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Abstract
Convex risk minimization is a commonly used setting in learning theory. In this paper,
we firstly give a perturbation analysis for such algorithms, and then we apply this
result to differential private learning algorithms. Our analysis needs the objective
functions to be strongly convex. This leads to an extension of our previous analysis to
the non-differentiable loss functions, when constructing differential private
algorithms. Finally, an error analysis is then provided to show the selection for the
parameters.
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1 Introduction
In learning theory, convex optimization is one of the powerful tools in analysis and al-
gorithm designs, which is especially used for empirical risk minimization (ERM) (Vapnik
 []). When running on a sensitive data set, algorithms may leak private information.
This has motivated the notion of differential privacy (Dwork et al. ,  [, ]).

For the sample space Z, denote the Hamming distance between two sample sets
{z1, z2} ∈ Zm as

d(z1, z2) = #{i = , . . . , m : z,i �= z,i},

i.e., there is only one element that is different. Then ε-differential privacy is defined as
follows.

Definition  A random algorithm A : Zm → H is ε-differential private if for every two
data sets z1, z2 satisfying d(z1, z2) = , and every set O ∈ Range(A(z1)) ∩ Range(A(z2)), we
have

Pr
{

A(z1) ∈O
} ≤ eε · Pr

{
A(z2) ∈O

}
.

Throughout the paper, we assume ε <  for meaningful privacy guaranties. The relax-
ation (ε, δ)-differential privacy is also interesting and has been studied in some recent lit-
erature. However, it is out of our scope and we will just focus on the ε-differential privacy
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throughout the paper. Extension of our results to (ε, δ)-differential privacy or concentrated
differential privacy [] may be studied in future work.

A mechanism obtains differential privacy usually by adding a perturbation term to an
original definite output (Dwork et al.  []), i.e., the so-called Laplacian mechanism.
McSherry and Talwar  [] proposed the exponential mechanism, which chooses an
output based on its utility function. Indeed, the two mechanisms are related, and both
of them are dependent with some kinds of sensitivity of the original definite output. We
refer to Dwork  [] and Ji et al.  [] for a general idea of the differential private
algorithms and applications.

A line of work, beginning with Chaudhuri et al.  [], introduced the output per-
turbation and objective perturbation algorithm to obtain differential privacy for the ERM
algorithms. This is following [–], etc. However, most of the literature needs a differen-
tiable loss function, sometimes a double-differentiable condition is required (see [] for
detail analysis). This limits the application for the algorithms, such as ERM algorithms
with hinge loss (SVM) or pinball loss ([]), and it motivates our work.

On the other hand, sensitivity in a differential private algorithm, which can be consid-
ered as the perturbation for the ERM algorithms, or the stability, has been studied in Bous-
quet and Elisseeff  [] and Shalev-Shwartz et al.  [] in the classical learning
theory setting. More recently, the relationship between the stability and differential pri-
vacy has been revealed in Wang et al.  [].

The main contribution of this paper is to present a different perturbation analysis for
the ERM algorithms, in which the condition is just in having convex loss functions and
strongly convex regularization terms. Thus the output perturbation mechanisms can still
be valid directly in SVM or other non-differentiable loss cases. Besides, an error analysis
is conducted, from which we find a choice for the parameter ε to balance the privacy and
generalization ability.

2 Perturbation analysis for ERM algorithms
In this section we consider the general regularized ERM algorithms. Let X be a compact
metric space, and output Y ⊂ R, where |y| ≤ M for some M > . (We refer to Cucker and
Smale  [] and Cucker and Zhou  [] for more details as regards this learning
theory setting.) A function fz,A : X → Y is obtained via some algorithm A based on the
sample z = {zi}m

i= = {(xi, yi)}m
i=, which is drawn according to a distribution function ρ on

the sample space Z := X × Y . Furthermore, we assume there is a marginal distribution ρX

on X and a conditional distribution ρ(y|x) on Y given some x.
Firstly we introduce our notations which will be used in the following statements and

analysis. Let the loss function L(f (x), y) be positive and convex for the first variable. Denote

E(f ) =
∫

Z
L
(
f (x), y

)
dρ,

Ez(f ) =

m

m∑

i=

L
(
f (xi), yi

)
.

