the difference S(Rk+) – S(Rk) is bounded away from zero

by a constant independent of k and φR →  in H
(�R) for R ∈ [Rk + δ, Rk+ – δ] as k → +∞.

Two examples of radially symmetric metrics whose function S(r) satisfies the hypothe-
ses given above are S(r) = √

–c sinh(
√

–cr), c <  and S(r) = r. The corresponding ambient
manifold is the space form with constant curvature equal to c (hyperbolic space) and to 
(Rn), respectively.

2 Existence, uniqueness and radial non-degeneracy of the radial solution
The existence of a positive radial solution to problem () for any p >  easily follows from
a standard variational approach.

The uniqueness of the positive radial solution and the radial non-degeneracy can be
shown following [], where we considered f (u) = λu + up, λ < , and n –  was replaced by
a constant ω ≥ .

We consider the problem

⎧⎪⎨
⎪⎩

u′′(r) + ω S′(r)
S(r) u′ + up =  in (R, R),

u >  in (R, R),
u(R) = u(R) = .

()

We define

G(r) := αSβ–(r)
[
(α +  – ω)

(
S′(r)

) – S′′(r)S(r)
]
,

where α =  ω
p+ , β = α(p – ).

Theorem . Let ω ≥ , p ∈ (, +∞). Suppose that G′ satisfies the following:
. G′(r) is of constant sign on (R, R) or
. G′(R) >  and G′(r) changes sign only once on (R, R).

Then the problem () admits at most one solution. In other terms the problem () admits at
most one radially symmetric solution. Moreover, the solution is non-degenerate in the space
of H-radially symmetric functions.

Remark . By Proposition . in [] the hypotheses of Theorem . are satisfied provided
n+
n– ≤ p < n+

n– , the function S(r) is four times differentiable, S′′′(r) > , and ( S′(r)
S′′′(r) )′ ≤  for

r ∈ (R, R).
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Remark . The metric dr +( √
–c sinh(

√
–cr))gSn– of the space form H

n(c), c < , that is,
the space of constant curvature c, satisfies the hypotheses of Theorem . and Theorem .
of []. In particular the positive radial solution to �gu + λu + up =  with the Dirichlet
boundary condition, is unique for λ ≤ . That answers the question asked by Bandle and
Kabeya in Section , part , of [] about the uniqueness of the positive radial solution on
the set (d, d) × S

n– ⊂H
n(–).

The proof of Theorem . is omitted because it is the same as the proof of Theorem .
in [] with λ = .

Remark . We would like to mention the fact that the uniqueness of the positive ra-
dial solution on the annulus {x ∈ M | R < r(x) < R}, could be proved using the results
contained in []. Precisely Theorem A, Lemma C and Lemma . therein say that the
equation (g(r)u′(r))′ + h(r, u) =  has a solution on an interval (a, b), if an integrabil-
ity condition is satisfied. Also note that this result is established by reducing the equa-
tion above to an equation of the form v′′

tt + k(t, v) on (, ) using the change of variable
t :=

∫ r
a /g(s) ds∫ b
a /g(s) ds

. The integrability condition is formulated in terms of the function k(t, v) :=

(
∫ b

a /g(s) ds)g(r(t))h(r(t), v). In our case g(r) = Sn–(r) and h(r, u) = Sn–(r)up. Because of
the presence of an integral in the definition of t = t(r), it is difficult to determine r = r(t)
which appears in the formula for k(t, v). Consequently this approach is more difficult than
the one provided by Theorem ..

In the next sections we study how of the first eigenvalue of the linearized operator as-
sociated with () behaves if the inner radius of AR := {x ∈ M | R < r(x) < R + }, varies. To
that aim we make here some observations that will be useful later.

Let uR be the unique positive radial solution of (). It is the solution to
⎧⎪⎨
⎪⎩

u′′(r) + (n – ) S′(r)
S(r) u′(r) + up(r) =  in (R, R + ),

u >  in (R, R + ),
u(R) = u(R + ) = .

()

We recall that limr→+∞ S′(r)
S(r) = l ∈ [, +∞).

Exactly as in Section  of [], the function ũ(t) := uR(t + R) solves
⎧⎪⎨
⎪⎩

ũ′′ + (n – ) S′(t+R)
S(t+R) ũ′ + ũp =  on (, ),

ũ >  on (, ),
ũ() = ũ() = ,

()

and it satisfies
∫ 



(
ũ′) dt ≤ C. ()

So the function ũ is bounded in H
((, )) consequently also in C((, )). Furthermore ũ

tends to a non-vanishing function ũ∞ as R → +∞ which is the solution to
⎧⎪⎨
⎪⎩

ũ′′∞ + (n – )lũ′∞ + ũp
∞ =  on (, ),

ũ∞ ≥  on (, ),
ũ∞() = ũ∞() = .

()
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3 Spectrum of the linearized operator
In this section we recall some results which can be proved as in []. We recall that A = {x ∈
M | R < r(x) < R}, r being the geodesic distance of x to the point O.

We introduce two operators:

L̃ω
u : H(A) ∩ H

(A) → L(A),

L̃ω
u := S(r(x)

)(
–�g – ωpup–I

)
;

L̂ω
u : H((R, R)

) ∩ H

(
(R, R)

) → L((R, R)
)
,

L̂ω
u v := S(r)

(
–v′′(r) – (n – )

S′(r)
S(r)

v′ – ωpup–v
)

.

The eigenvalues of the operator L̃ω
u are defined as follows:

λ̃ω
i = inf

W⊂H
(A),dim W =i

max
v∈W ,v=

∫
A(|∇v| – ωpup–v) dvol∫

A S(r(x))–v dvol
.

The eigenvalues λ̂ω
i of the operator L̂ω

u can be evaluated similarly replacing the space H
(A)

by H
((R, R)).

Let wi denote the normalized eigenfunctions (‖wi‖L∞ = ) of L̂ω
u associated with the

eigenvalue λ̂ω
i .

Lemma . Let u denote a radial solution of () which is non-degenerate in the space of
radially symmetric functions in H

. Then u is degenerate, that is, there exists a non-trivial
solution to

{
Luv = –�gv – pup–v =  on A,
v =  on ∂A,

if and only if there exists k ≥  such that λ̂
 + λk = . Here λk denotes the kth eigenvalue

of –�Sn– . The solution can be written as w(r(x))φk(θ (x)), φk(θ (x)) being the eigenfunction
associated to λk .

In order to study the degeneracy of u we look at the eigenvalues ω close to  of the
problem:

{
–Lω

u v := �gv + ωpup–v =  on A,
v =  on ∂A.

