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Abstract

This paper presents a novel software radio implementation for joint channel estimation, data decoding, and noise
variance estimation in multiple-input multiple-output (MIMO) space division multiple access (SDMA). In contrast to
many other iterative solutions, the proposed receiver is derived within the theoretical framework of a unified
message-passing algorithm, combining belief propagation (BP) and the mean field approximation (MF) on the
corresponding factor graph. The algorithm minimizes the region-based variational free energy in the system under
appropriate conditions and, hence, converges to a fixpoint. As a use-case, we consider the high-rate packet-oriented
IEEE 802.11n standard. Our receiver is implemented on a software-defined radio platform dubbed MIMONet,
composed of a GNU radio software component and a universal software radio peripheral (USRP). The receiver was
evaluated in real indoor environments. The results of our study clearly show that, once synchronization issues are
properly addressed, the BP-MF receiver provides a substantial performance improvement compared to a
conventional receiver also in real-world settings. Such improvement comes at the expense of an increase in running
time that can be as high as 87. Therefore, the trade-off between communication performance and receiver
complexity should be carefully evaluated in practical settings.

Keywords: MIMO communications, Space division multiple access, Belief propagation, Mean field approximation,
Factor graphs, Software-defined radios

1 Introduction
Multiple-input multiple-output (MIMO) technology is
popular in wireless communications due to the increased
spectrum efficiency brought along by the use of multiple
antennas in transmission, reception, or both. A further
performance improvement is possible when MIMO tech-
nology is used in combination with orthogonal frequency
division multiplexing (OFDM) modulation, namely, when
different streams of information bits are modulated on
orthogonal subcarriers.
The basic role of the receiver is to decode the infor-

mation bits from the received signal which is affected by
various unknown factors, such as the channel response
and receiver noise. Receivers were originally designed to
process the received signal in a cascaded fashion, starting
with synchronization, then channel estimation, equaliza-
tion, and finally decoding. Building on the intuition that
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(soft) information generated by one module can actually
be re-used as a refined input to othermodules, amultitude
of receiver structures performing iterative, “turbo”-like
processing have been proposed in the literature. Results
unequivocally show substantial performance gains com-
pared to non-iterative architectures. However, separate
design of the individual modules cannot provide the guar-
antee of global optimality or convergence. Moreover, it is
not clear what type of information the modules should
exchange and how to combine/process it. In recent years,
several works have looked at the receiver design from the
perspective of Bayesian inference on graphical models [1].
The use of formal frameworks for approximate infer-
ence allows for a principled design of iterative receiver
structures. Among the various algorithms for approximate
inference [1], the belief propagation (BP) algorithm [2]
(also referred to as sum-product algorithm [3]) is the
most celebrated one. The algorithm operates by passing
messages on the so-called factor graph, which represents
the factorization of the probabilistic model of the com-
munication system. The algorithm is able to compute
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exact marginal probability density functions (pdfs) only
when the factor graph is cycle free; otherwise, it outputs
approximations of the marginal pdfs. Still, it was shown
to work well in many graphs with cycles. This led to its
widespread use in digital communications [3, 4]. However,
BP usually yields intractable computations in probabilistic
models with mixed discrete and continuous variables (see,
e.g., [5]), which is also the case with our MIMO model.
Different from BP, the mean field (MF) approximation [1]
is a variational inference method that has been suc-
cessfully applied to continuous probabilistic models. The
algorithm also admits a message-passing formulation [6],
and typically has simple closed-form message com-
putation, especially for conjugate-exponential models.
Its main drawback is that, for some models, the provided
solution is not accurate enough, due to the underly-
ing approximation of the joint posterior pdf (see [1] for
more details).When the probabilistic model contains both
continuous and discrete variables and the dependencies
between them are both deterministic and stochastic, it is
advantageous to apply the BP and MF algorithms in those
parts of the factor graph where they are most suitable. For
this purpose, we employ the recently proposed unifying
inference framework that combines BP and MF [7]. In a
nutshell, the factor graph is divided into two parts, the BP
part and theMF part, where, respectively, BP-like andMF-
like messages are computed. The framework states clear
message computation rules, including specific expressions
for the messages to be passed between the two parts. The
unified nature of the algorithm resides in the fact that it
iteratively optimizes a single objective function. Having
derived a BP-MF-based MIMO-space division multiple
access (SDMA) receiver in [8], we want to adapt and test
it in real channels using software-defined radio (SDR).
SDR systems are becoming commonly used in the

wireless networking research community due to their
flexibility in rearranging different communication archi-
tectures with limited effort. Three key virtues of SDR
are reconfigurability, intelligence, and flexibility [9]. To
reduce hardware integration costs and to increase
flexibility in implementing the physical layer at the
same time, SDR systems run functional modules—
such as synchronization, modulation/de-modulation,
coding/decoding, interleaving/de-interleaving, and chan-
nel parameter estimation—in a software that is executed
on personal computers. Therefore, SDR technology facil-
itates implementation of reconfigurable radio systems
where dynamic selection of parameters for the aforemen-
tioned modules is possible. The literature reports a num-
ber of SDR test-beds, designed to test network-level pro-
tocols. Popular among them are the Wireless Open Access
Research Platform (WARP) [10, 11] developed at Rice
University and the Microsoft Research Software Radio
(MS-SORA) [12]. Hydra [13], developed at the University

of Texas at Austin, is a SDR testbed comprising radio soft-
ware by GNU (recursive acronym for “GNU’s Not Unix”)
and universal software radio peripheral (USRP) by Ettus
Research™ [14]. The media access control layer (MAC)
and the physical layer (PHY) design of Hydra implements
the IEEE 802.11 distributed coordination function and a
2 × 2 MIMO-OFDM based on the IEEE 802.11a/g stan-
dard, respectively. Since then USRP hardware/GNU radio
software was used to implement and test a series of heuris-
tic receivers at PHY [15–17], other USRP/GNU radio
implementations test a rate adaptation technique [18] and
a random access protocol for MIMO networks [19]. To
our best knowledge, there is only one publication related
to a USRP hardware/GNU radio software implementa-
tion based on a theoretical framework: the expectation-
maximization (EM) algorithm with a BP maximization
step has been used in the context of OFDM physical-layer
network coding (PNC) systems for phase tracking and
single-user channel decoding [20].
This paper assesses the real performance of a MIMO-