Without loss of generality, we set z̄ = {z, z, . . . , zm–, z̄m}, which replaces the last element
of z, and z– = {z, z, . . . , zm–} as a sample set deleting the last element of z. Then similar
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notations can be given:

Ez̄(f ) =

m

(m–∑

i=

L
(
f (xi), yi

)
+ L

(
f (x̄m), ȳm

)
)

,

Ez–(f ) =


m – 

m–∑

i=

L
(
f (xi), yi

)
.

Denote (HK ,‖ · ‖K ) as the reproducing kernel Hilbert space (RKHS) on X, i.e., HK :=
span{K(x, ·), x ∈ X}, where K : X × X → R is a Mercer kernel. Let Kx(y) = K(x, y) for any
x, y ∈ X, and κ = supx,y∈X

√
K(x, y). Then the reproducing property tells us that f (x) =

〈f , Kx〉K . Now a typical regularized ERM algorithm can be stated as

fz = arg min
f ∈HK


m

m∑

i=

L
(
f (xi), yi

)
+ λ�(f ). ()

Here λ >  is the regularization parameter and �(f ) is a γ -strongly (γ > ) convex function
with respect to the K norm, i.e., for any f, f ∈HK and t ∈ [, ],

�
(
tf + ( – t)f

) ≤ t�(f) + ( – t)�(f) –
γ


t( – t)‖f – f‖

K .

This definition of being strongly convex is taken from Sridharan  [], where the
authors derived some kind of uniform convergence under the strongly convex assumption.
It has been widely used in the subsequent literature such as [, , , ], etc. By denoting

fz̄ = arg min
f ∈HK

Ez̄(f ) + λ�(f ),

fz– = arg min
f ∈HK

Ez–(f ) + λ�(f ),

we have the following result.

Theorem  Let fz and fz̄ be defined as above. � is γ -strongly convex and L is convex w.r.t.
the first variable. Assume there is a B >  such that λ�(fS) ≤ B and |L(fS(x), y)| ≤ B for any
S ∈ Zm, m ∈N and (x, y) ∈ Z. Then we have

‖fz – fz̄‖K ≤
√

B
λγ m

.

Proof We will prove the result in three steps.
() For any S ∈ Zm and fS from (),

∣∣Ez(fS) – Ez̄(fS)
∣∣ ≤ B

m
.

It is obvious from the definition above that

∣∣Ez(fS) – Ez̄(fS)
∣∣ ≤ 

m
∣
∣L

(
fS(xm), ym

)
– L

(
fS(x̄m), ȳm

)∣∣ ≤ B
m

.
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() The minimization of the two objective functions are close, i.e.,

∣∣(Ez(fz) + λ�(fz)
)

–
(
Ez̄(fz̄) + λ�(fz̄)

)∣∣ ≤ B
m

.

From the notations above, we have

Ez(fz–) + λ�(fz–) ≥ Ez(fz) + λ�(fz),

i.e.,

m∑

i=

L
(
fz–(xi), yi

)
+ λm�(fz–)

≥
m∑

i=

L
(
fz(xi), yi

)
+ λm�(fz)

≥
m–∑

i=

L
(
fz(xi), yi

)
+ λ(m – )�(fz) ≥

m–∑

i=

L
(
fz–(xi), yi

)
+ λ(m – )�(fz–).

A similar analysis for fz̄ can be given as follows:

m–∑

i=

L
(
fz–(xi), yi

)
+ L

(
fz–(x̄m), ȳm

)
+ λm�(fz–)

≥
m–∑

i=

L
(
fz̄(xi), yi

)
+ L

(
fz̄(x̄m), ȳm

)
+ λm�(fz̄)

≥
m–∑

i=

L
(
fz̄(xi), yi

)
+ λ(m – )�(fz̄) ≥

m–∑

i=

L
(
fz–(xi), yi

)
+ λ(m – )�(fz–).

Note that
∑m

i= L(fz(xi), yi)+λm�(fz) is indeed m(Ez(fz)+λ�(fz)), and the two lower bounds
above is the same, we have

∣∣m
[(
Ez(fz) + λ�(fz)

)
–

(
Ez̄(fz) + λ�(fz̄)

)]∣∣

≤ max
{

L
(
fz–(xm), ym

)
+ λ�(fz–), L

(
fz–(x̄m), ȳm

)
+ λ�(fz–)

}
.

