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As a high-risk subindustry involved in construction projects, highway construction safety has experienced major developments in
the past 20 years, mainly due to the lack of safe early warnings in Chinese construction projects. By combining the current state
of early warning technology with the requirements of the State Administration of Work Safety and using case-based reasoning
(CBR), this paper expounds on the concept and flow of highway construction safety early warnings based on CBR. The present
study provides solutions to three key issues, index selection, accident cause association analysis, and warning degree forecasting
implementation, through the use of association rule mining, support vector machine classifiers, and variable fuzzy qualitative and
quantitative change criterion modes, which fully cover the needs of safe early warning systems. Using a detailed description of the
principles and advantages of eachmethod and by proving themethods’ effectiveness and ability to act together in safe early warning
applications, effective means and intelligent technology for a safe highway construction early warning system are established.

1. Introduction

China is currently one of the top infrastructure investors in
the world. From zero highway breakthroughs in 1988 to the
74,100 kilometers of highway traffic mileage implemented by
the end of 2010, comprising the second greatest highway net-
work in the world; China has achieved a level of development
that took western countries over 40 years to accomplish in
only 22 years, realizing a historic breakthrough in highway
construction. In keepingwith an overall construction plan for
an 850,000-kilometer highway road network [1], an increas-
ing number of highway construction projects will come into
operation over the next 10 years, the growth of which is
unprecedented. While highways have generated significant
economic benefits in the rapid development of the last 20
years, they have also resulted in billions of RMB of economic
losses due to safety issues, highlighting the severe safety con-
cerns in this industry.

According to the accident statistics for construction
project safety issued by the Ministry of Construction shown
in Figures 1 and 2, because China’s related department
strengthened management and improved managerial stuff
educational level, the numbers of accidents and fatalities

have been decreasing annually over the past three years. The
total number of accidents and deaths is relatively large, and
the number of people who have died of safety accidents in
construction projects in China is 1.5 times that of the total
death tolls in 50 other developed countries, including the
United Sates, the United Kingdom, Germany, and Japan. The
accident occurrences in road construction projects, which are
a high-risk subindustry in construction, account for 34% of
total construction project accidents, while the fatalities in this
subindustry account for approximately 31% of all construc-
tion project fatalities and are caused by five types of accidents:
height crashes, construction collapses, object attacks, electric
shocks, and machinery injuries. The safety conditions in this
subindustry are not satisfactory.

According to computations of static investments, it is esti-
mated that the future capital required for national highway
network construction is approximately 200 billion RMB.
National highway construction will be occurring fairly rap-
idly until 2020.The annual investment was approximately 140
billion RMB until 2010 and will be approximately 100 billion
RMB from2010–2020.However, the direct and indirect losses
caused by safety issues account for 2% of the annual total

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193686348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 The Scientific World Journal

Jan. Jan.to 
Feb.

Jan.to 
Mar.

Jan.to 
Apr.

Jan.to 
May

Jan.to 
Jun.

Jan.to 
Jul.

Jan.to 
Aug.

Jan.to 
Sept.

Jan.to 
Oct.

Jan.to 
Nov.

Jan.to 
Dec.

2008 34 50 120 191 262 327 409 483 560 645 720 778
2009 25 48 105 178 246 311 389 458 519 592 636 684
2010 41 48 93 143 213 273 337 418 482 531 584 627

0
100
200
300
400
500
600
700
800
900

Figure 1: Number of safety accidents in the construction industry
(2008–2010).

investment, which is a large figure that greatly hinders the
development of road construction.

At first, the industry thought that the safety issues had
purely incidental or unexplainable reasons, and concern
for safety was limited to fatalities and property loss. With
improved knowledge and concern for safety issues, the indus-
try began to see that the occurrences weremore or less related
to incidents but also had their own laws and features. Because
it has gotten a late start, the study of safety management in
China is only an initial attempt in terms of both theory and
practice, with imperfect on-site safetymanagementmaterials,
an indirect and hysteretic quality to safety effectiveness, and
widespread uncertainties in construction projects. Thus, the
importance of the construction safety work inChina has been
ignored for decades. So, there is an urgent need for current
construction safety work to switch from accident handling
after accidents to forecast at the initial stage, switch fromhan-
dling the accident to predicting and preventing the accident,
and switch from traditionalmanagement tomodern scientific
management. The key link to realizing this transition is con-
struction safety early warning technology.The essence of safe
early warning technology in construction projects lies in pre-
control, prophase management, transitioning from accident
handling to accident prevention, discovering and addressing
potential risks at any time, and eliminating accidents in the
early stages of a project. Therefore, early warning is one of
themost effectivemethods of curbing accidents and reducing
safety losses. In April 2011, Wang [2] noted at the 14th session
of national construction safety officer working meetings that
construction enterprises should establish and perfect safe
production dynamic monitoring and early warning systems
in addition to analyzing and auditing the hidden dangers and
risks of their construction projects at regular intervals.