SDMA receiver, performing joint multi-user data decod-
ing, multi-channel, and noise variance estimation (JDE),
implemented on a self-made USRP/GNU radio test-bed
dubbed MIMONet [21]. In contrast to many existing
receiver implementations, ours is based on principled
design, namely the combined BP-MF message-passing
framework [7], where the virtues of BP and MF are kept
but their respective drawbacks are avoided. Furthermore,
the paper examines synchronization of (i) the USRP hard-
ware, (ii) PHY burst and carrier at sample rate, and (iii)
the CPU cores to process the individual data streams in
parallel.
The rest of the paper is organized as follows. Section 2

presents an overview of the system under consideration,
focusing on the PHY and MAC. As an example, we con-
sider the high-rate packet-oriented IEEE 802.11n standard
[22]. Section 3 presents the test-bed setup and addresses
three levels of synchronization. Section 4 applies the com-
bined BP-MF message passing to JDE. Section 5 evaluates
the performance of the proposed scheme in real envi-
ronments. A conventional MIMO receiver comprising a
MIMO zero-forcing channel estimator and a maximum-
likelihood sequence decoder is used as a benchmarking
reference. We investigate the bit-error rate (BER), packet-
error rate (PER), and the execution time per uncoded bit
in both line-of-sight (LOS) and none-line-of-sight (NLOS)
conditions. The results of our experiments clearly demon-
strate the receiver complexity vs. performance trade-off: if
BP-MF is executed with a single iteration, its performance
is worse than that of the conventional receiver. How-
ever, the performance of the BP-MF drastically improves
with the number of iterations: with five iterations, its
performance is already consistently better than the con-
ventional receiver, while up to 4 dB performance gain can
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be achieved after about 20 iterations when BP-MF has
converged.
Notation: In the following, (·)†, R(·), and I(·) denote

the conjugate transpose and the real and the imaginary
parts of a complex argument, respectively. The symbol
∠ is the argument of a complex number. The symbol
diag{·} denotes a square matrix with the argument along
its main diagonal. The Hadamard product of two vectors
is denoted by �. Moreover, ‖ · ‖ is the two norm of the
argument. Vectors and matrices in the frequency domain
(time domain) are represented by boldface lowercase and
uppercase Latin (Greek) letters, respectively, unless oth-
erwise stated. The notation col{·} represents the column
vector with the elements in the argument as its entries.
The symbol 0m×n denotes them× n-dimensional all-zero
matrix, whereas In represents the identity matrix of size
n × n. The pdf of a multivariate Gaussian random vec-
tor with mean μ and covariance matrix � is denoted by
CN(·;μ,�). The pdf of a Gamma distribution with scale a
and rate b is denoted by Ga(·; a, b).
2 System description
We consider a packet-oriented multi-stream MIMO-
OFDM WLAN system with NT transmit (Tx) antennas
and NR receive (Rx) antennas that implements multiple
parallel, spatially segregated channels. As a working exam-
ple, we refer to the IEEE 802.11n standard [22]. Each
channel may support a separate data stream k ∈ [1,K ],
K � min{NT ,NR}.
Without loss of generality, we assume that antenna k ∈

[1,NT ] is transmitting while antenna r ∈ [1,NR] is receiv-
ing. The kth information stream {uk[i] } comprises Lu ∈ N

bits per frame. The information bit sequence uk is for-
ward error correction (FEC) encoded with rate R, fed into
the symbol interleaver �k , serial-to-parallel converted,
mapped onto a modulation alphabet of size Sk = 2Mk ,
Mk ∈ N, and the resulting symbols modulate Na active
out of N carriers. To ease channel estimation, Np pilot
tones with indices in P ⊂ {�(N − Na − Np)/2 + 1 :
(N + Na + Np)/2 + 1�} are multiplexed with the data.
Specifically, the pilot sequence of stream k, k ∈ [1,K ], is
repeatedly taken from the kth row of theK×Kdim.Walsh-
Hadamard matrix, K = 2�, � ∈ N. Figure 1 illustrates the
data and pilot placement.
The composite data vector dk[n]∈ SN

k of OFDM sym-
bol n, n ∈ [1,Q], with Q � �Lu/(RNa)	, Lu/R mod Na =
0, is multiplexed with the N-point Fourier matrix F ∈
C
N×N , fed into the permutation matrix�s ∈ B

(N+P)×N to
add a cyclic prefix of length P, and sent over the channel.
Without loss of generality, the relative propagation delays,
caused by the channel, are incorporated in the channel
impulse response (CIR). In receiver r, after analog-digital
conversion the equivalent time-discrete observation vec-
tor ζ r[n]∈ C

N+P is given by

ζ r[n] � ζ r[nT − τr]=

= E(e)T r(τr)

NT∑

k=1
Ark(τr)�sF†dk[n]+ωr[n] , (1)

where T denotes the OFDM symbol time duration. The
Toeplitz channel matrix Ark(τr) ∈ C

(N+P)×(N+P) is con-
stituted of the static discrete-delay CIR αrk ∈ C

L, L ≤ P.
The distortion matrix E(e) ∈ C

(N+P)×(N+P) accounts for
the frequency offset (FO) of the (common) local reference
oscillator. It has the form