We can deduce that

∣∣(Ez(fz) + λ�(fz)
)

–
(
Ez̄(fz̄) + λ�(fz̄)

)∣∣ ≤ B
m

.

() Now we can prove our main result. Since � is γ -strongly convex, and L(f (x), y) is
convex w.r.t. the first argument, which leads to the convexity of Ez(f ), for any  < t < , it
follows that

Ez(fz) + λ�(fz)

≤ Ez
(
tfz + ( – t)fz̄

)
+ λ�

(
tfz + ( – t)fz̄

)
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≤ tEz(fz) + ( – t)Ez(fz̄) + λ

[
t�(fz) + ( – t)�(fz̄) –

γ


t( – t)‖fz – fz̄‖

K

]

= t
(
Ez(fz) + λ�(fz)

)
+ ( – t)

(
Ez(fz̄) + λ�(fz̄)

)
–

λγ


t( – t)‖fz – fz̄‖

K

()≤ t
(
Ez(fz) + λ�(fz)

)
+ ( – t)

(
Ez̄(fz̄) + λ�(fz̄) +

B
m

)
–

λγ


t( – t)‖fz – fz̄‖

K

()≤ t
(
Ez(fz) + λ�(fz)

)
+ ( – t)

(
Ez(fz) + λ�(fz) +

B
m

)
–

λγ


t( – t)‖fz – fz̄‖

K

= Ez(fz) + λ�(fz) +
( – t)B

m
–

λγ


t( – t)‖fz – fz̄‖

K .

Therefore,

λγ t


‖fz – fz̄‖
K ≤ B

m
.

Simply taking t = 
 we have

‖fz – fz̄‖K ≤
√

B
λγ m

,

which proves our result. �

Now let us make a brief remark about this result. In our theorem, only convexity for
the loss function and γ -strongly convexity for � are assumed. The assumption λ�(fS) ≤
B is trivial for algorithms such as general SVM or coefficient regularization [], since
ES(fS) + λ�(fS) is the minimum value. The advantage of this result is that most of our
learning algorithms satisfy this condition, especially including hinge loss for SVM and
pinball loss for quantile regression. Perturbation, or stability analysis has already been
performed in [, ]. There the authors proposed quite a few stability definitions, which
is mainly used for classical generalization analysis. References [, ] also studied the
differential private learning algorithms with different kernels and Lipschitz losses, with
a regularization term of square norm. A similar result to theirs with our notations is as
follows.

Theorem  Let fz, fz̄, fz– be defined as above. Assume |L(t, y) – L(t, y)| ≤ CL|t – t| for
any t, t, y and some CL > , then we have

‖fz – fz̄‖K ≤ κCL

λγ m
.

Proof From the convexity of the loss function and regularization term, we have, for any
f ∈HK and  < t < ,

Ez(fz) + λ�(fz) ≤ Ez
(
tfz + ( – t)f

)
+ λ�

(
tfz + ( – t)f

)

≤ tEz(fz) + ( – t)Ez(f ) + λ

[
t�(fz) + ( – t)�(f ) –

γ


t( – t)‖f – fz‖

K

]
.
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This leads to

( – t)
(
Ez(fz) + λ�(fz)

) ≤ ( – t)
(
Ez(f ) + λ�(f )

)
–

λγ


t( – t)‖f – fz‖

K ,

i.e.,

Ez(fz) + λ�(fz) ≤ Ez(f ) + λ�(f ) –
λγ


t‖f – fz‖

K .

Let t tend to , we have

Ez(fz) + λ�(fz) ≤ Ez(f ) + λ�(f ) –
λγ


‖f – fz‖

K

for any f ∈HK . Similarly, we also have

Ez̄(fz̄) + λ�(fz̄) ≤ Ez(f ) + λ�(f ) –
λγ


‖f – fz̄‖

K

for any f ∈HK . Therefore,

Ez(fz) + λ�(fz) ≤ Ez(fz̄) + λ�(fz̄) –
λγ


‖fz̄ – fz‖

K ,

Ez̄(fz̄) + λ�(fz̄) ≤ Ez̄(fz̄) + λ�(fz̄) –
λγ


‖fz – fz̄‖

K .