Further studies on early warning management models
exist abroad and are focused mainly on macroeconomic pre-
monitoring andmicroenterprise crises, such as an earlywarn-
ing study on financial crises [3, 4], computer network crises
[5], and natural disasters, such as tsunamis and earthquakes
[6, 7]. However, the study of industry production safe early
warning, particularly early warning in construction projects
[8], is relatively rare. A theoretical study of early warning in
China must commence with the circular fluctuation of the
economy in the middle of the 1980s [9] and then transition to
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Figure 2: Death tolls from safety accidents in the construction
industry (2008–2010).

the noneconomic early warning that has occurred in recent
years, beginning with early warning management studies in
the field of construction projects, such as coal mining [10, 11],
bridge construction monitoring [12, 13], and deep excavation
[14, 15]. Although the phrase “early warning” has been men-
tioned very frequently in other countries, systematic and in-
depth studies are still rare and mostly focus on the computer
technology involved in early warning management informa-
tion systems.

The accident losses during highway construction in
China over the past 20 years have been caused mostly by
the lagging study and practice of safe early warning; thus,
improving early warning abilities and preventing safety issues
are now the industry’s most challenging tasks.

2. Key Technology for Safe Early
Warning Systems

Safety and risk are mutually contradictory and dependent in
major construction projects. Safety risks do not exist alone
on a microscale, and safety issues cannot be induced by a
single risk element. In essence, safety is a systematic project
containing subunits, such as safety risk forecasting, distin-
guishing safety risks, risk associations, risk element impor-
tance ranking, safety investment and effectiveness, safe early
warning, safety evaluation, and an emergency response plan.
On a macroscale, safety is related to construction progress,
project quality, investment cost, and effectiveness, and these
factors are interrelated and interact with one another, leading
to an external action mechanism for safety issues.

Based on the current knowledge of safety, the selection of
monitoring indices for corresponding early warnings should
have a hierarchy.This paper divides earlywarningmonitoring
indices into a compulsory index hierarchy and dynamic index
hierarchy. The compulsory index includes an average safety
training time, safety education coverage rate, licensed per-
sonnel rate, site safetymember rate, safety symbol installation
rate, temporary electricity usage management standard rate,
reasonableness of machinery material management, fire pro-
tection management standard rate, safety danger patrol, safe
productionmeeting frequency, employment injury insurance
coverage rate, height workload, and ecological conditions.
Thedynamic index includes deviations in the project progress
and investment costs, soil stress changes and deformations,
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Figure 3: CBR-based highway construction safe early warning system.

and variations in water level and environment. The improve-
ment of safety awareness and safety standards is adopted for
the compulsory indices in the early warning process, while
such methods as reinforcing the monitoring of dangerous
areas and time zones, qualitative and quantitative change
monitoring of the index values, and the division of different
warning districts are included in the dynamic indices. Once
the analyzed data enter the warning districts, we can effec-
tively curb safety issues with the different control measures
that are taken according to the warnings made based on the
level of severity.