E(e) = diag[exp{−jφP} · · · exp{jφ(N − 1)}] (2)

with the phase φ � φ(e) = 2πe/N , where e = [−0.5, 0.5]
is the FO normalized to subcarrier spacing. The matrix
Tr(τr) ∈ B

(N+P)×(N+P), containing the time offset (TO)
τr ∈ N0, is given by

Tr(τr) =
(
0τr×(N+P−τr) 0τr×τrk
IN+P−τr 0(N+P−τr)×τr

)
. (3)

This TO is mainly caused by the signal buffers in the
receiving USRPs. Finally, the entries of the vector ωr ∈ C

N

are independent circularly symmetric Gaussian random
variables with variance σ 2

w.
From (1), (2), and (3), the received unsynchronized

time-discrete signal vector ζ r[n], r = 1, . . . ,NR, in
(1) is FO-corrected, fed into the permutation matrix
Pr ∈ B

N×(N+P) to remove the cyclic prefix, Fourier-
transformed, and finally TO-corrected by the diagonal
matrix D(τr) ∈ C

N×N with the mth diagonal entry
Dm,m(τ̂r) = exp{j2πτr(m− 1)/N},m = 1, . . . ,N , to yield
the frequency-discrete vector

yr[n]� D(τr)FPrE(e)†ζ r[n] , (4)

r = 1, . . . ,NR.

2.1 Probabilistic model of the MIMO system
Suppose that exact estimations of the TO and FO are
available at the receiver. Then, the signal vector in (4)
simplifies to

yr[n]=
NT∑

k=1
hrk � dk[n]+wr[n] , (5)

where the components of hrk � Wαrk , with W ∈ C
N×L

denoting the truncated Fourier matrix, are samples of the
frequency response of the channel between transmitter k
and receiver r. For the design of the receiver, we make
the assumption that the different channels are a priori
mutually independent. Thus, we consider the prior pdf
p(h11, . . . ,hNRNT ) = ∏NR

r=1
∏NT

k=1 p(hrk), where each fac-
tor is modeled as a complex Gaussian prior pdf with zero
mean and covariance �

p
hrk , i.e.,
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m=

m 4616450433=
Fig. 1 The placement of data symbols (diagonal stripes), pilots (filled), and unused carriers (empty) according to IEEE 802.11n (Na = 52, Np = 4,
N = 64)

p(hrk) = CN
(
hrk ; 0,�

p
hrk

)
, r ∈ [1,NR] , k ∈ [1,NT ] .

(6)

While the assumption we make does not model/take
into account spatial correlation, it leads to lower com-
plexity channel estimation [8]. We thus prefer low com-
plexity over performance of the algorithm. In (5), the
frequency-domain noise vector wr has the pdf p(wr) =
CN(wr ; 0, λ−1

r IN ) with λr � 1/N0 being the noise preci-
sion.
As design criterion, we use the bit-wise MAP decision

rule, which minimizes the BER. That is, the decoded value
of the ith information bit of the kth stream is

ûk(i) = argmax
uk(i)∈{0,1}

p(uk(i)|Y), (7)

where p(uk(i)|Y) is the marginal posterior pdf of bit uk(i)
and Y contains the observation vectors of all receive
antennas referring to all OFDM symbols of a packet: Y �
{yr[n] | r ∈ [1,NR] , n ∈ [1,Q] }.
The marginal posterior pdf required in (7) is computed

from the joint posterior pdf of the variables in the proba-
bilistic model of the system by marginalizing out all vari-
ables but the bit of interest. Collecting all unknown system
variables (channel responses, noise precision, data sym-
bols, and information sequences) in � , invoking Bayes’
rule and using the system assumptions, the joint posterior
pdf writes

p(�|Y) ∝
NR∏

r=1

⎡

⎣
Q∏

n=1
p(yr[n] |hr1, . . . ,hrNT ,d1[n] , . . . ,

dNT [n] , λr) p(λr)
NT∏

k=1
p(hrk)

]

×
NT∏

k=1
p(dk[1] , . . . ,dk[Q] |uk)

Ik∏

i=1
p(uk(i)).

(8)

In the following, we introduce the notation for the fac-
tors in (8) and give their functional form. We define
the “observation” factors fYr to be the likelihood of the
corresponding variables. From (5), we have

fYr (hr1, . . . ,hrNT ,d1[1] , . . . ,dNT [Q] , λr)

�
Q∏

n=1
p(yr[n]|hr1, . . . ,hrNT ,d1[n] , . . . ,dNT [n], λr)

=
Q∏

n=1
CN

(
yr[n] ;

NT∑

k=1
hrk � dk[n] , λ−1

r IN

)
.

The prior pdf of the precision of the noise at the rth
receiver is denoted by f	r . We choose a gamma prior pdf
(i.e., a conjugate prior for the likelihood fYr ) and set its
parameters to be non-informative:

f	r (λr) � p(λr)
= Ga(λr ; 0, 0).

For the prior pdf of the channel vector hrk , we write
fHrk (hrk) � p(hrk), with p(hrk) given by (6). The factor
p(dk[1] , . . . ,dk[Q] |uk) is denoted by fCk and stands for
the deterministic operations of coding, interleaving, and
modulation mapping performed in transmitter k. Finally,
fUk,i(uk(i)) � p(uk(i)) is the prior probability mass func-
tion of the ith information bit of transmitter k. We assume
a uniform prior, i.e., the bit values are a priori equally
probable.
It is helpful to visualize the probabilistic dependencies

between the system variables by representing the factor-
ization of the joint posterior pdf in a factor graph [3].With
the above definitions, the factor graph representing (8) is
depicted in Fig. 2.
Now that we have defined the probabilistic model, it

is important to note that exact marginalization of (8)
requires evaluation of high-dimensional integrals that
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Fig. 2 Factor graph representation of the pdf factorization in (8)

do not admit closed-formed expressions. That is, direct
marginalization is computationally intractable. Therefore,
we use an approximate inference framework to compute
the estimates of the marginal pdfs of the variables, called
beliefs. Then, the MAP decision in (7) will be applied
to the beliefs b(uk(i)) ≈ p(uk(i)|Y) of the information
bits.