By adding the two equations we have

λγ ‖fz̄ – fz‖
K ≤ (

Ez̄(fz) – Ez(fz)
)

+
(
Ez̄(fz)Ez̄(fz̄)

)

=

m

(
L
(
fz(x̄m), ȳm

)
– L

(
fz(xm), ym

))
+


m

(
L
(
fz̄(xm), ym

)
– L

(
fz̄(x̄m), ȳm

))

≤ CL

m
‖fz – fz̄‖∞.

From the fact that ‖f ‖∞ = supx∈X |f (x)| ≤ supx∈X〈f , Kx〉K ≤ κ‖f ‖K for any f ∈HK we have

‖fz̄ – fz‖K ≤ κCL

λγ m
,

and the theorem is proved. �

Though the condition for the latter result is stronger than the first one, we will still apply
this to the analysis below, as the bound is sharper and most of the loss functions satisfy
the Lipschitz condition above.

3 Differential private learning algorithms
In this section, we will describe the general differential private learning algorithms based
on an output perturbation method. Perturbation ERM algorithms give a random output
by adding a random perturbation term on the above deterministic output. That is,

fA,z = fz + b, ()
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where fz is derived from (). To determine the distribution of b, we firstly recall the sensi-
tivity, introduced in Dwork  [], in our settings.

Definition  We denote 	f as the maximum infinite norm of difference between the
outputs when changing one sample point in z. Let z and z̄ be defined as in the previous
section, and fz and fz̄ be derived from () accordingly, we can see that

	f := sup
z,z̄

‖fz – fz̄‖∞.

Then a similar result to [] is the following.

Lemma  Assume 	f is bounded by B	 > , and b has a density function proportional to
exp{– ε|b|

B	
}, then algorithm () provides ε-differential privacy.

Proof For all possible output function r, and z, z̄ differ in last element,

Pr{fz,A = r} = Pr
b
{b = r – fz} ∝ exp

(
–

ε|r – fz|
B	

)

and

Pr{fz̄,A = r} = Pr
b
{b = r – fz̄} ∝ exp

(
–

ε|r – fz̄|
B	

)
.

So by the triangle inequality,

Pr{fz,A = r} ≤ Pr{fz̄,A = r} × e
ε|fz–fz̄|

B	 ≤ eε Pr{fz̄,A = r}.

Then the lemma is proved by a union bound. �

Combining this with the result in the previous section, we can choose the noise term b
as follows.

Proposition  Assume the conditions in Theorem  hold, and b takes value in (–∞, +∞),
we choose the density of b to be 

α
exp(– λγ mε|b|

κCL
), where α = κCL

λγ mε
, then the algorithm ()

provides ε-differential privacy.

Proof Since from the previous section we have

‖fz – fz̄‖K ≤ κCL

λγ m

for any z and z̄ differing in the last sample point. Then from the reproducing property,

	fz = sup
z,z̄

‖fz – fz̄‖∞ ≤ κCL

λγ m
.

The proposition is proved by substitute B	 = κCL
λγ m in the last lemma. �
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4 Error analysis
In this section, we conduct the error analysis for the general differential private ERM al-
gorithm (). We denote

fρ = arg min
f

E(f ) = arg min
f

∫

Z
L
(
f (x), y

)
dρ

as our goal function. In the following in this section, we always assume the Lipshitz con-
tinuous condition for the loss function, i.e. |L(t, y) – L(t, y)| ≤ CL|t – t| for any t, t, y
and some CL > . Now let us introduce our error decomposition,

E(fz,A) – E(fρ) ≤ E(fz,A) – E(fρ) + λ�(fz)

≤ E(fz,A) – Ez(fz,A) + Ez(fz,A) – Ez(fz) + Ez(fz) + λ�(fz) – E(fρ)

≤ E(fz,A) – Ez(fz,A) + Ez(fz,A) – Ez(fz) + Ez(fλ) + λ�(fλ) – E(fρ)

≤R + R + S + D(λ), ()

where fλ is a function in HK to be determined and

R = E(fz,A) – Ez(fz,A), R = Ez(fz,A) – Ez(fz),

S = Ez(fλ) – E(fλ), D(λ) = E(fλ) – E(fρ) + λ�(fλ).