A complete and scientific safe early warning process
includes the selection of monitoring indices and association
analysis of the causes of the accident and warning degrees.
Because a highway has such features as a one-off quality,
uniqueness and a high level of uncertainty, the indices for
early warning, accident association, andwarning degree fore-
cast should be uniquely based on the project features. There-
fore, this paper introduces case-based reasoning (CBR) tech-
nology to the field of highway construction safe early warning
systems to increase the accuracy and effectiveness of the tech-
nology. CBR is an important branch of artificial intelligence
and originated in 1982 as part of Yale University Professor R.
Schank’s “Dynamic Memory,” a book that created the basic
theory of case-based reasoning. CBR is a similar or analogical
type of reasoning that is designed to use existing experience
and cases to solve new problems while also explaining the
new situations. By accessing a knowledge base used to solve
similar problems in the past, the current problem solutions
are given an inference model or the use of old cases or expe-
riences to solve new problems, evaluate new issues, explain
atypical circumstances, or understand a new situation. CBR
technology is used to solve a problem directly using previous
examples of knowledge and can effectively solve difficult or
problem areas that cannot be expressed otherwise. The self-
learning function of CBR ensures the continuous enhance-
ment of its reasoning, and it efficiently handles important
items that are close or similar to the means [16]. However,
papers involving both construction project safety and CBR
are very rare—there are dozens abroad and less than 10 from
China. However, these papers focus mainly on safety diag-
nosis, quality control, and slope stabilization and accident
emergency response, and none are deep or thorough enough.

Based on the advantages of CBR in project applications and
its high accountability and communicability, a 2010 key scien-
tific project regardingmajor accident prevention and solution
technologies for safe production, issued by China’s national
safety supervision bureau, discusses CBR and shows us that
CBR technology is increasingly used in construction safety
studies.

Timely and accurate early warning systems can effectively
reduce the occurrence of accidents and eliminate safety losses
while maximizing the effectiveness of safety investments.
This study is based on case-based reasoning technology and
researches three key links of early warning systems, as shown
in Figure 3, which is a virtuous cycle process of self-learning.
Using the analogical reasoning-based features ofCBR, the key
to the application is in searching former cases that are similar
to new projects because experiences from previous similar
cases are more thorough and accountable and more severe
or potential risks can be mined and identified. Therefore, we
should search existing cases with similar control properties
to the new projects, in which control properties can be set as
indices, such as project type, construction technology, geo-
logical conditions, and methods of precipitation and water
drainage. Next, we can calculate the similarity of comparative
properties, such as construction costs and project kilometers,
based on the search, filtering finished projects for which the
similarities surpass aminimum threshold.The risks and acci-
dents experienced by the similar projects can be summarized
and used as keywords to search a case library, mining risk
associations that lead to accidents, and then strongly cor-
related associations exceeding the minimum threshold of
association rules’ support and confidence as an accident-
prone frequent item can be set to reinforce monitoring. This
study uses the association degree to determine index weight.
The greater the relationship to risk accidents is the heavier
the index weight becomes. Because the indices have different
types and associations, this paper uses a support vector
machine with a strong generalization capacity and variable
fuzzy set approach to perform the warning degree forecast
and assure the accuracy of the warnings. These two methods
have excellent theoretical superiority and comparatively lag-
ging applications, so this paper combines cases to analyze and
verify application effectiveness based on the two methods’
principles and advantages.
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3. Association Rules

Association rulemining is one of themost active directions of
study in data mining, which is an important Knowledge Dis-
covery inDatabase (KDD) research subject initially proposed
by Ramakrishnan et al. [17]. Data mining reflects interesting
or relevant associations among projects from a large database.
With the increasing scale of data collected and stored in data
libraries, people are becoming more interested in the mining
of relevant association knowledge from these data.

There are two important concepts in the algorithm of
association rule, support and confidence. If the proportion
of objects 𝐴 and 𝐵 in data library 𝐷 is 𝑠, then we can say
that the support of the association rule for 𝐴 and 𝐵 in 𝐷 is
𝑠, support(𝐴 → 𝐵) = support(𝐴 ∪ 𝐵) = 𝑃(𝐴, 𝐵). If the pro-
portion of data library 𝐷 containing objects 𝐴 and 𝐵 at the
same time is 𝑐, then we can say that the confidence of the
association rule for 𝐴 and 𝐵 is 𝑐, confidence(𝐴 → 𝐵) =

support(𝐴 ∪ 𝐵)/support(𝐴) × 100%, or 𝑃(𝐵|𝐴). The support
reflects the importance of association rules in the data
library, and the confidencemeasures the accountability of the
association rule.