()

Remark . We observe that ω is an eigenvalue of () if and only if zero is an eigenvalue
of L̃ω

u .

Remark . The Morse index m(u) of u equals the number of negative eigenvalues of
Lu = –�g – pup–I counted with their multiplicity. m(u) can be computed considering the
negative eigenvalues of L̃ω

u , with ω = .

If σ denotes the spectrum of an operator, then the spectra of L̃ω
u , L̂ω

u , –�Sn– are related
as follows (compare Lemma . of []).
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Proposition .

σ
(
L̃ω

u
)

= σ
(
L̂ω

u
)

+ σ (–�Sn– ).

In other terms, the Morse index depends only on the first eigenvalue of L̂ω
u .

4 Properties of the first two eigenvalues
Let us introduce the operator

L̄ω
u v := –v′′ – (n – )

S′(r)
S(r)

v′ – ωpup–v

acting on functions defined on the interval I = (R, R). Its eigenvalues are λω
m.

The following propositions are inspired by Proposition . and Proposition . of [].

Proposition . If λ
 < , then there exists α >  such that if |ω – | < α, then the first

eigenvalue of the operator L̄ω
u , satisfies λω

 < .

Proof First we show that there exists C >  such that λω
 ≤ C for any ω close enough to .

Let φ ∈ C∞
 (I) such that

∫
I φSn–(r) dr = . Since

λω
 ≤

∫
I

[(
φ′) – ωpup–φ]Sn–(r) dr,

λω
 ≤

∫
I

[(
φ′) + ( – ω)pup–φ]Sn–(r) dr –

∫
I
pup–φSn–(r) dr

≤
∫

I

[(
φ′) + αpup–φ]Sn–(r) dr +

∫
I
pup–φSn–(r) dr ≤ C.

Let φω
 >  denote the eigenfunction of L̄ω

u on I associated with the first eigenvalue and
such that

∫
I((φ

ω
 )′)Sn–(r) dr = .

Then

λω
 =

 –
∫

I ωpup–φ
ωSn–(r) dr∫

I φ
ωSn–(r) dr

. ()

As ω →  then the function φω
 converges weakly in H

(I) (which injects into L(I)) and
strongly in L(I) to φ ∈ H

(I). φ is not identically zero; otherwise using () we could
show that limω→ |λω

 | = +∞.
Furthermore there exists a constant C >  such that

λω
 ≥  + |ω|p‖up–‖L∞‖φ

ω‖L∫
I φ

ωSn–(r) dr
≥ C.

Then λω
 tends to λ̄ as ω tends to  up to a subsequence.

Since φω
 >  converges weakly in H

(I) to φ, we get φ ≥  and it solves

L̄
uv := –v′′ – (n – )

S′(r)
S(r)

v′ – pup–v = λ̄v
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on I with Dirichlet boundary conditions. We already proved that φ ≡ , so by the maxi-
mum principle we get φ >  at the interior of I and hence λ̄ coincides with the first eigen-
value λ

. �

Proposition . If the second eigenvalue λ
 of L̄

u is positive, then there exists α >  such
that λω

 >  for any ω satisfying |ω – | < α.

Proof By proof ad absurdum we assume that λω
 ≤ . Since λω

 > λω
 and λω

 is bounded
independently of ω, also λω

 must have a limit as ω tends to . Let λ̃ ≤  denote the limit.
If φω

 is the eigenfunction associated with the eigenvalue λω
 , then φω

 converges weakly
to a function φ̃ ≡  and it solves

–v′′ – (n – )
S′(r)
S(r)

v′ – pup–v = λ̃v

in I with Dirichlet boundary conditions. Consequently φ̃ is an eigenfunction and λ̃ ≤  is
the corresponding eigenvalue. Since by hypothesis λ

 > , λ̃ must coincide with the first
eigenvalue λ

 of L̄
u and φ̃ must be the first eigenfunction of L̄

u.
Furthermore

∫
I φω

 φω
 Sn–(r) dr = . By Proposition . also φω

 converges weakly to φ̃,
and from this we conclude

∫
I φ̃Sn–(r) dr = , which contradicts the fact that φ̃ is non-

vanishing.
This shows that λω

 > . �

It is well known that the unique positive radial solution to () has Morse index equal
to  and consequently the first two eigenvalues of L̄

u satisfy λ
 < , λ

 ≥ . Second, the
non-degeneracy of the radial solution implies that any eigenvalue of L̄

u cannot be equal to
zero. In conclusion the hypotheses of the previous propositions are satisfied.

5 Dependence of the eigenvalues on the inner radius R
We recall that AR = {x ∈ M | R < r(x) < R + }. We consider the following operators:

L̃ω
uR

: H(AR) ∩ H
(AR) → L(AR),

L̃ω
uR

:= S(r(x)
)(

–�g – ωpup–
R I

)
;

L̂ω
uR

: H((R, R + )
) ∩ H


(
(R, R + )

) → L((R, R + )
)
,

L̂ω
uR

v := S(r)
(

–v′′(r) – (n – )
S′(r)
S(r)

v′ – ωpup–
R v

)
.

Let λ̂ω
m denote the mth eigenvalue of the operator L̂ω

uR
.

In this section we study how λ̂ω
m varies as R → +∞ and the exponent p is fixed.

Proposition . Let βω
m be the eigenvalues for the problem

{
–v′′ – (n – )lv′ – ωpũp–

∞ v = βω
mv on (, ),

v() = v() = ,

where ũ∞ solves (). Then

λ̂ω
m(R) = βω

mS(R) + o
(
S(R)

)
as R → +∞.
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Proof Let us define the operator

L̄ω
R : H((, )

) ∩ H

(
(, )

) → L((, )
)
,

L̄ω
R v :=

S(t + R)
S(R)

(
–v′′ – (n – )

S′(t + R)
S(t + R)

v′ – ωpũp–
R v

)
.

If wm is the mth eigenfunction of L̂ω
uR

, then the function w̃m,R(t) = wm(t + R) satisfies

L̄ω
R w̃m,R =

λ̂ω
m(R)

S(R)
w̃m,R, ()

and vice versa. Consequently the spectra of L̄ω
R and L̂ω

R are related by

σ
(
L̂ω

uR

)
= S(R)σ

(
L̄ω

R
)
.

Let L̄ω∞ : H((, )) ∩ H
((, )) → L((, )) be the operator given by

L̄ω
∞v = –v′′ – (n – )lv′ – ωpũp–

∞ v. ()

Since the coefficients of L̄ω
R converge uniformly on (, ) to the coefficients of L̄ω∞, as R

tends to +∞,

σ
(
L̄ω

R
)

= σ
(
L̄ω

∞
)

+ o().