Here R and R involve the function fz,A from random algorithm () so we call them
random errors. S and D(λ) are similar to the classical ones in the literature in learning
theory and are called sample error and approximation error. In the following we will study
these errors, respectively.

4.1 Concentration inequality and error bounds for random errors
To bound the first random error, we need a concentration inequality. Dwork et al. 
[] have proposed such an inequality under their differential private setting. Soon Bassily
et al.  [] gave a different proof for the concentration inequality, which enlightens our
error analysis.

Theorem  If an algorithm A provides ε-differential privacy, and outputs a positive func-
tion gz,A : Z → R with bounded expectation Ez,A


m

∑m
i= gz,A(zi) ≤ G some G > , where

the expectation is taken over the sample and the output of the random algorithm. Then

Ez,A

(

m

m∑

i=

gz,A(zi) –
∫

Z
gz,A(z) dρ

)

≤ Gε

and

Ez,A

(∫

Z
gz,A(z) dρ –


m

m∑

i=

gz,A(zi)

)

≤ Gε.
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Proof Denote the sample sets wj = {z, z, . . . , zj–, z′
j, zj+, . . . , zm} for j ∈ {, , . . . , m}. We

observe that

Ez,A

(

m

m∑

i=

gz,A(zi)

)

=

m

m∑

i=

EzEA
(
gz,A(zi)

)

=

m

m∑

i=

EzEz′
i

∫ +∞


Pr
A

{
gz,A(zi) ≥ t

}
dt ≤ 

m

m∑

i=

EzEz′
i

∫ +∞


eε Pr

A

{
gwi ,A(zi) ≥ t

}
dt

= eε 
m

m∑

i=

EwiEziEA
(
gwi ,A(zi)

)
= eε 

m

m∑

i=

Ewi ,AEzi

(
gwi ,A(zi)

)

= eε 
m

m∑

i=

Ewi ,A

∫

Z
gwi ,A(z) dρ = eε 

m

m∑

i=

Ez,A

∫

Z
gz,A(z) dρ

= eε
Ez,A

∫

Z
gz,A(z) dρ.

Then

Ez,A

(

m

m∑

i=

gz,A(zi) –
∫

Z
gz,A(z) dρ

)

≤ (
 – e–ε

)
Ez,A

(

m

m∑

i=

gz,A(zi)

)

≤ Gε.

On the other hand,

Ez,A

∫

Z
gz,A(z) dρ

=

m

m∑

i=

EzEA

∫

Z
gz,A(z) dρ

=

m

m∑

i=

EwiEA

∫

Z
gwi ,A(z) dρ =


m

m∑

i=

EwiEA

∫

Z
gwi ,A(zi) dρ(zi)

=

m

m∑

i=

EwiEziEA
(
gwi ,A(zi)

)
=


m

m∑

i=

EzEz′
i

∫ +∞


Pr
A

{
gwi ,A(zi) ≥ t

}
dt

≤ 
m

m∑

i=

EzEz′
i
eε

∫ +∞


Pr
A

{
gz,A(zi) ≥ t

}
dt

= eε 
m

m∑

i=

EzEA
(
gz,A(zi)

)
= eε

Ez,A

m

m∑

i=

gz,A(zi).
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This leads to

Ez,A

(∫

Z
gz,A(z) dρ –


m

m∑

i=

gz,A(zi)

)

=
(
eε – 

)
Ez,A


m

m∑

i=

gz,A(zj) ≤ Gε.

These verify our results. �

Remark  In [] and [], the authors restrict the function to take values in [, ] or {, }
for their special use, our result here extends the result to the function taking values in R

+.
This makes our following error analysis implementable.

Since y is bounded by M >  throughout our paper, it is reasonable to assume that
Ez() = 

m
∑m

i= L(, yi) ≤ B for some B >  depending just on M. Then we apply this
concentration inequality to the random error R.

Proposition  Let fz,A be obtained from algorithm (). Assume Ez() ≤ B for some con-
stant B > . We have

Ez,AR = Ez,A
(
E(fz,A) – Ez(fz,A)

) ≤ B̃ε + εEz,AR,

where B̃ = (B + λ�()) is a constant independent of m.