Using association analyses from previous construction
projects, Chen [18] applied the grey association analysis
approach to distinguish between the association elements
affecting safety preevaluation systems and sequence the pri-
mary and secondary associated danger levels of dangerous
substances, thus solving the uncertainty and accountability
issues in safety accidents. Sawacha et al. [19] analyzed numer-
ous accident samples and summarized the top 5 important
elements associated with on-site safe production. Siu and his
colleagues [20] made a comparative analysis of their associa-
tions from personal elements and accident rates, while
Halperin and McCann [21] determined relevant elements
from the study of frequent accident locations. Case-based
reasoning association rules are different from the association
analysis performed in the literature because references pro-
vided by similar cases can more accurately reflect the depen-
dence and association between a monitoring index and risk
events. In the mining process for early warning rules, we first
set the minimum threshold for the support and confidence
of the association rules. Then, we search all of the high-
frequency risk sets related to safety issues in the case library
and generate strongly correlated rules from these cases.

This study uses relational algebra theory-based associa-
tion rules to perform risk association mining, and the algo-
rithm only needs to scan the data library once (overcoming
the classic Apriori algorithm’s weakness of needing to scan a
data library multiple times) and has good concurrency and
scalability. Assuming that 𝐷 is the case library and 𝑇 =

{𝑡
1
, 𝑡
2
, 𝑡
3
, . . . , 𝑡

𝑚
} and 𝐼 = {𝑖

1
, 𝑖
2
, 𝑖
3
, . . . , 𝑖

𝑛
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risk itemset, respectively, the matrix is as follows:
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[
[
[
[

[
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...
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, (1)

which stands for the binary relation from 𝑇 to 𝐼.

Table 1: Risk associations for height crash accidents.

𝑇ID Items 𝐴 𝐵 𝐶 𝐷 𝐸

𝑇1 {𝐴, 𝐵, 𝐶,𝐷, 𝐸} 1 1 1 1 1
𝑇2 {𝐴, 𝐵, 𝐶,𝐷} 1 1 1 1 0
𝑇3 {𝐴, 𝐵, 𝐶, 𝐸} 1 1 1 0 1
𝑇4 {𝐴, 𝐵,𝐷} 1 1 0 1 0
𝑇5 {𝐴, 𝐵, 𝐶,𝐷, 𝐸} 1 1 1 1 1
𝑇6 {𝐴, 𝐵, 𝐶, 𝐸} 1 1 1 0 1
𝑇7 {𝐴,𝐷, 𝐸} 1 0 0 1 1
𝑇8 {𝐵,𝐷} 0 1 0 1 0
𝑇9 {𝐴, 𝐵, 𝐶, 𝐸} 1 1 1 0 1
𝑇10 {𝐵, 𝐶,𝐷, 𝐸} 0 1 1 1 1
𝑇11 {𝐴, 𝐶,𝐷, 𝐸} 1 0 1 1 1
𝑇12 {𝐵, 𝐶,𝐷} 0 1 1 1 0

In the formula, the value of 𝑟
𝑖𝑗
(𝑖 = 1, 2, . . . , 𝑚; 𝑗 =

1, 2, . . . , 𝑛) is 1 or 0, representing whether case 𝑖 includes risk
element 𝑗. ∑𝑚

𝑖=1
𝑟
𝑖𝑗
/𝑚 is the support of property 𝑗 for the 1st

set. If the support is bigger than theminimum threshold, then
the risk item element is 1 large itemset. If an itemset is not
large, then any sets including this itemset can never be large.
Therefore, 2 large itemsets must search based on 1 large item-
set. Assume that 𝐴 is a 1 large itemset, 𝑎

𝑖
stores 1 large

relevant itemset, and 𝑖 = 1, 2, . . . , 𝑠, so 𝐴 has 𝑠 elements.
∑
𝑚

𝑝=1
(𝑟
𝑝𝑎𝑖

and 𝑟
𝑝𝑎𝑗
)/𝑚 is the support of 2 itemsets {𝑎

𝑖
, 𝑎
𝑗
}, so

the support must be larger than the minimum threshold to
be 2 large itemsets. These conditions apply to all itemsets. If
there exists an item 𝑉 to make ∑𝑚

𝑝=1
(𝑟
𝑝𝑖𝑘−1

and 𝑟
𝑝V)/𝑚 larger

than the minimum support threshold, then {𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑘−1
, ]}

is a 𝑘 large itemset.
This paper considers height crash accidents, which have

the highest occurrence and number of fatalities, as an exam-
ple. Table 1 represents cases similar to the 12 height crash acci-
dents obtained from the case library and their risk associa-
tions.𝐴–𝐸 represent separate risk elements, such as safety belt
failure or lack of safety belt use, strut damage, loss of body
control, safety facility failure, and safety net damage.