Consequently

σ
(
L̂ω

uR

)
= S(R)σ

(
L̄ω

∞
)

+ o
(
S(R)

)
. �

Corollary . Let α be the number described by Propositions . and . and suppose that
|ω – | < α. Then the second eigenvalue satisfies λ̂ω

 (R) >  for R large enough.

Proposition . Let ω and α as in Corollary .. Then there exists R >  such that ω can
be an eigenvalue of the problem

{
–�gv = ωpwp–

R v in AR,
v =  on ∂AR

()

for R > R, if and only if, for some k ≥ ,

λ̂ω
 (R) = –λk ,

where λk = k(k + n – ) is the kth eigenvalue of –�Sn– .

Proof In view of Remark ., ω is an eigenvalue if and only if  belongs to the spectrum
of L̃ω

uR
. By Proposition . each eigenvalue of L̃ω

uR
is the sum of an eigenvalue of L̂ω

uR
and an

eigenvalue of –�Sn– . Since the first two eigenvalues λ̂ω
 (R), λ̂ω

 (R) of L̂ω
uR

are, respectively,
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negative and positive for ω close enough to  and R > R, we have λ̂ω
m(R) + λk =  only for

m =  and k ≥ . �

We set C(R) := (( S′(R)
S(R) )′Sn–(R))′.

Proposition . Suppose C(R) = o(S′(R)Sn–(R)). The first eigenvalue λ̂ω
 (R) of L̂ω

uR
u is a

differentiable function of R and

∂λ̂ω
 (R)
∂R

= βω
 S(R)S′(R) + o

(
S(R)S′(R)

)

as R tends to +∞.

Proof Let w,R denote the first eigenfunction of L̂ω
uR

with eigenvalue λ̂ω
 (R). The function

w̃,R(t) = w,R(t + R) is the solution to
{

–v′′ – (n – ) S′(t+R)
S(t+R) v′ – ωpũp–

R v = λ̂ω
 (R) v

S(t+R) on (, ),
v() = v() = ,

()

where ũR(t) = uR(t + R).
Let φ ≥  be the function solving

{
–φ′′

 – (n – )lφ′
 – ωpũp–

∞ φ = βω
 φ on (, ),

φ() = φ() = ,

where βω
 = limR→+∞

λ̂ω
 (R)

S(R) <  is the first eigenvalue. Then w̃,R tends uniformly to φ as
R → +∞.

w̃,R and the eigenvalue λ̂ω
 (R) are analytic functions of R by the results in [], p..

Then the function W := ∂w̃,R
∂R is the solution of the equation that we get from L̂ω

ũR
w̃,R =

λ̂ω
 (R)w̃,R by differentiating with respect to R. That is,

–W ′′ – (n – )
S′(t + R)
S(t + R)

W ′ – (n – )
∂

∂R

(
S′(t + R)
S(t + R)

)
w̃′

,R

– ωp(p – )ũp–
R

∂ũR

∂R
w̃,R – ωpũp–

R W

=
∂λ̂ω

 (R)
∂R

w̃,R

S(t + R)
+

λ̂ω
 (R)

S(t + R)
W –

S′(t + R)
S(t + R)

λ̂ω
 (R)w̃,R.

If we multiply this identity by w̃,R and integrate on (, ) with respect to the density Sn–(t +
R) dt we get

∫ 



[
W ′w̃′

,RSn–(t + R) – (n – )w̃′
,Rw̃,R

∂

∂R

(
S′(t + R)
S(t + R)

)
Sn–(t + R)

]
dt

–
∫ 



[
ωp(p – )ũp–

R
∂ũR

∂R
w̃

,R + ωpũp–
R w̃,RW

]
Sn–(t + R) dt

=
∂λ̂ω

 (R)
∂R

∫ 


w̃

,RSn–(t + R) dt + λ̂ω
 (R)

∫ 


W w̃,RSn–(t + R) dt

– λ̂ω
 (R)

∫ 


w̃

,RS′(t + R)Sn–(t + R) dt.
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Multiplying equation () (after replacing v by w̃,R) by W and integrating we get

∫ 


W ′w̃′

,RSn–(t + R) dt –
∫ 


ωpũp–

R w̃,RWSn–(t + R) dt

= λ̂ω
 (R)

∫ 


w̃,RWSn–(t + R) dt.

If we subtract these two equations we conclude:

–(n – )
∫ 


w̃′

,Rw̃,R
∂

∂R

(
S′(t + R)
S(t + R)

)
Sn–(t + R) dt

– ωp(p – )
∫ 


ũp–

R
∂ũR

∂R
w̃

,RSn–(t + R) dt

=
∂λ̂ω

 (R)
∂R

∫ 


w̃

,RSn–(t + R) dt – λ̂ω
 (R)

∫ 


w̃

,RS′(t + R)Sn–(t + R) dt. ()

The first term in () can be estimated as follows:

∫ 


w̃,Rw̃′

,R
∂

∂R

(
S′(t + R)
S(t + R)

)
Sn–(t + R) dt

= –



∫ 


w̃

,R

(
∂

∂R

(
S′(t + R)
S(t + R)

)
Sn–(t + R)

)′
dt

= o
(((

S′(R)
S(R)

)′
Sn–(R)

)′)

= o
(([

S(R)S′′(R) –
(
S′(R)

)]Sn–(R)
)′) = o

(
S′(R)S(R)n–).

Secondly, using Lemma ., we get

∫ 


ũp–

R
∂ũR

∂R
w̃

,RSn–(t + R) dt =
∫ 


ũp–

R S(R)
∂ũR

∂R
w̃

,R
Sn–(t + R)

S(R)
dt = o

(
Sn–(R)

)
.

After dividing () by S(R)n–, we deduce

∂λ̂ω
 (R)
∂R

∫ 


w̃

,R
Sn–(t + R)

Sn–(R)
dt

= λ̂ω
 (R)

∫ 


w̃

,R
S′(t + R)Sn–(t + R)

Sn–(R)
dt + o

(
S(R)S′(R)

)
.