Proof Let gz,A(z) = L(fz,A(x), y), which is always positive. Note that

Ez,A

(

m

m∑

i=

gz,A(zi)

)

=

m

m∑

i=

Ez,AL
(
fz,A(xi), yi

)
= Ez,AR + Ez,AEz(fz)

and

Ez(fz) ≤ Ez(fz) + λ�(fz) ≤ Ez() + λ�() ≤ B + λ�(),

we have

Ez,A

(

m

m∑

i=

gz,A(zi)

)

≤ Ez,AR + B + λ�().

By applying the concentration inequality for the given gz,A we can prove the result with
constant B̃ = (B + λ�()). �

For the random error R, we have the following estimation.

Proposition  For the function fz,A obtained from algorithm (), we have

Ez,AR = Ez,A
(
Ez(fz,A) – Ez(fz)

) ≤ κCL

λγ mε
.
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Proof Note that

∣∣L
(
fz,A(xi), yi

)
– L

(
fz(xi), yi

)∣∣ ≤ CL
∣∣fz,A(xi) – fz(xi)

∣∣ = CL|b|.

Therefore,

Ez,AR = Ez,A

(

m

m∑

i=

[
L
(
fz,A(xi), yi

)
– L

(
fz(xi), yi

)]
)

≤ Ez,ACL|b| = CLEb|b| =
κCL

λγ mε
.

This verifies our bound. �

4.2 Error estimate for the other error terms
For the sample error and approximation error, we choose fλ to be some function in HK

close to fρ , which satisfies |L(fλ(x), y)| ≤ Bρ for some Bρ > . Explicit expressions of fλ and
Bρ will be presented in the next section, with respect to different algorithms. To bound
the sample error, we should recall the Hoeffding inequality [].

Lemma  Let ξ be a random variable on a probability space Z satisfying |ξ (z) – Eξ | ≤ �

for some � >  for almost all z ∈ Z. Denote σ  = σ (ξ ), then, for any t > ,

Pr

{∣∣∣∣∣

m

m∑

i=

ξ (zi) – Eξ ≥ t

∣∣∣∣∣

}

≤  exp

{
–

mt

�

}
.

Now we have the following proposition.

Proposition  Let L(fλ(x), y) ≤ Bρ for any (x, y) ∈ Z, we have

Ez,AS ≤ 
√

πBρ√
m

.

Proof Since

S =
∫

Z
L
(
fλ(x), y

)
dρ –


m

m∑

i=

L
(
fλ(xi), yi

)
,

we apply the Hoeffding inequality to ξ (z) = –L(fλ(x), y). Note that |ξ – Eξ | ≤ Bρ and

Pr
z

{∣∣∣∣∣

∫

Z
L
(
fλ(x), y

)
dρ –


m

m∑

i=

L
(
fλ(xi), yi

)
∣∣∣∣∣
≥ ε

}

≤  exp

{
–

mε

B
ρ

}
.

Therefore

Ez,AS ≤ Ez|S| =
∫ +∞


Pr
z

{|S| ≥ t
}

dt

≤
∫ +∞


 exp

{
–

mt

B
ρ

}
dt ≤ 

√
πBρ√

m
,

and the proposition is proved. �
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Let us turn to the approximation error D(λ). It is difficult to give the upper bound for
the abstract approximation error. So we use the natural assumption on D(λ), which is

D(λ) ≤ cβλβ , ()

for some  < β <  and cβ > . This assumption is trivial in concrete algorithms; see [–
], etc.

4.3 Total error bound
Now we can deduce our total error by combining all the error bounds above.

Theorem  Let fz,A defined as (), fρ defined as above. Assume Ez() ≤ B, |L(fλ(x), y)| ≤
Bρ , and () hold. By choosing ε = /

√
λm and λ = m–/(β+) we have

Ez,A
(
E(fz,A) – E(fρ)

) ≤
(

B + �() +
κCL

γ
+ cβ

)(

m

) β
β+

.

Proof By substituting the upper bounds above in the error decomposition (), we have

Ez,A
(
E(fz,A) – E(fρ)

) ≤ 
(
B + λ�()

)
ε +

( + ε)κCL

λγ mε
+


√

πBρ√
m

+ cβλβ .