2.2 Physical layer convergence protocol
To facilitate synchronization and automatic gain control,
a preamble of length Li symbols with Li mod N = 0, is
prepended to each OFDM packet.
The preamble follows the IEEE 802.11n high-

throughput (HT) greenfield format without a legacy
compatible part, as sketched in Fig. 3. Notice that nei-
ther coding nor scrambling is applied to generate the
preamble.
The offset binary phase-shift keying (BPSK)-modulated

short training field (STF) of the kth Tx antenna comprises
a sequence of identical training symbols each of length
N/4, extending over two OFDM symbols [22] Section
20.3.9. The periodic structure of the STF is ideally suited
for FO estimation. A subsequent BPSK-modulated first
long training field (LTF), composed of two identical train-
ing symbols each of length N , assists the receiver in esti-
mating the TO and the CIR of the channel between the Tx
antenna k and Rx antenna r. The following legacy signal

Fig. 3 Greenfield preamble structure adopted from the IEEE 802.11n
standard [22]

field (SIG) carries information on the HT packet format.
Additional NT − 1 high-throughput LTFs ∈ C

NT (N+P) are
based on the same long training symbol as the first LTF in
the preamble.
For the other Tx antennas k′, k′ �= k, cyclic shift is

applied to the above preamble structure to prevent beam-
forming when similar signals are transmitted on different
spatial streams [22].
The receiver is unsynchronized and does not know the

channel coefficients and the data sequences.

3 Test-bed setup and synchronization
We consider a NT × NR MIMO communication link
between one Tx node and one Rx node, comprising two
host personal computers (PCs) and N = NT +NR USRPs,
as illustrated in Fig. 4 for NT = NR = 2.
Each node was realized with the components given

in Table 1. At hardware level of SDR, each USRP con-
tains a bank of ADC/DACs, a wideband radio front end,
and a vertical antenna. At software level of SDR, digital
signal processing is distributed between internal field-
programmable gate arrays (FPGA) and an external host
PC.
The open source software framework GNU radio under

GNU general public license (GPL) was adopted to real-
ize the transceiver chain depicted in Fig. 4. The choice of
GNU radio was motivated by its scalability, its flexibility
in setting the signal processing components, and its wide
user base.
Three different levels of synchronization are needed

to realize MIMO communications on computer-hosted
hardware: (i) synchronization of the USRPs; (ii) burst syn-
chronization at sample level; (iii) synchronization of the
CPU cores to process the individual data streams simulta-
neously.
In the sequel, we describe how we addressed synchro-

nization at each level.

3.1 USRP hardware synchronization
To enable MIMO communications, the transceiver must
incorporate the following two functionalities: (i) each
USRP hardware requires clock synchronization to derive
the local oscillator frequency and timing synchroniza-
tion to align the analog-to-digital converter/digital-to-
analog converter (ADC/DAC) samples; (ii) all CPU cores
have to align the digital signal streams in frequency [23]
by the 10MHz singleton and in time by the pulse-per-
second (PPS) timing references. Our synchronizer, listed
in Table 1, derives these references from GPS signals. In
this way, PPS signals can be derived with an accuracy
better than ± 50 ns.
When two USRPs are located next to each other, the

internal 10MHz /1 PPS reference of one USRP can be
used to synchronize the other with a MIMO cable.
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Fig. 4 A 2 × 2 MIMO-SDMA link with one transmitting node and one receiving node

3.2 PHY joint burst and carrier synchronization
3.2.1 Methodology
Given an observation of a random vector Z specified by
a family p(Z|θ) of pdfs parameterized by θ , the task is
to compute an estimate of this parameter. The maximum
likelihood (ML) point estimate of θ reads

θ̂ = argmax
θ

p(Z|θ). (9)

Subsequently, we present a low-complex closed-form
solution to joint ML time-offset and fractional frequency-
offset estimation.

3.2.2 Synchronizer design
Let us return to the specific model in (1) with τr modR =
0, r ∈ [1,NR], where R is the data rate. When two subse-
quent training symbols are identical, the received vector
ζ [τr] at antenna r, r ∈ [1,NR], and its time-shifted version
ζ [τr + (N + P)T] are related by

ζ [τr + (N + P)T]= exp{j2πe(N + P)/N}ζ [τr] . (10)

To obtain a ML-based synchronizer that handles frame
and frequency synchronization, one might choose the
parameter vector θ and observation vector Z as, respec-
tively, θ = {τ1, . . . , τNR , e} and Z = col{Z1, . . . ,ZNR}
withZr � ζ [τr + (N +P)T]− exp{j2πe(N +P)/N}ζ [τr].
The latter choice accounts for the time periodicity of
the preamble. The synchronizer seeks to find the joint
estimate

Table 1 Hardware components constituting one node

Type Model

PC Intel®-Core™ i7-2600 @ 3.4GHz

USRP body Ettus Research™ N210

USRP radio front end Ettus Research™ XCVR2450

Synchronizer Spectracom Corp.® EC20S

{τ̂1, . . . , τ̂NR , ê︸ ︷︷ ︸
θ̂

} = argmax
θ

log p(Z|θ ∈ Rτ ,e). (11)

Notice that the likelihood function in (11) exhibits a
unique maximum in contrast to that in the work by [24].
A valid burst synchronization is achieved if θ̂ is con-

tained in the region

Rτ ,e �
{

τ1, . . . , τNR , e |
NR∑

r=1
ζ [τr + (N + P)T]

= exp{j2πe(N + P)/N}
NR∑

r=1
ζ [τr]

}
.