The algorithm is described in MATLAB R2007a as in
Algorithm 1.

Set the minimum support threshold 𝑡 of this early warn-
ing association rule to 40%. Then, the 1 large itemset from
this algorithm is {𝐴}, {𝐵}, {𝐶}, {𝐷}, and {𝐸}; the 2 large
itemset is {𝐴, 𝐵}, {𝐴, 𝐶}, {𝐴,𝐷}, {𝐴, 𝐸}, {𝐵, 𝐶}, {𝐵, 𝐷}, {𝐵, 𝐸},
{𝐶,𝐷}, {𝐶, 𝐸}, and {𝐷, 𝐸}; and the 𝑘 large itemset is {𝐴, 𝐵, 𝐶},
{𝐴, 𝐵, 𝐸}, {𝐴, 𝐶, 𝐸}, {𝐵, 𝐶,𝐷}, {𝐵, 𝐶, 𝐸}, and {𝐴, 𝐵, 𝐶, 𝐸},
which is the same as the results gained from the classic Apri-
ori algorithm. A 𝑘 large itemset can typically represent the
mechanism of action, so curbing the occurrence of a 𝑘 large
itemset is key to safe early warnings.The rules set by this asso-
ciation algorithm are fixed, so if we can use it as a base and
combine quantitative data, such as the probability of basic
events and accidents, sensibility of basic events, safety thresh-
olds, or safety investment effectiveness, the risk element asso-
ciation rules can be further deduced.
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for 𝑗 = 1 : 𝑛
𝑓(𝑗)= 0;

for 𝑖 = 1 : 𝑚
𝑓(𝑗)= 𝑓(𝑗) + 𝑟(𝑖, 𝑗);
𝑓(𝑗)= 𝑓(𝑗)/𝑚;

for 𝑖 = 𝑎(1) : 𝑎(𝑛 − 1)
for 𝑗 = 𝑎(𝑖 + 1) : 𝑎(𝑛)

for 𝑝 = 1 : 𝑚
𝑑(𝑝)= 𝑟(𝑝, 𝑖) and 𝑟(𝑝, 𝑗);
𝑓 = 𝑓 + 𝑑(𝑝);

𝑓 = 𝑓/𝑚;
for each (𝑘 − 1) large itemset

for ℎ = 1 : 𝑛
for 𝑗 = 1 : 𝑚

Calculate 𝑟(𝑗, 𝑐) and 𝑟(𝑗, ℎ), and if its support is larger than the minimum threshold, then output a 𝑘 large itemset.

Algorithm 1

4. Support Vector Machine

The accuracy of a warning degree forecast decides the perti-
nence of safety precontrol measures and the effectiveness of
safety investments. Different warning degrees indicate dif-
ferent measures and investment costs. Therefore, safe early
warning systems have strict classification method require-
ments to make full use of investment costs, effectively control
risks, and avoid accidents. The interpretation of a neural net-
work does not give it the ability to learn and can easily cause
weak generalization characteristics. To combat this tendency,
this study introduces the most successful statistical learning
theory, support vector machine technology.The support vec-
tor machine (SVM) solves small samples with nonlinear and
high-dimensional pattern recognition performance, giving it
many unique advantages. Cortes and Vapnik [22] first pro-
posed the SVM in 1995 and based it on statistical learning the-
ory, and the theory ofVCdimension is based on the structural
risk minimization principle according to the limited sample
information in the model complexity (the learning accuracy
of a particular training sample, or accuracy) and the learning
ability (error-free samples that identify any capacity) to estab-
lish the best compromise between the two and obtain the best
generalization capability (or generalization) [23]. The main
advantages of SVM technology are that its small samples
can solvemachine learning problems, improve generalization
performance, solve high-dimensional problems and nonlin-
ear problems, and avoid neural network structure selection
and local minimum problems.

Experiments have shown that the results of fitting a low-
order function are better than the results of fitting a higher-
order function in noisy conditions, even if the true model
occurs several times [24].Thus, attempting to use a very com-
plicatedmodel to fit a limited sample, even with the “optimal”
function, results in the loss of generalization ability in low-
dimensional space.