Take ε = /
√

λm and λ = m–/(β+) for balance, then the result is proved. �

Here we present a general convergence result for the general differential private ERM
learning algorithms. In this theorem, we provide a choice for the parameters ε and λ,
under some conditions above, which leads to a learning rate m–β/(β+) with fixed B and γ .
However, in an explicit algorithm B and γ may depend on λ and the learning rate will vary
accordingly. We cannot go further without a specific description of the algorithms, which
will be studied in the next section.

5 Applications
In this section, we will apply our results to several frequently used learning algorithms.
First of all, let us take a look at the assumptions as regards fρ . Denote the integral operator
LK as LK f (t) =

∫
X f (x)K(x, t) dρX(x). It is well known that [] ‖LK‖ ≤ κ. Then fρ ∈ Lr

K (L
ρX

)
for some r >  is often used in learning theory literature. When r = /, it is the same as
fρ ∈ HK []. It is natural if we consider L(π (f (x)), y) ≤ L(f (x), y) for any function f and
(x, y) ∈ Z, which means π (f (x)) is more close than f (x) to y in some sense, as |y| ≤ M. Here

π
(
f (x)

)
=

⎧
⎪⎪⎨

⎪⎪⎩

M, f (x) > M,

f (x), –M ≤ f (x) ≤ M,

–M, f (x) < –M.

Then
∫

Z(π (fρ(x)), y) dρ ≤ ∫
Z(fρ(x), y) dρ , i.e., |fρ(x)| ≤ M always holds. So without loss of

generality, we also assume ‖fρ‖∞ ≤ M.
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5.1 Differential private least squares regularization
Our first example is the differential private least squares regularization algorithm,

f ls
z = arg min

f ∈HK


m

m∑

i=

(
f (xi) – yi

) + λ‖f ‖
K ,

and perturbation

f ls
z,A = f ls

z + bls.

Such an algorithm has been studied in our previous work []. Now we will try to apply
the above analysis. Firstly we can verify that �(f ) = ‖f ‖

K is -strongly convex, i.e., γ =  in
our settings. Since Ez(f ls

z ) + λ‖f ls
z ‖

K ≤ Ez() +  ≤ M with |y| ≤ M, we have ‖f ls
z ‖K ≤ M√

λ
,

which leads to ‖f ls
z ‖∞ ≤ κM√

λ
for any z ∈ Zm. Therefore though the least square loss is not

Lipschitz continuous, it satisfies

∣∣L
(
f ls
S (x), y

)
– L

(
f ls
S (x), y

)∣∣

=
∣∣(f ls

S (x) – y
) –

(
f ls
S (x) – y

)∣∣

≤ ∣∣f ls
S (x) + f ls

S (x) – y
∣∣ · ∣∣f ls

S (x) – f ls
S (x)

∣∣ ≤ M(κ + )√
λ

· ∣∣f ls
S (x) – f ls

S (x)
∣∣

for any S, S ∈ Zm. So we set CL = M(κ+)√
λ

in Proposition . Then bls has a density function

α

exp{– |b|
α

} with α = Mκ(κ+)
λ/mε

, which makes the algorithm provide ε-differential privacy.
A generalization analysis for this algorithm can also be found in []. What we shall

mention here is that direct use of our error bound in the previous section leads to an
unsatisfactory learning rate, since CL tends to ∞ when m → ∞. However, note that

(
f ls
z,A(xi) – yi

) –
(
fls(xi) – yi

) = b
(
f ls
z (xi) – yi

)
+ b

for any i = , , . . . , m, then

Ez,A
(
Ez

(
f ls
z,A

)
– Ez

(
f ls
z

))
= Ebb =

Mκ(κ + )

λmε .

When f ls
ρ ∈ Lr

K (L
ρX

), let fλ = (LK + λI)–LK fρ , we have Bρ = M, and () holds with β =

min{, r} in Theorem  []. Then by choosing ε = /(λm 
 ) and λ = (/m)


(β+) , we can

derive an error bound in the form of

Ez,A
(
E
(
f ls
z,A

)
– E

(
f ls
ρ

)) ≤ C̃(/m)
β

(β+)

for some C̃ independent with m, from the total error bound in the last section. We omit
the detail complex analysis here.
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5.2 Differential private SVM
The second example is differential private SVM. We describe the SVM algorithm as in
[], i.e., when Y = {–, +},

f h
z = arg min

f ∈HK


m

m∑

i=

(
 – yif (xi)