Due to the model assumptions, the log-likelihood func-
tion in (11) reads

log p(Z|θ ∈ Rτ ,e) ∝ −‖Z†�−1Z‖2. (12)

The covariance matrix � is given by � = E{ωω†} =
N0I, where I is the identity matrix. Expanding (12), we get

‖Z†�−1Z‖2 ∝
NR∑

r=1
‖ζ [τr] ‖2 + ‖ζ [τr + (N + P)T] ‖2

− 2�{exp{j2πe(N + P)/N}ζ [τr]†
ζ [τr + (N + P)T] }.

(13)

The log-likelihood function in (12) can first be maxi-
mized w.r.t. e, leading to

ê = − N
2π(N + P)T

∠
( NR∑

r=1
ζ [τr]† ζ [τr + (N + P)T]

)
+ I.

(14)

The integer part I of the FO e cannot be resolved at this
stage. When, however, an external oscillator controls the
clocks of the USRPs, I = 0, and e is confined to the range
[−0.5,+0.5]. Plugging (14) into (13) , the log-likelihood
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function in (12) can now be maximized w.r.t. τ1, . . . , τNR .
Following this approach, we have

{τ̂1, . . . , τ̂NR } = arg min
τ1,...,τNR

NR∑

r=1

(
‖ζ [τr] ‖2 + ‖ζ [τr + (N + P)T] ‖2

−2‖ζ [τr]† ζ [τr + (N + P)T] ‖
)
.

(15)

Inspecting (15), it can be seen that the TO of the rth
receive stream is independent of the other r − 1 receive
streams. As a result,

τ̂r = argmin
τr

(‖ζ [τr] ‖2 + ‖ζ [τr + (N + P)T] ‖2

−2‖ζ [τr]† ζ [τr + (N + P)T] ‖
)
, r ∈ [1,NR] .

(16)

Substituting (16) into (14), yields

ê = − N
2π(N + P)T

∠
( NR∑

r=1
ζ [τ̂r]† ζ [τ̂r + (N + P)T]

)
.

(17)

The above burst synchronization algorithm is imple-
mented in GNU radio software at the host PC.
The resulting synchronized observation vector y[n, i]�
col

{
y1[n, i] . . . yNR [n, i]

}
, n = 1, . . . ,Q, i = 1, . . . ,N (cf.

(4)) is post-processed by MATLAB®.

3.3 Core synchronization
GNU radio 3.6.0 has an incorporated thread-per-block
scheduler that allows for each signal processing block
in the flow graph to run in an independent thread.
The thread, associated to one block, loops until GNU
radio code is terminated. In each loop, the thread calls
the block’s executer. If the block has available output
buffer and sufficient data in the input buffer, the execu-
tor asks for signal processing on that block and then
informs neighboring block(s) about its new status. Thus,
all blocks in the flow graph process incoming data
chunk-by-chunk [25].

4 Iterative channel estimation and data decoding
In this section, we describe our proposed MIMO receiver
algorithm, which recovers the information bits of the
K data streams. The various receiver tasks—channel
estimation, MIMO detection, and decoding—are jointly
designed by formulating the bit recovery process as
Bayesian inference on the probabilistic model of the
underlying OFDM system. The resulting algorithm itera-
tively computes and passes messages on the factor graph
representing the probabilistic model. After a fixed number
of iterations (tunable parameter), the algorithm returns
the most probable configuration of the bits transmitted

in the K data streams, along with estimates of other
unknown quantities, such as the channel responses and
the noise power.

4.1 Application to MIMO receiver design
The factor graph in Fig. 2 is split into the MF and BP parts
by taking into account the functional forms of the factors
and the specificities of the MF and BP algorithms. The
factors fYr , f	r , and fHrk , r ∈ [1,NR], k ∈ [1,NT ], and all
variable nodes connected to them are placed in the MF
part as they form a conjugate-exponential model. Given
that BP has successfully been used for demapping and
decoding, the rest of the factor nodes and the variable
nodes connected to them represent the BP part.

4.1.1 Computation ofmessages and beliefs
The belief of each of the variables approximates the vari-
able’s posterior pdf. In the forthcoming computations, the
following statistics will occur:

• The mean d̂k[n, i]� 〈dk[n, i] 〉b(dk [n]) and variance
σ 2
dk [n, i]� 〈|dk[n, i]−d̂k[n, i] |2〉b(dk [n]) represent the

(soft) estimate and uncertainty, respectively, of the
symbol on the i th subcarrier of the nth OFDM
symbol transmitted by kth antenna. Note that for
pilot subcarriers (i.e., i ∈ P), we have
d̂k[n, i]= dk[n, i] and σ 2

dk [n, i]= 0.
• The mean and covariance matrix of the belief b(hrk)

of the respective vector of channel weights are
denoted by ĥrk � 〈hrk〉b(hrk) and
�hrk � 〈(hrk − ĥrk)(hrk − ĥrk)H〉b(hrk). The (i, i)th
entry of �hrk is denoted by σ 2

hrk [i].
• The mean λ̂r � 〈λr〉b(λr) represents the estimate of

the precision of the rth receiver’s noise.

