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Abstract
We establish an inequality by quadratic estimations; the double inequality
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4 +
√
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π 2x

4 +
√
32 + (2πx)2

holds for x > 0, where the constants (π 2 – 4)2 and 32 are the best possible.
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1 Introduction
Shafer [–] showed that the inequality

arctan x >
x

 +
√

 + 
 x

(.)

holds for x > . Various Shafer-type inequalities are known, and they have been applied,
extended and refined, see [–] and [–]. Especially, Zhu [] showed an upper bound
for inequality (.) and proved that the following double inequality

x

 +
√

 + 
 x

< arctan x <
x

 +
√

 + 
π x

(.)

holds for x > , where the constants / and /π are the best possible. Recently, in
[], Sun and Chen proved that the following inequality

arctan x <
x + 

 x

 +
√

 + 
 x

(.)

holds for x > ; moreover, they showed that the inequality

x + 
 x

 +
√

 + 
 x

<
x

 +
√

 + 
π x

(.)
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holds for  < x < x ∼= .. In this paper, we shall establish the refinements of inequali-
ties (.) and (.).

2 Results and discussion
Motivated by (.), (.) and (.), in this paper, we give inequalities involving arctangent.
The following are our main results.

Theorem . For x > , we have

πx
 +

√
(π – ) + (πx)

< arctan x <
πx

 +
√

 + (πx)
, (.)

where the constants (π – ) and  are the best possible.

Theorem . For x > α, we have

πx
 +

√
(π – ) + (πx)

>
x

 +
√

 + 
 x

, (.)

where the constant α =
√

–π+π

–π+π
∼= . is the best possible.

Theorem . For x > β , we have

x

 +
√

 + 
π x

>
πx

 +
√

 + (πx)
, (.)

where the constant β =
√

+π–π+π+π

π–π+π
∼= . is the best possible.

Theorem . For x > γ , we have

x + 
 x

 +
√

 + 
 x

>
πx

 +
√

 + (πx)
, (.)

where the constant γ ∼= . is the best possible and satisfies the equation

 – π + γ  – 
√

π
√

 + γ 

+ 
√

 + πγ  + γ 
√

 + πγ  = .

From Theorems ., ., . and ., we can get the following proposition, immediately.

Proposition . The double inequality (.) is sharper than (.) for x > α. Moreover, the
right-hand side of (.) is sharper than (.) for x > γ .
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2.1 Proof of Theorem 2.1
Becker-Stark’s inequality is known as the inequality


π – x <

tan x
x

<
π

π – x (.)

which holds for  < x < π/. Also, Becker-Stark’s inequality (.) has various applications,
extensions and refinements, see [–] and [–]. Especially, Zhu [] gave the follow-
ing refinement of (.): The inequality


π – x +


π – λ

(
π – x) <

tan x
x

<


π – x +

π – μ

(
π – x) (.)

holds for  < x < π/, where the constants λ = (π – )/(π) and μ = ( – π)/π are the
best possible. In this paper, the result of Zhu (.) plays an important role in the proof of
Theorem ..

Proof of Theorem . The equation

arctan x =
πx

 +
√

c + (πx)

is equivalent to

c =
πx – πx arctan x +  arctan x – πx arctan x

arctan x
.

We set t = arctan x, then

c =
π tan t

t –
π tan t

t
+  – π tan t

=  + F(t).

First, we assume that  < t ≤ /. Here, the derivative of F(t) is

F ′
(t) = –

π sec t
t

+
π tan t

t – π sec t tan t +
π sec t tan t

t –
π tan t

t

=
sin t

cos t

(
–

π

t sin t
+

π cos t
t –

π

cos t
+

π

t cos t
–

π sin t
t

)

=
sin t

cos t
F(t).

Since we have

t –
t


< sin t < t –

t


+

t



and

 –
t


+

t


–

t


< cos t <  –

t


+

t
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for  < t < π/, the following inequality holds:

F(t) < –
π

t(t – t
 + t

 )
+

π( – t

 + t

 )
t

–
π

( – t
 + t

 )
+

π

t( – t
 + t

 – t
 )

–
π(t – t

 )
t

=
πF(t)

( – t + t)( – t + t)(– + t – t + t)
,

where F(t) =  – π – t + πt + t –
πt –t +πt +t –πt –t +πt +
t – πt – t + πt + t. We set s = t, then

F(t) >  – 
(




)

– s + 
(




)

s

+ s – 
(




)

s – s + 
(




)

s

+ s – 
(




)

s – s + 
(




)

s

+ s – 
(




)

s – s +
(




)

s + s

=  –
s


+ s –

s


+

s



–
s


+

s


–

s


+ s

=



(
 – s + s – s

+ s – s + s – s + s)

=




(
 – s +

(



)
s

+ s
((




)
 – s + s – s

)

+ s( – s + s)
)

=



(
F(s) + sF(s) + sF(s)

)
.