As w̃,R tends to φ, and λ̂ω
 (R) tends to βω

 S(R), we can conclude

∂λ̂ω
 (R)
∂R

(∫ 


φ

 dt + o()
)

= βω
 S(R)S′(R)

(∫ 


φ

 dt + o()
)

+ o
(
S(R)S′(R)

)
. �

Lemma . The radial function ũR = uR(t + R) which solves () is continuously differen-
tiable with respect to R. Moreover, if ( S′(R)

S(R) )′ = o(), then

lim
R→+∞ Sq(R)

∫ 



∣∣∣∣∂ũR

∂R

∣∣∣∣
q

dt = , ∀q > .
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Proof The differentiability with respect to R follows from the implicit function theorem
applied to the function

F(w, R) = w′′ + (n – )
S′(t + R)
S(t + R)

w′ + wp

and the radial non-degeneracy of ũR.
The function V := ∂ũR

∂R is the solution to

{
V ′′ + (n – ) S′(t+R)

S(t+R) V ′ + (n – )( S′(t+R)
S(t+R) )′ũ′

R + pũp–
R V =  on (, ),

V () = V () = .

We show that S(R)‖V (·, R)‖H
((,)) ≤ C. If by contradiction this is not true, then there exists

a divergent sequence {Rm}m such that S(Rm)‖V (·, Rm)‖H
((,)) → +∞ as m → +∞.

The function zm = V (·,Rm)
‖V (·,Rm)‖H


is the solution to

⎧⎨
⎩

z′′
m + (n – ) S′(t+R)

S(t+R) z′
m + (n – )( S′(t+R)

S(t+R) )′
S(Rm)ũ′

Rm
S(Rm)‖V (·,Rm)‖H


+ pũp–

Rm zm =  on (, ),

zm() = zm() = .

We observe that zm → z weakly in H
(, ) and strongly in Lq((, )) for any q > . Further-

more since ũ′
Rm is bounded as follows from (), we can consider the limit of the equation

above and see that z solves

{
z′′

 + (n – )lz′
 + pũp–

∞ z =  on (, ),
z() = z() = .

()

Lemma . says that z ≡ , but that contradicts ‖z‖H
((,)) = .

From the claim we now proved it follows that S(R)V (·, R) converges weakly in H
 and

strongly in Lq to a function V̄ which solves

{
V̄ ′′ + (n – )lV̄ ′ + pũp–

∞ V̄ =  on (, ),
V̄ () = V̄ () = .

From that we deduce V̄ ≡ . �

Lemma . The unique solution of problem () is z ≡ .

Proof The problem () is also the limit as R tends to +∞:

{
w′′ + (n – ) S′(t+R)

S(t+R) w′ + pũp–
R w =  on (, ),

w() = w() = .

Since ũR is radially non-degenerate, the problem above and its limit () admit only the
trivial solution. �

Finally we are able to show that there exist values of the inner radius R for which ω is an
eigenvalue of ().
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Proposition . If |ω – | < α as in Propositions . and ., then there exists R̄ >  such
that ω can be an eigenvalue of the problem

{
�gv + ωpup–

R v =  in AR,
v =  on ∂AR,

()

at most for values of R which belong to a sequence {Rω
k }k , with Rω

k > R̄. Such a sequence
satisfies

S
(
Rω

k
)

=

√
–k(k + n – )

βω


+ o()

as k → +∞.

Proof Proposition . ensures that there exists R̄ such that λ̂ω
 (R) is strictly decreasing for

R > R̄. Hence the equation λ̂ω
 (R) + λk =  (see Proposition .) has at most one solution

R = Rω
k for k ≥ . From Proposition . we get

λ̂ω

(
Rω

k
)

=
(
βω

 + o()
)
S(Rω

k
)

= –k(k + n – ).

From this we easily reach our conclusion. �

When ω =  we get the values of R for which the operator LuR (defined in Lemma .) is
possibly degenerate.

Corollary . There exists R̄ such that LuR is degenerate for R = R
k > R̄. Indeed ω =  is an

eigenvalue of () if and only if λ̂
(R

k) satisfies the condition

λ̂

(
R

k
)

+ λk = .

Furthermore the sequence {R
k}k satisfies

S
(
R

k
)

=

√
–k(k + n – )

β


+ o()

as k → +∞ and

τ := lim
k→+∞

(
S
(
R

k+
)

– S
(
R

k
))

=
√|β

 |
.

From the previous proposition we also conclude that for any R > R̄ and R = R
k , k ≥  the

operator LuR is non-degenerate.
The next proposition easily follows from the monotonicity of λ̂

(R), Lemma ., and
Corollary ..

Proposition . The Morse index of the radial solution uR increases when R crosses R
k

and tends to +∞ as R → +∞.
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The following proposition shows that for values of R such that the differences S(R) –
S(R

k), S(R
k+) – S(R) are bounded from below, then the eigenvalue ω is bounded away

from  by a constant independent of k.

Proposition . For η >  there exists γ (η) >  and k(η) ∈ N such that for k ≥ k(η) and
R ∈ (R

k , R
k+) with min{S(R) – S(R

k), S(R
k+) – S(R)} ≥ η we have

|ωR – | ≥ γ (η)

for any eigenvalue ωR of the problem ().

Proof Suppose by contradiction that there exists a divergent sequence {km}m, a sequence
of radii Rm ∈ (R

km
, R

km+) with min{S(R) – S(R
km

), S(R
km+) – S(R)} ≥ η and a sequence of

eigenvalues {ωm}m such that limm→+∞ ωm = .
If m is large enough, then |ωm – | ≤ α, where α has the value given by Propositions .,

., and consequently

S(Rm) =

√
hm(hm + n – )

–β
ωm


+ o(),

where {hm}m is a divergent sequence of natural numbers.
Since Rm ∈ (R

km
, R

km+), S(Rm) = S(R
km

) + η or S(Rm) = S(R
km+) – η with η ≤ η ≤

S(R
km+)–S(R

km )
 .

Suppose that S(Rm) = S(R
km

) + η. Since in the other case the proof is the same, it will be
omitted. Then, using

S(Rkm ) =

√
km(km + n – )

–β
ωkm


+ o()

and β
ωkm
 = β

 + o(), βωm
 = β

 + o(), we get

√
hm(hm + n – )

–β
 + o()

=

√
km(km + n – )

–β
 + o()

+ η.

If we square this identity and we use the following Taylor formula centered at km:

√
hm(hm + n – ) =

√
km(km + n – ) +




km + n – √
km(km + n – )

(hm – km) + o
(
(hm – km)

)
,

we get

(hm – km)
km + n/ – √
km(km + n – )

+ o
(
(hm – km)

)
= η

√
–β

 + o().

Since

(km + n/ – )√
km(km + n – )

→ 
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as m tends to ∞,

 < hm – km = η

√
–β

 + o()
(
 + o()

)
< 

for m large enough. That contradicts the fact that hm and km are natural numbers. �

6 Study of the approximate solutions
Lemma . Let ũR denote the function defined by () ũR(ρ, θ ) = wR(T(ρ, θ )). Then

–�gũR = ũp
R + O

(


S+δ(R)

)
.