4.1.1.1 Channel estimation
Obtaining the beliefs b(hrk) ≈ p(hrk|Y), r ∈[1,NR], k ∈

[1,NT ] corresponds to channel estimation and requires
computing the MF messages related to the channel vec-
tors. We readily show that the message from the observa-
tion node fYr has the Gaussian form

mMF
fYr→hrk(hrk) ∝

∏

i∈D∪P

Q∏

n=1
CN

(
hrk[i] ; h̃obsrk [n, i] , σ 2

hobsrk
[n, i]

)
,

where

h̃obsrk [n, i] = d̂∗
k [n, i]

σ 2
dk [n, i]+|d̂k[n, i] |2

⎛

⎝yr[n, i]−
∑

k′ �=k
ĥrk′ [i] d̂k′ [n, i]

⎞

⎠

σ 2
hobsrk

[n, i] = λ̂−1
r

(
σ 2
dk [n, i]+|d̂k[n, i] |2

)−1

represents the estimates and their uncertainty when tak-
ing into account only the observations from the nth
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OFDM symbols and no prior information. Using the fact
that multiplying Gaussian pdfs results in a Gaussian pdf,
we obtain

mMF
fYr→hrk (hrk) ∝

∏

i∈D∪P
CN

(
hrk[i] ; ĥobsrk [i] , σ 2

hobsrk
[i]

)

with

σ 2
hobsrk

[i] =
⎛

⎝
Q∑

n=1

1
σ 2
hobsrk

[n, i]

⎞

⎠
−1

ĥobsrk [i] = σ 2
hobsrk

[i]
Q∑

n=1

h̃obsrk [n, i]
σ 2
hobsrk

[n, i]
.

Defining the vector ĥ
obs
rk �

(
ĥobsrk (i) | i ∈ D ∪ P

)T

and the diagonal matrix �obs
hrk whose (i, i)th entry equals

σ 2
hobsrk

[i], we write mMF
fYr→hrk (hrk) ∝ CN

(
hrk ; ĥ

obs
rk ,�obs

hrk

)
.

Given that mMF
fHrk→hrk (hrk) = fHrk (hrk), we obtain that the

beliefs of hrk , r ∈ [1,NR], k ∈ [1,NT ], are Gaussian pdfs:

b(hrk) ∝ mMF
fHrk→hrk (hrk)m

MF
fYr→hrk (hrk)

= CN
(
hrk ; ĥrk ,�hrk

) (18)

with mean and covariance matrix

�hrk =
(
�

p
hrk

)−1 +
(
�obs

hrk

)−1

ĥrk = �hrk

(
�obs

hrk

)−1
ĥ
obs
rk .

4.1.1.2 Estimation of the noise precision
The message from the observation factor node

mMF
fYr→λr

(λr) is found to be proportional to a gamma pdf.
Given that the prior is a non-informative gamma pdf,
the belief of the noise precision at receiver r equals the
messagemMF

fYr→λr
(λr). Therefore,

b(λr) = Ga(λr ;QLd + 1,βr), r ∈ [1,NR] , (19)

where the rate of the gamma pdf is given by

βr =
∑

i∈D∪P

Q∑

n=1

[∣∣∣yr[n, i] −
∑

k
ĥrk[i] d̂k[n, i]

∣∣∣
2 +

+
∑

k
σ 2
dk [n, i] σ

2
hrk [i]+

∑

k
σ 2
hrk [i] |d̂k[n, i] |2+

+
∑

k
σ 2
dk [n, i] |ĥrk[i] |2

]
.

The estimates of the noise precisions are λ̂r = QLd
βr

, r ∈
[1,NR].

4.1.1.3 MIMO detection and decoding
The messages from the observation nodes are found to

be

mMF
fYr→dk [n](dk[n] ) ∝

∏

i∈D
CN

(
dkyn, i] ; d̂obsk [n, i] , σ 2

dobsk
[n, i]

)
,

(20)

n ∈ [1,Q], k ∈ [1,NT ], where

d̂obsk [n, i] = ĥ∗
rk[i]

σ 2
hrk

[i]+|ĥrk[i] |2

⎛

⎝yr[n, i]−
∑

k′ �=k
ĥrk′ [i] d̂k′ [n, i]

⎞

⎠

σ 2
dobsk

[n, i] = λ̂−1
r

(
σ 2
hrk [i]+|ĥrk[i] |2

)−1
.

Note that the right-hand side of (20) is evaluated at
the symbol constellation points. When normalized, those
discrete messages “carry” extrinsic information on the
different constellation points.
For all n ∈ [1,Q], the messages

∏NR
r=1m

MF
fYr→dk [n](dk[n] )

are passed to the BP part. They represent the input to
the demappers and decoders, which compute messages
related to the coded bits and information bits using BP.
For example, applying BP to decode convolutional codes
is equivalent to using the BCJR algorithm [26]. The mes-
sages mBP

fCk→dk [n](dk[n] ), k ∈ [1,NT ], n ∈ [1,Q] contain
extrinsic information on the respective symbols obtained
from the decoders and soft mappers. The symbol beliefs

b(dk[n] ) ∝
NR∏

r=1
mMF

fYr→dk [n](dk[n] )mBP
fCk→dk [n](dk[n] ),

(21)

k ∈ [1,NT ], n ∈ [1,Q], represent approximations of the
a posteriori probabilities (APPs) of the symbols. These
values are further passed to the MF part.
The decoders also output the messages mBP

fCk→uk [i]
(uk[i] ), k ∈ [1,NT ] , i ∈ [1, INk ]. Given the prior pdfs, the
beliefs of the information bits are obtained as

b(uk[i] ) ∝ mBP
fCk→uk [i](uk[i] ) fUk,i(uk(i)).

4.1.2 Outline of the iterative algorithm
We now define the iterative algorithm by specifying a
schedule for the message computations.
The BP-MF algorithm needs to be initialized. First,

the algorithm sets the conditional expectations λ̂r =
QLd/

∑Q
n=1 ‖yr[n] ‖2 and ĥrk = 0, k ∈ [1,NT ], r ∈ [1,NR].