Unlike traditional statistical methods, the SVM defines
structural risk minimization as its goal and makes a good
pre-selection using a nonlinear transformation, nuclear
function, and low-dimensional input vectors mapped into

Low-dimensional sample space

Nonlinear mapping

Solution of optimal classification superflat

Linear classificationNonlinear classification
Corresponds to

High-dimensional feature sample space

Figure 4: Principles of support vector machine thinking.

a high-dimensional feature space. An optimal separating
hyper plane can be constructed in this feature space. In
other words, the promotion of a high-dimensional space
constructed with a low-dimensional space produces more
powerful functions, as shown in Figure 4.

The SVM two-dimensional realization of the situation in
Figure 5 can be used to explain its use. The solid and hollow
points represent two samples𝐻 for the classification line,𝐻

1

and 𝐻
2
, respectively, from the classification of various line

types in a sample of recent data. In the classification of lines
parallel to the straight line, the distance between the lines is
called the classification interval (margin).The so-called opti-
mal separating line requires that the correct classification of
a line not only be capable of separating the two line types (a
training error rate of 0) but also be capable of classifying the
largest interval, or the promotion of capacity control, which
is one of the core concepts of the SVM.

The classification line for the equation of𝐻 is 𝑥 ⋅ 𝜔+ 𝑏 =

0, where𝐻
1
and𝐻

2
are classes 1 and −1, respectively, and the

equations of𝐻
1
and𝐻

2
are𝑥⋅ 𝜔+ 𝑏 = 𝑦,𝑦 = 1 and 𝑥⋅ 𝜔+ 𝑏 =

𝑦, respectively, with 𝑦 = −1. The determination of whether
the sample belongs to class 1 or class −1 can be summarized as

𝑦
𝑖
[(𝜔 ⋅ 𝑥

𝑖
) + 𝑏] − 1 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛. (2)
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Table 2: Historical data sheet.

Project
number

Warning
degree

Workload
when

working at
height

Safety
protection

level

Engineering
geological
conditions

Installation
and

usage of
machinery

Workers
without

safety training

Organizational
ability

Safety
material
status

1 2 0.3 82 2 82 0.14 68 1
2 2 0.38 64 0 72 0.15 84 1
3 1 0.2 73 2 93 0.11 84 1
4 1 0.34 83 2 91 0.12 82 2
5 2 0.22 74 0 94 0.1 88 2
6 1 0.32 94 2 95 0.2 80 2
...

...
...

...
...

...
...

...
...

30 1 0.34 85 2 83 0.12 79 0
31 2 0.35 65 2 81 0.08 70 2
32 1 0.3 90 1 85 0.15 88 2
33 2 0.35 72 1 72 0.14 65 1
34 1 0.22 68 1 85 0.04 88 1
35 1 0.25 85 2 80 0.12 85 1
36 2 0.35 70 1 68 0.14 70 1

The interval classification is equal to 2/‖𝜔‖, so the maxi-
mum interval is equivalent to the minimum ‖𝜔‖

2. Therefore,
(2) the constraints to meet the minimum are ‖𝜔‖2/2, the clas-
sification of surface is called the optimal separating surface,
and𝐻

1
and𝐻

2
point to the training samples, called support

vectors.
Because the presence of noise will not distinguish bet-

ween some samples, even if the low-dimensional vector is
mapped to a high-dimensional feature space, the introduc-
tion of slack variables 𝜁

𝑖
and a penalty factor 𝐶 represent that

the data noise in the fault tolerance of the SVMachieves better
classification results. The purpose of the representation is to
allow part of the introduction of the point that does not meet
the requirement that the outliers give up. The resulting gen-
eralized optimal separating line model is

min ‖𝜔‖
2

2
+ 𝐶

𝑙

∑

𝑖=1

𝜁
𝑖

subject to 𝑦
𝑖
[(𝜔 ⋅ 𝑥

𝑖
) + 𝑏] 1 − 𝜁

𝑖
(𝑖 = 1, 2, . . . , 𝑙)

(where 𝑙 is the number of samples) 𝜁
𝑖
≥ 0.

(3)

This equation can be transformed into a dual problem for
its resolution, and because it is a convex quadratic program-
ming problem, there exists a global optimal solution.