)
+ + λ‖f ‖

K ,

and perturbation

f h
z,A = f h

z + bh,

where the hinge loss Lh(f (x), y) = ( – yf (x))+ = max{,  – yf (x)} is used in the ERM setting.
Then the output classifier is sgn(f h

z,A).
Firstly we consider the differential privacy of this algorithm. Note that |a+ – b+| ≤ |a – b|

for any a, b ∈R, by the discussion, we have

∣∣L
(
f(x), y

)
– L

(
f(x), y

)∣∣ =
∣∣( – yf(x)

)
+ –

(
 – yf(x)

)
+

∣∣ ≤ ∣∣f(x) – f(x)
∣∣.

Then CL =  and γ =  in Proposition . Therefore bh here has a density function
/α exp{– |b|

α
} with α = κ

λmε
. In this case, we have, for any possible output set O,

Pr
{

f h
z,A ∈O

} ≤ eε Pr
{

f h
z̄,A ∈O

}
,

where z̄ differs from z in one element. Then, for any possible classifier g defined on X,

Pr
A

{
sgn

(
f h
z,A

)
= g

} ≤ eε Pr
A

{
sgn

(
f h
z̄,A

)
= g

}
.

This verifies the ε-differential privacy of the algorithm.
Now let us turn to the error analysis. When hinge loss is applied in the ERM setting,

Theorem  of [] reveals the comparison theorem, that is, denote R(f ) = Pr(y �= f (x)) =
∫

X Pr(y �= f (x)|x) dρX , then

R(f ) – R(fc) ≤
√


(
E(f ) – E

(
f h
ρ

))

for any measurable function f . Here

f h
ρ = arg min

f

∫

Z

(
 – yf (x)

)
+ dρ.

Assume f h
ρ ∈ Lr

K (L
ρX

), for some r >  and fc is the Bayes classifier, i.e.,

fc(x) =

⎧
⎨

⎩
, Pr(y = |x) ≥ Pr(y = –|x),

–, Pr(y = |x) < Pr(y = –|x).

Then

Ez,A
(
R
(
f h
z,A

)
– R(fc)

) ≤
√

Ez,A
(
E
(
f h
z,A

)
– E

(
f h
ρ

))
.
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Still we choose stepping-stone function fλ = (LK + λI)–LK f h
ρ , which leads to ‖fλ‖∞ ≤ M

and Bρ = (M + ). Reference [] shows that D(λ) ≤ λmin{r,}, so we can follow the choice
for ε and λ in Theorem  with β = min{r, } to get the learning rate as

Ez,A
(
R
(
f h
z,A

)
– R(fc)

) ≤ C̃
(


m

) β
(β+)

,

where C̃ is a constant independent of m.

6 Results and conclusions
In this paper, we present two results in the analysis of the differential private convex risk
minimization algorithms.

The first one is the perturbation results for general convex risk minimization algorithms.
We studied two cases of the general algorithms. The second one is applied in the following
analysis, as it leads to a sharper upper bound of the error between two outputs differ in
 sample point. However, the first one is more relaxed, without Lipschitz continuity of
the loss function. Based on such perturbation results we obtain a choice for the random
terms of the differential private algorithms, i.e., Proposition . This gives us a theoretical
and practical construction of differential private algorithms.

An error analysis is the second contribution of this paper. The analysis relies on the
concentration inequality in the setting of differential privacy. After conducting a differ-
ent error decomposition using the above concentration inequality, we provide an upper
bound or learning rate of the expected generalization error. In this result we find a selec-
tion of the parameter of differential privacy ε and the regularization parameter λ, both
of which depend on the sample size m. Since smaller ε always means more effective pri-
vacy protection, this indicates that generalized algorithms must not be too much privacy
protected.

In [], the authors proposed that the learning rate can be 
 under the strong assumption

on the loss function and with regularization term 
‖f ‖

K . However, the differential private
parameter ε is fixed there. In this paper we obtain a learning rate 

 with weak conditions
on the loss function and r ≥ 

 when choosing appropriate parameters ε and λ. As we
pointed out above, ε should not be too small to derive convergent algorithms. In fact, for
a fixed ε, we as well can deduce a learning rate of 

 (with a slightly different form); see []
for a detailed analysis.
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