We shall show that the functions F(s) > , F(s) >  and F(s) > . Here,

F(s) = 
(
 – s + s)

= F(t).
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The derivative of F(t) is

F ′
(s) = (– + s)

≤ 
(

– + 
(




))

= –



.

Since F(s) is strictly decreasing for  < s < / and F(/) = /, we have F(s) > .

F(s) = 
(
 – s + s – s)

> 
(
 – s – s)

≥ 
(

 – 
(




)
– 

(



))

=




and

F(s) >  – 
(




)

=



.

Therefore, we can get F(t) > . By  – t + t > ,  – t + t >  and – +
t – t + t < , thus F(t) <  and F(t) is strictly decreasing for  < t < /. From
F(+) = (π – ) – , we can get

F

(



)
≤ F(t) <

(
π – 

) – 

for  < t ≤ /. Next, we assume that / < t < π/. From inequality (.), we have

– π
{


π +


π – t –

( – π)(π – t)
π

}

+ π(π – t)(π + t)
{


π +


π – t –

(– + π)(π – t)
π

}

< F(t)

< –π
{


π +


π – t –

(– + π)(π – t)
π

}

+ π(π – t)(π + t)
{


π +


π – t –

( – π)(π – t)
π

}

and

G(t)
π < F(t) <

G(t)
π ,
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where

G(t) = π – π + π  – πt + πt – πt

+ πt – πt + πt – t + πt – πt

and

G(t) = –π + π + π  – πt + πt – πt

+ πt – πt + πt – t + πt – πt.

We set s = t, then

G(t) = π – π + π  – π( – π + π)s

+ (– + π )π( + π )
(
– + π)s – (– + π )( + π )s

= G(s)

and

G(t) = –π + π + π  – π( – π + π)s

+ π(π – 
)(

– + π)s – 
(
π – 

)s

= G(s).

The derivatives of G(s) are

G′
(s) = 

(
–π + π – π + πs – πs

+ πs – s + πs – πs)

and

G′′
(t) = (– + π )( + π )

(
–π + π + s – πs

)
.

From the inequality

–π + π +
(
 – π)s < –π + π +

(
 – π)

(



)

=  – π + π

∼= –.,

G′′
(s) <  and G′

(s) is strictly decreasing for / < s < π/. Since G′
(/) = (– +

π – π + π – π) ∼= –., G′
(s) <  and G(s) is strictly decreasing for

/ < s < π/. Therefore, we have G(t) > G(π/) = π for / < t < π/. Next, the
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derivatives of G(s) are

G′
(s) = 

(
–π + π – π + πs – πs + πs

– s + πs – πs)

and

G′′
(s) = 

(
 – π)(π – π – s + πs

)
.

From the inequality

π – π – s + πs < π – π +
(
– + π)

(



)

= – + π – π

∼= –.,

G′′
(s) <  and G′

(s) is strictly decreasing for / < s < π/. Since G′
(/) = (– +

π – π + π – π) ∼= –., G′
(s) <  and G(s) is strictly decreasing

for / < s < π/. Therefore, we have G(t) > G(π/) = π for / < t < π/. By the
squeeze theorem, F(t) >  for / < t < π/. Also, we have

F(t) <
G( 

 )
π

for / < t < π/ and

F(+) –
G( 

 )
π =

(
π – 

) –  –
G( 

 )
π

=
(
π – 

) –  –
– + π – π – π – π + π 

π

=
 – π + π + π – π

π .

By  – π + π + π – π ∼= ., we have

F(+) >
G( 

 )
π .

Thus, we can get  < F(t) < F(+) for  < t < π/. The proof of Theorem . is com-
plete. �
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2.2 Proof of Theorem 2.2

Proof of Theorem . We have

F(x) =
πx

 +
√

(π – ) + (πx)
–

x

 +
√

 + 
 x

=
x(– + π +

√
π

√
 + x – 

√
 – π + π + πx)

( +
√


√

 + x)( +
√

 – π + π + πx)

=
xF(x)

( +
√


√

 + x)( +
√

 – π + π + πx)
.