Proof Since (ρ, θ ) = T–(r, θ ) = (r + g(θ )
Sδ (R) , θ ), the function ũR(ρ, θ ) = wR(T(ρ, θ )) satisfies the

identity

�gũR =
∂ũR

∂ρ + (n – )
S′(ρ)
S(ρ)

∂ũR

∂ρ
+


S(ρ)

�Sn– ũR

=
∂ũR

∂r + (n – )
S′(r + g(θ )S–δ(R))
S(r + g(θ )S–δ(R))

∂ũR

∂r
+


S(r + g(θ )S–δ(R))

�Sn– ũR

=
∂wR

∂r + (n – )
S′(r)
S(r)

∂wR

∂r
+


S(r + g(θ )S–δ(R))

�Sn– ũR

+ (n – )
S′(r + g(θ )S–δ(R))S(r) – S(r + g(θ )S–δ(R))S′(r)

S(r)S(r + g(θ )S–δ(R))
∂wR

∂r

= –wp
R + O

(


S+δ(R)

)
.

This identity follows from:
• S′(r + g(θ )S–δ(R))S(r) – S(r + g(θ )S–δ(R))S′(r) = O([S′′(R)S(R) – (S′(R))]S–δ(R)), from

which we get

S(r + g(θ )S–δ(R))S′(r) – S(r)S′(r + g(θ )S–δ(R))
S(r)S(r + g(θ )S–δ(R))

= O
((

S′(R)
S(R)

)′
S–δ(R)

)

= o
(
S–δ(R)

)
.

Here we used the hypothesis ( S′(R)
S(R) )′ = o().

• |�Sn– ũR| = O( 
Sδ (R) ), which is consequence of

∂ũR

∂θ
= –

∂wR

∂r
∂g
∂θ


Sδ(R)

. �

Solutions to () correspond to critical points of the C-class functional

IR(u) =



∫
�R

|∇u| dvol –


p + 

∫
�R

|u|p+ dvol

on H
(�R). It is well defined for p >  if n =  and for  < p ≤ n+

n– if n ≥ . For any u ∈
H

(�R) we identify I ′
R(u) with the linear continuous operator grad IR(u) from H

(�R) to
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H
(�R), defined by

grad IR(u) := u – (–�g)–(|u|p–u
)
. ()

To this aim we observe that

I ′
R(u)[v] :=

∫
�R

(∇u∇v – |u|p–uv
)

dvol.

If we suppose v ∈ H
(�R), then

I ′
R(u)[v] =

∫
�R

(∇u∇v – |u|p–uv
)

dvol = –
∫

�R

v
(
�gu + |u|p–u

)
dvol

= –
∫

�R

v�g
[
u + �–

g
(|u|p–u

)]
dvol =

∫
�R

∇v∇[
u + �–

g
(|u|p–u

)]
dvol.

If 〈w, w〉 =
∫
�R

∇w∇w dvol is the inner product in H
(�R), then by the Riesz theorem,

we define grad IR(u) as the operator such that

I ′
R(u)[v] =

〈
grad IR(u), v

〉
.

As a consequence

grad IR(u) = u + �–
g

(|u|p–u
)

= u –
(
–�–

g
)(|u|p–u

)
.

Lemma . If p >  in the case n =  and if  < p ≤ n+
n– in the case n ≥ , then

‖grad IR(u)‖H
(�R) ≤ DS–κ (R), with κ = –n+δ

 > , δ as in () and D independent of R.

Proof If we define zR := grad IR(ũR), then �gũR + ũp
R = �gzR.

From Lemma . we get

∫
�R

|∇zR| dvol =
∫

�R

(
–�gũR – ũp

R
)
zR dvol

≤
(∫

�R

(
�gũR + ũp

R
) dvol

) 

(∫

�R

z
R dvol

) 


≤ C
(∫

�R


S+δ(R)

dvol
) 


C

(∫
�R

|∇zR| dvol
) 


.

C is the constant (independent of R) of the Poincaré inequality.
Since meas(�R) = O(Sn–(R)),

‖zR‖H
(�R) ≤ D


S+δ(R)

S
n–

 (R) = DS–κ (R). �

Lemma . Let v be any function in H
(AR), then ṽ := v ◦ T ∈ H

(�R) and

∫
�R

|∇ ṽ| dvol =
∫

AR

|∇v| dvol + O
(

S′(R)
S+δ(R)

∫
AR

|∇v| dvol
)

.
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Proof We observe that |∇ ṽ| = ( ∂ ṽ
∂ρ

) + 
S(ρ)

∑n–
i= a

i (θ )( ∂ ṽ
∂θi

), where θ = (θ, . . . , θn–) ∈ S
n–.

From the expression of T we easily deduce

∂ ṽ
∂ρ

=
∂v
∂r

,
∂ ṽ
∂θi

=
∂v
∂θi

– S–δ(R)
∂v
∂r

∂g
∂θi

.

Consequently

∫
�R

|∇ ṽ| dvol

=
∫

AR

[(
∂v
∂r

)

+


S(r + g(θ )S–δ(R))

×
n–∑
i=

a
i (θ )

(
S–δ(R)

(
∂v
∂r

∂g
∂θi

)

+
(

∂v
∂θi

)

– S–δ(R)
∂v
∂r

∂v
∂θi

∂g
∂θi

)]
dvol

=
∫

AR

[(
∂v
∂r

)

+


S(R)

n–∑
i=

a
i (θ )

(
∂v
∂θi

)
]

dvol + I + I =
∫

AR

|∇v| dvol + I + I,

with

I =
∫

AR


S(R + g(θ )S–δ(R))

×
n–∑
i=

a
i (θ )

[
S–δ(R)

(
∂v
∂r

)(
∂g
∂θi

)

– S–δ(R)
∂v
∂r

∂v
∂θi

∂g
∂θi

]
dvol,

I =
∫

AR

(
S–(r + g(θ )S–δ(R)

)
– S–(r)

) n–∑
i=

a
i (θ )

(
∂v
∂θi

)

dvol,

|I| ≤
∫

AR

|S(r) – S(r + g(θ )S–δ(R))|
S(r + g(θ )S–δ(R))S(r)

n–∑
i=

a
i (θ )

(
∂v
∂θi

)

dvol

≤ CS′(R)S––δ(R)
∫

AR

S–(r)
n–∑
i=

(
∂v
∂θi

)

dvol

≤ CS′(R)S––δ(R)
∫

AR

|∇v| dvol,

|I| ≤ C
S+δ(R)

∫
AR

(
∂v
∂r

)

dvol

+
∫

AR

C
S(r)Sδ(R)

n–∑
i=

[
S(r)

(
∂v
∂r

)

+


S(r)

(
∂v
∂θi

)]
dvol

≤ C
S+δ(R)

∫
AR

(
∂v
∂r

)

dvol +
C

S+δ(R)

∫
AR

(
∂v
∂r

)

dvol

+
C

S+δ(R)

∫
AR

n–∑
i=


S(r)

(
∂v
∂θi

)

dvol

≤ CS––δ(R)
∫

AR

|∇v| dvol. �
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We consider the eigenvalue problems

{
�gv + λ̃pũp–

R v =  in �R,
v =  on ∂�R,

()

{
�gv + λpwp–

R v =  in AR,
v =  on ∂AR.