Then, the beliefs of those subvectors of hrk , correspond-
ing to the pilot indices P , are computed successively for
each k. Next, ĥobsrk [i]= 0 and σ−2

hobsrk
[i]= 0, for all i ∈ D,

and the beliefs of the channel vectors are computed as
hrk , r ∈ [1,NR], k ∈ [1,NT ]. Having obtained the initial
estimates of the beliefs of the channel weights and noise
precision, the algorithm then performs MIMO detection
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with the initial parameter setting d̂k[n, i]= 0 and variance
σ 2
dk [n, i]= 1, k ∈ [1,NT ], n ∈ [1,Q], i ∈ [1, INk ]. The beliefs

b(dk[n] ), n ∈ [1,Q] are computed sequentially for each
k ∈ [1,NT ], a scheme which resembles successive interfer-
ence cancelation. The initial stage ends with demapping
and decoding.
During subsequent iterations, messages for soft map-

ping, channel and noise precision estimation, MIMO
detection, and demapping and decoding are computed.
After convergence, the information bits are determined

by taking hard decisions based on the beliefs b(uk[i] ), k ∈
[1,NT ], i ∈ [1, INk ].

5 Performance evaluation in real environments
The performance of the BP-MF iterative receiver was
experimentally evaluated at some premises of the Isti-
tutito di Informatica e Telematica (IIT) at the National
Research Council (CNR), Pisa, Italy. The building is con-
structed of concrete with steel reinforcement and with
wooden doors. The measurements were conducted in the
first floor in the Algorithms and Computational Mathe-
matics laboratory of the institute. A map of this area is
given in Fig. 5. Test cases include (i) a LOS link in an
office environment, comprising the windows, office fur-
niture, and computers and (ii) a non-LOS link, striking
office rooms, bathrooms, and a corridor. Communication
is based on the IEEE 802.11n standard for OFDM-MIMO
[22]. The settings of the OFDM-SDMA system emulated
on the test-bed are outlined in Table 2. The number of

counted error events per simulation point is large enough
to produce sufficiently tight confidence intervals. Hence,
the confidence intervals are omitted in subsequent plots.
The BP-MF receiver was benchmarked against a (low-

complex) conventional MIMO receiver, composed of a
linearMIMO channel filter using pilot-based channel esti-
mates and a bank of individual ML-sequence decoders.
Specifically, the MIMO channel estimate is based on the
least squares technique given the Walsh-Hadamard pilot
matrix and the synchronized observation matrix y. The
composite MIMO channel estimates at all active tones, Ĥ,
is obtained by piecewise linear interpolation. The decor-
relating MIMO multiuser detector outputs the signal
x̂ � Ĥ−1y.
In real environments, the SNR at the individual slicer is

unknown. To obtain a guess of the SNR, though, we use
the following histogram techniques. Let

γ̂b,k[n]�
σ̂ 2
b

R σ̂ 2
w,k[n]

(22)

be the packet-SNR estimate per uncoded bit of OFDM
symbol n ∈ [1,Q] with signal power σ̂ 2

b = Ĥ−1H � 1
and packet noise power σ̂ 2

w,k[n]. For known transmission
symbols, the latter quantity is Gamma-distributed with
conditional expectation

5m

Rx1

Rx2

Tx1

Tx2

a

Tx1 Tx2

Rx1 Rx2

b
Fig. 5Map of the IIT department at CNR, Pisa. a LOS. b NLOS scenario
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Table 2 Parameter settings of the considered OFDM-SDMA
system

Parameters Value

Number of streams K = 2

Number of antennas NT = 2,NR = 2

Tx antenna gain Gk = {10, 20, 30} dB
Rx antenna gain Gr = {10, 20, . . . , 60} dB
Center frequency 2.4 GHz

Sampling frequency 200 kHz

FFT size N = 64

Number of active subcarriers Na = 52

Number of pilot symbols Np = 4

FEC R = 1/2, G = (171, 133)8

Number of preamble OFDM symbols Q = 7

Modulation BPSK

Payload size Lu = {96, 512, 1032}bytes
Number of transmitted packets for gain tuple
{Gk ,Gr}

2000

σ̂ 2
w,k[n]� E[|wk|2|xk , dk]=

∑
i∈D |xk[n, i]−dk[n, i] |2

Na
.

To construct a histogram from γ̂b,k , the data is split into
bins of width 0.5 dB. Each bin contains the number of
occurrences of scores in the data set γ̂b,k[n], n ∈ [1,Q],
which fall within that bin. For the sake of fair comparison,
both conventional MIMO and BP-MF receivers compute
the SNR in the same way.
Experiments were conducted during nights or week-

ends, to avoid as much as possible dynamic interference
with employees’ movements and devices.

5.1 NLOS scenario
We first present the experimental results obtained in
NLOS conditions. Without loss of generality, we focus on
stream 1. Surprisingly, the BP-MF receiver was initially
not able to decode the individual data streams at the out-
put of the MIMO synchronizer (4) while it had done so in
synthetic channels [8]. Closer examination revealed that
the real channel is strongly correlated in space, a property
that had not been accounted in the underlying channel
model of the BP-MF receiver. When it is included in the
system model, spatial channel correlation can be jointly
estimated and exploited to improve the accuracy of the
estimates of the other system parameters and vice versa
[8]. As this estimation problem is outside the scope of the
paper, spatial correlation is subsequently suppressed by
an equalizer with transfer function Ĥ−1 prior to MIMO
reception. The same approach is pursued in the conven-
tional MIMO receiver.