The derivative of F(x) is

F ′
(x) =

πx(–
√

 + x +
√


√

 – π + π + πx)√
 + x

√
 – π + π + πx

=
πxF(x)√

 + x
√

 – π + π + πx
.

Here, we have ( – π + π + πx) – ( + x) = (– – π + π – x +
πx). Since – + π >  and – – π + π – x + πx =  for x =√

+π–π

π–
∼= ., we have F(x) <  for  < x <

√
+π–π

π– and F(x) >  for x >√
+π–π

π– . Therefore, F(x) is strictly decreasing for  < x <
√

+π–π

π– and strictly

increasing for x >
√

+π–π

π– . From F(+) =  and

F(α) = – + π +
√

π
√

 + α – 
√

 – π + π + πα

= – + π +
√

π
(√

( – π)
– + π

)
– 

(
 + π – π

– + π

)

= ,

we can get F(x) >  for x > α and α is the best possible. The proof of Theorem . is
complete. �

2.3 Proof of Theorem 2.3

Proof of Theorem . We have

F(x) =
x

 +
√

 + 
π x

–
πx

 +
√

 + (πx)

=
πx( – π – π

√
π + x + 

√
 + πx)

(π +
√

π + x)( +
√

 + πx)

=
πxF(x)

(π +
√

π + x)( +
√

 + πx)
.
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The derivative of F(x) is

F ′
(x) =

πx(π
√

π + x – 
√

 + πx)√
π + x

√
 + πx

=
πxF(x)√

π + x
√

 + πx
.

Since π(π + x) – ( + πx) = – + π ∼= ., we can get π(π +
x) > ( + πx) for x > . Therefore, F(x) >  and F ′

(x) >  for x > . Since F(x) is
strictly increasing for x >  and

F(β) =  – π – π
√

π + β + 
√

 + πβ

=  – π – π

(
 + π – π

π (– + π)

)
+ 

(
 – π – π

(– + π)

)

= ,

we can get F(x) >  for x > β and β is the best possible. The proof of Theorem . is
complete. �

2.4 Proof of Theorem 2.4
Lemma . For x > , we have

πx√
 + πx

+
πx

√
 + πx

>


√
πx√

 + x
.

Proof We have

(
πx√

 + πx
+

πx
√

 + πx

)

–
(


√

πx√
 + x

)

=
πxF(x)

( + x)( + πx)
,

where F(x) =  + x – πx + x + x +
x + x. Here, we have

F(x) >  + x – πx + x

= 
(
 + x – πx + x).

We set t = x and F(t) =  + t – πt + t, then the derivative of F(t) is F ′
(t) =

–π +t. Since F ′
(t) =  for t = 



√

 (– + π) ∼= ., we have F ′

(t) <

 for  < t < 


√

 (– + π) and F ′

(t) >  for t > 


√

 (– + π). Hence,

F(t) ≥ F

(



√


(
– + π

))

=



(
 + 

√


(
– + π

)
– π

√


(
– + π

))

∼= .
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for t > . Therefore, F(x) >  and the proof of Lemma . is complete. �

Proof of Theorem . We have

F(x) =
x + x



 +
√

 + 
 x

–
πx

 +
√

 + (πx)

=
xF(x)

( +
√


√

 + x)( +
√

 + πx)
,

where F(x) =  – π + x – 
√

π
√

 + x + 
√

 + πx +
x

√
 + πx. The derivative of F(x) is

F ′
(x) = x –


√

πx√
 + x

+
πx√

 + πx
+

πx
√

 + πx
+ x

√
πx + 

> –


√
πx√

 + x
+

πx√
 + πx

+
πx

√
 + πx

.

By Lemma ., we have F ′
(x) >  and F(x) is strictly increasing for x > . From F(+) =

( + 
√

 – π) ∼= –., F(γ ) =  and F(∞) = ∞, we can get F(x) >  for x > γ .
The proof of Theorem . is complete. �

3 Conclusions
In this paper, we established some inequalities involving arctangent. The double inequality
in Theorem . provides sharper quadratic estimations than (.) and (.) for a location
away from zero. By Theorems ., . and ., we obtained Proposition . immediately.
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