()

ψ̃R,, . . . , ψ̃R,k denote the unit L-eigenfunctions of () and λ̃R,, . . . , λ̃R,k are the corre-
sponding eigenvalues. φR,, . . . ,φR,k denote the eigenfunctions of () and λR,, . . . ,λR,k are
the corresponding eigenvalues. Let us consider the functionals

Q̃R(u) =

∫
�R

|∇u| dvol∫
�R

pũp–
R u dvol

, u ∈ H
(�R), u ≡ ,

QR(v) =

∫
AR

|∇v| dvol∫
AR

pwp–
R v dvol

, v ∈ H
(AR), v ≡ .

Lemma . Let ṼR,k denote the subspace of H
(�R) spanned by φ̃R,, . . . , φ̃R,k with φ̃R,i =

φR,i ◦ T with i = , . . . , k, then

Q̃R(ṽ) ≤ λR,k + O
(
S′(R)S––δ(R)

)
λR,k + O

(
S–(R)

)
λR,k as R → +∞

for any ṽ ∈ ṼR,k .

Remark . The reason of our choice for the lower bound for the value of δ (see ()) is
that the term O(S′(R)S––δ(R)), which appears in Lemmas . and ., must tend to  as
R → +∞, also when S′(R) is unbounded.

Proof The function ṽ can be expressed as ṽ =
∑k

i= αiφ̃R,i. Consequently

Q̃R(ṽ) =
∑k

i,j= αiαj
∫
�R

∇φ̃R,i∇φ̃R,j dvol∑k
i,j= αiαj

∫
�R

pũp–
R φ̃R,iφ̃R,j dvol

,

∇φ̃R,i∇φ̃R,j =
∂φ̃R,i

∂ρ

∂φ̃R,j

∂ρ
+


S(ρ)

k∑
l=

a
l (θ )

∂φ̃R,i

∂θl

∂φ̃R,j

∂θl
,

∇φR,i∇φR,j =
∂φR,i

∂r
∂φR,j

∂r
+


S(r)

k∑
l=

a
l (θ )

∂φR,i

∂θl

∂φR,j

∂θl
.

Now we will express ∇φ̃R,i∇φ̃R,j in terms of ∇φR,i∇φR,j:

∇φ̃R,i∇φ̃R,j =
∂φR,i

∂r
∂φR,j

∂r
+


S(r + g(θ )S–δ(R))

×
k∑

l=

a
l (θ )

(
∂φR,i

∂θl
– S–δ(R)

∂φR,i

∂r
∂g
∂θl

)(
∂φR,j

∂θl
– S–δ(R)

∂φR,j

∂r
∂g
∂θl

)
.
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Observe that


S(r + g(θ )S–δ(R))

=


S(r)( + O(S′(r)S–(r)S–δ(R)))
=


S(r)

+ O
(
S′(r)S–(r)S–δ(R)

)
.

Then ∇φ̃R,i∇φ̃R,j equals

∂φR,i

∂r
∂φR,j

∂r
+

[


S(r)
+ O

(
S′(R)S––δ(R)

)]

×
k∑

l=

a
l (θ )

(
∂φR,i

∂θl
– S–δ(R)

∂φR,i

∂r
∂g
∂θl

)(
∂φR,j

∂θl
– S–δ(R)

∂φR,j

∂r
∂g
∂θl

)

≤ ∇φR,i∇φR,j + O
(
S′(R)S––δ(R)

) k∑
l=

∂φR,i

∂θl

∂φR,j

∂θl

+ C
[


S(r)

+ O
(
S′(R)S––δ(R)

)]

×
k∑

l=

[
S(r)

(
∂φR,i

∂r

)

+ S(r)
(

∂φR,j

∂r

)

+


S(r)

(
∂φR,i

∂θl

)

+


S(r)

(
∂φR,j

∂θl

)]

= ∇φR,i∇φR,j + O
(
S′(R)S––δ(R)

)∇φR,i∇φR,j

+ C
[


S(r)

+ O
(
S′(R)S––δ(R)

)] · S(r)
[|∇φR,i| + |∇φR,j|

]

=
(
 + O

(
S′(R)S––δ(R)

))∇φR,i∇φR,j + O
(
S–(r)

)[|∇φR,i| + |∇φR,j|
]
.

We used the inequality

∂φR,j

∂r
∂φR,i

∂θl
≤ S(r)

(
∂φR,j

∂r

)

+


S(r)

(
∂φR,i

∂θl

)

.

Now we will express p
∫
�R

ũp–
R φ̃R,iφ̃R,j dvol in terms of p

∫
AR

wp–
R φR,iφR,j dvol:

p
∫

�R

ũp–
R φ̃R,iφ̃R,j dvol

= p
∫
Sn–

∫ R++g(θ )S–δ (R)

R+g(θ )S–δ (R)
ũp–

R φ̃R,iφ̃R,jSn–(ρ) dρ dθ

= p
∫
Sn–

∫ R+

R
wp–

R φR,iφR,jSn–(r + g(θ )S–δ(R)
)

dr dθ

= p
∫
Sn–

∫ R+

R
wp–

R φR,iφR,jSn–(r) dr dθ

+ p
∫
Sn–

∫ R+

R
wp–

R φR,iφR,j
(
Sn–(r + g(θ )S–δ(R)

)
– Sn–(r)

)
dr dθ

≤ p
∫

AR

wp–
R φR,iφR,j dvol + O

(
S′(R)S––δ(R)

)∫
AR

wp–
R φR,iφR,j dvol

= p
∫

AR

wp–
R φR,iφR,j dvol

(
 + O

(
S′(R)S––δ(R)

))
,

with O(S′(R)S––δ(R)) > .
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We can write

Q̃R(ṽ) =
∑k

i,j= αiαj
∫

AR
(( + O(S′(R)S––δ(R)))∇φR,i∇φR,j + O(S–(R))[|∇φR,i| + |∇φR,j|]) dvol∑k

i,j= αiαjp
∫

AR
wp–

R φR,iφR,j dvol( + O(S′(R)S––δ(R)))
.