Figure 6 shows the bit-error rate (BER) vs. quantized
packet-SNR per bit with the number of iterations i as a
parameter. The payload size is Lu = 512 bytes. Inspect-
ing Fig. 6, we see that with increasing iteration index i,
the BER performance keeps improving until a minimum
of the variational free energy is found. At the low and
high SNR regimes, the BP-MF algorithm converges to a
fix-point around i � i� = 17 iterations. After conver-
gence, the proposed BP-MF outperforms the conventional
receiver over the entire SNR range with a gain of up to
4 dB. This gain comes despite the mismatch between the
real propagation conditions and those mimicked by the
model used to derive the BP-MF algorithm.
The packet-error rate (PER) vs. [γ̂b] with the number of

iterations as a parameter is reported in Fig. 7 for a packet
length of Lu = 512ḃytes. To achieve a typical target PER
of PER = 0.1, the BP-MF algorithm requires [γ̂b]≈ 2.1 dB
after convergence. The conventional MIMO receiver, in
contrast, meets the target-PER only at [γ̂b]≈ 5.4 dB, leav-
ing a gap of approximately 3.3 dB. The performance gap
between the BP-MF and conventional MIMO receivers
can be as high as 4 dB depending on the target PER value.
With increasing payload size Lu, the BP-MF receiver

shows improved PER performance, as shown in Fig. 8.
This is mainly because the individual bit errors are inde-
pendent so that their impact on the packet-error rate
is only 1 − (1 − BER)Lu . The target packet error-rate
PER = 0.1 is met at [γ̂b]≈ 1.9 (4.1) dB for Lu = 96
(Lu = 1032) bytes, corresponding to a SNR gap of 2.1 dB
for a tenfold increase in payload size. Also shown in
Fig. 8, the (one-stage) conventional receiver, in contrast,
has difficulties in handling large packet sizes.

5.2 LOS scenario
We now discuss the experimental results obtained in
LOS conditions. From Fig. 9, it can be seen that the
BER curve of the BP-MF receiver is confined in a nar-
row range around BER = 0.2 for small SNR values up
to [γ̂b]= 2 dB, followed by a waterfall region for higher
SNR values. Convergence is achieved after approximately
i� = 10 iterations. Generally speaking, the performance
of the BP-MF receiver in the LOS condition is inferior
to that in the NLOS condition, mainly because the num-
ber of degrees of freedom of the channel that can be
exploited by the receiver is higher in the latter condi-
tion. The BP-MF receiver converges faster in LOS than it
does in NLOS, because its convergence speed is inversely
proportional to the number of degrees of freedom. The
BP-MF receiver performs roughly 2 dB better than the
conventional MIMO receiver over the entire SNR range.
The behavior of the PER curve in Fig. 10 is similar to

that of the BER curve in Fig. 9. The waterfall region starts
around [γ̂b]= 2 dB. The target PER = 0.1 is met at
[γ̂b]= 3.5 dB, i.e., 1.4 dB higher than in NLOS. Notice that
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Fig. 6 BER performance of the BP-MF receiver in a NLOS condition for different values of the number of iterations (Lu = 512 bytes)

the PER curve of the conventional MIMO receiver only
starts decreasing towards zero beyond the SNR range of
interest.
With increasing payload size, the PER performance of

the BP-MF receiver still improves. However, the target of
PER = 0.1 is met at [γ̂b]≈ 3.1 (6.8) dB for Lu = 96 (Lu =
1032) bytes. The gap in SNR is now 3.7 dB (Fig. 11).
Finally, Fig. 12 shows the execution time per uncoded bit

of the BP-MF receiver normalized to the execution time
by the conventional receiver. Payload sizes of Lu = 96 and

Lu = 1032 bytes are considered. As the BP-MF receiver
operates at symbol level, its execution time is roughly
independent of the payload size and, therefore, we con-
clude that the per-bit computational complexity is linear
in the payload size plus some offset. After the first iter-
ation, the execution of the BP-MF algorithm has already
required ten times more time than the execution of the
conventional MIMO receiver. Ergo, the offset is ten. After
convergence, typically at i� = 17 iterations, the ratio is as
high as 87.

Fig. 7 PER performance of the BP-MF receiver in a NLOS condition for different values of the number of iterations (Lu = 512 bytes)
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Fig. 8 PER performance of the BP-MF receiver in a NLOS condition for different payload sizes (i� = 17 iterations)

6 Discussion and conclusions
In this paper, we investigated for the first time
the trade-off between complexity, running time, and
performance for an advanced, iterative MIMO-SDMA
receiver operating in real world conditions. The receiver
was derived within a unified message-passing framework
that combines belief propagation and mean-field approxi-
mation. At each iteration, messages related to the channel
parameters and noise precision are passed from the mean

field part to the belief propagation part of the factor graph
for the belief of the data and vice versa. The latter part
represents the probabilistic model of the communica-
tion system. The proposed receiver was implemented in
USRP/GNU radio.
The study showed that while substantial performance

improvements with respect to a conventional receiver
can be achieved—ranging from 2 to 4 dB depending on
packet size and LOS conditions—these benefits come

Fig. 9 BER performance of the BP-MF receiver in a quasi LOS condition for different values of the number of iterations (Lu = 512 bytes)
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Fig. 10 PER performance of the BP-MF receiver in a quasi-LOS condition with the number of iterations as parameter (Lu = 512 bytes)

at an increase in per-bit decoding running time that
increases linearly with the number of performed itera-
tions. If full convergence (i.e., best performance) is sought,
decoding running time can be as much as 2 orders of
magnitude larger than that of a conventional receiver.
However, substantial performance improvements can be

achieved also with a smaller number of iterations, espe-
cially in a rich scattering environment (NLOS scenario).
Summarizing, our study clearly shows that in practical
settings the trade-off between receiver complexity, run-
ning time, and performance should be carefully evaluated
to strike the best compromise between these metrics.

Fig. 11 PER performance of the BP-MF receiver in a quasi-LOS condition for different payload sizes (i = 10 iterations)
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Fig. 12 Ratio of the execution time per uncoded bit of the BP-MF
receiver to that of the conventional receiver

The results presented in this paper should be considered
as a first step towards gaining an understanding of the
feasibility of deploying advanced, iterative MIMO-SDMA
receivers performance in real-world conditions. Future
work includes considering higher-order modulations, as
well as more complex MIMO configurations, including
distributed MIMO channels.
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