That can be simplified observing that φR,i and φR,j satisfy
∫

AR
pwp–

R φR,iφR,j dvol = δi,j. As
a consequence

k∑
i,j=

αiαjp
∫

AR

wp–
R φR,iφR,j dvol =

k∑
i=

α
i p

∫
AR

wp–
R φ

R,i dvol =
k∑

i=

α
i .

Furthermore, by integrating by parts we can show the following identity:

p
∫

AR

wp–
R φR,iφR,j dvol =

∫
AR

∇φR,i∇φR,j dvol.

Consequently the formula for Q̃R(ṽ) can be written as follows:

Q̃R(ṽ) =
∑k

i,j= αiαj
∫

AR
(( + O(S′(R)S––δ(R)))∇φR,i∇φR,j + O(S–(R))[|∇φR,i| + |∇φR,j|]) dvol∑k

i= α
i p

∫
AR

wp–
R φ

R,i dvol

=
∑k

i= α
i
∫

AR
(( + O(S′(R)S––δ(R)))|∇φR,i|) dvol∑k

i= α
i

+
O(S–(R))[

∑k
i= α

i
∫

AR
|∇φR,i| dvol +

∑k
j= α

j
∫

AR
|∇φR,j| dvol]∑k

i= α
i

≤ λR,k
(
 + O

(
S′(R)S––δ(R)

))
+ λR,kO

(
S–(R)

)
.

Here we use the fact that λR,k is the largest among the eigenvalues λR,i, i = , . . . , k. �

In the same way it is possible to show the following result.

Lemma . Let WR,k denote the subspace of H
(AR) spanned by ψR,, . . . ,ψR,k with ψR,i =

ψ̃R,i ◦ T– with i = , . . . , k, then

QR(v) ≤ λ̃R,k + O
(
S′(R)S––δ(R)

)
λ̃R,k + O

(
S–(R)

)
λR,k as R → +∞

for any v ∈ WR,k .

The following proposition is the analog of Proposition . for the eigenvalues of the
problem ().

Proposition . For any η >  let γ (η) >  and k(η) ∈ N be as in Proposition .. Then
there exists k̄(η) ≥ k(η) such that for any k ≥ k̄(η) and any R ∈ [R

k +η, R
k+ –η] the following

inequality holds:

|ω̃R – | ≥ γ (η)


for any eigenvalue λ̃R of ().
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The proof is omitted because it is exactly the same as the one of Proposition . in [].

7 Proof of Theorem 1.1
7.1 Proof in the subcritical case
The exponent p satisfies p >  if n =  or

 < p ≤ n + 
n – 

= ∗ –  if n ≥ .

We consider the C-class functional IR(u) := 

∫
�R

(|∇u| – 
p+ |u|p+) dvol in H

(�R) and
whose Frechet derivative I ′

R(u) is identified with the element grad IR(u) ∈ H
(�R) described

by (). Analogously the second derivative I ′′
R(u) which satisfies

I ′′
R(u)[φ,ψ] :=

∫
�R

(∇φ∇ψ – p|u|p–φψ
)

dvol

can be identified with a linear continuous operator DIR(u) from H
(�R) to H

(�R).
Indeed, suppose v ∈ H

(�R), then

I ′′
R(u)[v, v] =

∫
�R

(|∇v| – p|u|p–v)dvol = –
∫

�R

v
(
�gv + p|u|p–v

)
dvol

= –
∫

�R

v�g
[
v + �–

g
(
p|u|p–v

)]
dvol =

∫
�R

∇v∇[
v + �–

g
(
p|u|p–v

)]
dvol.

Here 〈w, w〉 =
∫
�R

∇w∇w dvol is the inner producta in H
(�R). By the Riesz theorem,

we define DIR(u) as the operator such that

I ′′
R(u)[v, v] =

〈
DIR(u)[v], v

〉
.

As a consequence

DIR(u)[v] = v + �–
g

(
p|u|p–v

)
= v –

(
–�–

g
)(

p|u|p–v
)
.

If ũR := wR ◦ T is the function defined by (), we look for a solution u in �R having the
form u = ũR + φR, where φR ∈ H

(�R) such that grad IR(ũR + φR) = . This implies that the
problem can be reformulated as a fixed point problem:

φR = FR(φR),

where the operator

FR : H
(�R) → H

(�R)

is defined by

FR(φ) := –
[
DIR(ũR)

]–[
grad IR(ũR) + GR(φ)

]
. ()
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Here

GR(φ) = grad IR(ũR + φ) – grad IR(ũR) – DIR(ũR)[φ].

Note that in our case GR(φR) = – grad IR(ũR) – DIR(ũR)[φR].
If R

k are the values of R for which Proposition . and Corollary . hold, then if we set
Rk := R

k , the difference S(Rk+) – S(Rk) tends to τ = √
–β


as k tends to +∞.

Let us choose η >  and R ∈ [Rk + η, Rk+ – η] with k large enough and which will be
determined below. We show that FR maps the ball

Bη,R :=
{
φ ∈ H

(�R) : ‖φ‖H

≤ A(η)S(R)–κ

}

into itself. A(η) := C(η)C̄, where C(η) is the constant which appears in Lemma . and
C̄ = max{D, D, D}, where D, D, D are the constants which appear in Lemma . and
Lemma .. We recall that κ = 

 ( – n + δ) >  with δ as in ().
If k ≥ k̄(η) (k̄(η) is given by Lemma .), then

∥∥FR(φ)
∥∥

H


≤ C(η)
[∥∥grad IR(ũR)

∥∥
H


+

∥∥GR(φ)
∥∥

H


]

≤ C(η)
[
DS(R)–κ + D‖φ‖q

H


]
,

where q := min{p, } > . Consequently

∥∥FR(φ)
∥∥

H

≤ C(η)C̄S(R)–κ + C(η)C̄Aq(η)S–qκ (R) < A(η)S–κ (R)

for R enough large. It remains to show that FR is a contracting map. From Lemmas .
and . we deduce

∥∥FR(φ) – FR(φ)
∥∥

H


≤ C(η)
[∥∥GR(φ) – GR(φ)

∥∥
H



]

≤ C(η)C̄Ad(η)S–κd(R)‖φ – φ‖H


<


‖φ – φ‖H


,

where d is p –  or .
By the fixed point theorem we get there exists a solution φR ∈ Bη,R such that ‖φR‖H


≤

A(η)S–κ (R). The function ũR + φR is then the solution to (). The sign of such a solution is
shown to be positive in Lemma ..

7.2 Proof in the supercritical case
p is assumed to be bigger than n+

n– and n ≥ .
The operator FR defined above now is assumed to map the space H

(�R) ∩ L∞(�R) into
itself. We choose η > , R ∈ [Rk + η, Rk+ – η], β ∈ (,κ) and κ ≤ . We observe that this
last condition is satisfied if δ ≤ (n – )/.

We will construct an operator which maps the following set into itself:

Cη,R :=
{
φ ∈ H

(�R) ∩ L∞(�R) : ‖φ‖H
(�R) ≤ A(η)S(R)–κ ,‖φ‖L∞(�R) ≤ S(R)–β

}
, ()

where A(η) and η are chosen like in the subcritical case.
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Suppose N ∈R and positive. We define the function wN ∈ C(R) as follows:

wN (s) =

{
|s|p+ if |s| ≤ N ,
N +  if |s| ≥ N + .

We also introduce the functional IR,N (u) : H
(�R) → H

(�R),

IR,N (u) =
∫

�R

[


|∇u| –


p + 

wN (u)
]

dvol.

We set N := ‖ũR‖L∞(�R). We will assume N ≥ N. For these values of N the operator
grad IR,N (ũR) coincides with grad IR(ũR) and DIR,N (ũR) coincides with DIR(ũR).

Let FR,N be the operator defined like FR (see ()) but using IR,N at the place of IR. We
will show that FR,N is a contraction map on Cη,R for R large enough.

First, reasoning like in the subcritical case, we can show that if ‖φ‖H
(�R) ≤ A(η)S–κ (R)

then ‖FR,N (φ)‖H
(�R) ≤ A(η)S–κ (R).

If we set

zR(φ) := |ũR + φ|p–(ũR + φ) – ũp
R – pũp–

R φ,

then since ũR is uniformly bounded, we easily conclude

∣∣zR(φ)
∣∣ ≤

{
C|φ|p if  < p ≤ ,
C(|φ| + |φ|p) if p > .

()

If ‖φ‖L∞(�R) ≤ S–β(R) then

∥∥zR(φ)
∥∥

L∞(�R) ≤ C
(‖φ‖

L∞(�R) + ‖φ‖p
L∞(�R)

) ≤ C
(
S–β (R) + S–pβ (R)

)
.

By Lemma . we get

∥∥FR,N (φ)
∥∥

L∞(�R) ≤ C
(
S–κ (R) + S–β (R) + S–pβ (R) + S–(R)

) ≤ S–β(R)

for R large enough, because β ∈ (,κ) and κ ≤ .
If R ∈ [Rk + η, Rk+ – η] and k is large enough, then reasoning as before we can show FR,N

is contracting:

∥∥FR,N (φ) – FR,N (φ)
∥∥

H

≤ c‖φ – φ‖H


,

∥∥FR,N (φ) – FR,N (φ)
∥∥

L∞ ≤ c′‖φ – φ‖L∞ ,

with c, c′ < .
By the fixed point theorem we get the existence of a function φR ∈ Cη,R (see ()) such

that uR = ũR + φR satisfies
{

�guR + |uR|p–uR =  in �R,
uR =  on ∂�R.

()

It remains to show that uR >  in �R. This follows from Lemma ..
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Lemma . The solution uR = ũR + φR to the problem () is positive.

Proof We know that ũR >  in �R and φR →  in H
(�R). Suppose that uR ≤  in a regular

set DR. If R → +∞ then meas(DR) → . We will show that such a set must be empty. If we
multiply () by u–

R and we integrate on DR we get

∫
�R

∣∣∇u–
R
∣∣ dvol =

∫
�R

|uR|p–(u–
R
) dvol ≤ ‖uR‖p–

∞

∫
�R

(
u–

R
) dvol.

Using the Poincaré inequality, if λ(DR) is the first eigenvalue of –�g on DR, we have

λ(DR)
∫

DR

w dvol ≤
∫

DR

|∇w| dvol.

From this we deduce

λ(DR)
∫

�R

(
u–

R
) dvol ≤ ‖uR‖p–

L∞

∫
�R

(
u–

R
) dvol;

this says that λ(DR) ≤ ‖uR‖p–
L∞ , contradicting the fact that the left hand side tends to +∞

as meas(DR) → . �

The proofs of the following technical lemmas are omitted because they are exactly the
same as the ones of Lemmas ., ., ., . of [].

The first lemma says that for R within a certain range the norm of the inverse oper-
ator DIR(ũR)– in the space LR := {F : H

(�R) → H
(�R) | F linear and continuous} is

bounded.

Lemma . If η >  then for any k ≥ k̄(η) ∈ N, where k̄(η) is the function described by
Proposition ., and R ∈ [Rk + η, Rk+ – η] the operator is invertible and

∥∥[
DIR(ũR)

]–∥∥
LR

≤ C(η),

where C(η) >  and independent of k.

Lemma . The map GR : H
(�R) → H

(�R) defined by

GR(φ) := grad IR(ũR + φ) – grad IR(ũR) – DIR(ũR)[φ]

satisfies

∥∥GR(φ)
∥∥

H

≤

⎧⎨
⎩

D‖φ‖p
H


if  < p ≤ ,

D‖φ‖
H


if p > ,

()

where the constant D does not depend on R, provided ‖φ‖H

≤ .

Furthermore if ‖φ‖H

≤ , ‖φ‖H


≤ , then

∥∥GR(φ) – GR(φ)
∥∥

H

≤

{
D(‖φ‖p–

H


– ‖φ‖p–
H


)‖φ – φ‖p

H


if  < p ≤ ,

D(‖φ‖H


– ‖φ‖H

)‖φ – φ‖H


if p > .

()
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Lemma . There exists C >  independent of R, such that for R large enough the following
estimate holds:

∥∥FR(φ)
∥∥

L∞(�R) ≤ C
(∥∥FR(φ)

∥∥
L(�R) + ‖zR‖L∞(�R) + S–(R)

)
.
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Endnote
a In [12] 〈I′′R (u), v〉 is not an inner product but it represents the image of v by the operator I′′R (u). In our work 〈I′′R (u), v〉 is

replaced by D2 IR(u)[v].
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