In summary, the SVM training error and generalization,
according to the limited sample information in the model
complexity, find the best compromise to solve for small sam-
ples in nonlinear, high-dimensional problems, such as pat-
tern recognition. Although the SVM is widely used and the
method has many unique advantages, research into its use is
still relatively lagging. This paper introduces the use of the
SVM method into case-based reasoning for construction
safety warning degree forecasts, preserving the objectivity of
actual risk elements while maintaining the forecast accuracy

H1

H

H2

Margin = 2/‖𝜔‖

Figure 5: Linearly separable cases with optimal classification lines.

of warning degrees, achieving target precontrol measures,
and avoiding accidents.

This paper takes the historical data from [25] (Table 2) as
an example and considers a case study of vector machine
applications in safe early warning systems.

The process can be described in MATLAB R2007a as
follows:

%% Support Vector Machines
[bestacc, bestc, bestg] = SVMcgForClass (train lable,
train, cmin, cmax, gmin, gmax,. . ., v, cstep, gstep,
accsetp)
% cross-validation to determine the optimal penalty
factor 𝑐 and nuclear function parameter 𝑔 model =
svmtrain (train label, train, [“libsvm options”])
% determine the training set classification
[predict, acc] = svmpredict (test label, test, model)
% by category model to classify new samples
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Figure 6: Cross-validation optimized three-dimensional display.

This case makes the warning degree its object. Levels 1–3
represent slight, moderate, and severe warnings, respectively,
and the other 7 elements represent the risk properties, fore-
casting the warning degree of this case through the support
vector machine classifier. The first 31 cases are set as training
samples, and the final 5 are set as testing samples. In the classi-
fication setting, the kernel function selects a radial basis func-
tion while optimizing the parameters of the cross-validation
process. The training samples are randomly divided into 5
groups, and for themaximumnumber that appears, the cross-
validation accuracy of the smallest group of 𝑐 is selected
because the high penalty parameter causes the algorithm to
learn and is not conducive to the generalization of the results.
Based on this result, the best penalty parameter 𝑐 = 181.0193
and the best RBF kernel parameter𝑔 = 0.03125, for which the
highest cross-validation accuracy rate is 74.1935%, are shown
in Figure 6.

In the final training set, the forecast results show that the
classification accuracy of the classifiers trained by this set is
90.3226%, and the testing set samples have an accuracy of
100%, with the entire classification process lasting only 3.96
seconds. At the same time, the accuracy of the BP neutral
network approach for this testing set is only 60%, and it takes
22.48 seconds to finish the classification, which indicates the
generalization capacity strength of the SVM. The SVM has
major advantages over neutral networks in terms of its fore-
cast accuracy and efficiency and can efficiently improve the
pertinence of precontrol measures and the effectiveness of
safety investments.

5. Variable Fuzzy Qualitative
Change Criterion Mode

With the existence of a dynamic index, safe early warnings
must be a process of dynamicmonitoring. As the project pro-
gresses, the index values will change dynamically among
warning districts, with some changing across warning dis-
tricts and some changing only within warning districts.
Therefore, the index values are a critical test for illustrating
warning accuracy and disguising whether the index change is

Pl Pm Pr

𝜇A(u) = 1

𝜇A𝑐 (u) = 0

𝜇A(u) > 𝜇A𝑐 (u) 0.5 𝜇A(u) < 𝜇A𝑐 (u) 𝜇A(u) = 0

𝜇A𝑐 (u) = 1

Figure 7: Opposite fuzzy set schematic.

a quantitative or qualitative change. Professor Chen proposed
relative difference function-based variable fuzzy sets [26–28]
with quantitative and qualitative change (i.e., gradual and
abrupt) criterion modes [29].

Assume that for any element 𝑢 (𝑢 ∈ 𝑈), there is a vague
concept 𝐴 in the universe of discourse 𝑈 at any point on the
reference continuum axis of the relative membership func-
tion.The relativemembership of𝑈 to𝐴 is𝜇

𝐴
(𝑢) and𝜇

𝐴
𝑐(𝑢) to

𝐴
𝑐, the opposite concept of𝐴, and 𝜇

𝐴
(𝑢)+𝜇

𝐴
𝑐(𝑢) = 1. Among

these variables, 0 ≤ 𝜇
𝐴
(𝑢) ≤ 1 and 0 ≤ 𝜇

𝐴
𝑐(𝑢) ≤ 1. As shown

in Figure 7, the left pole 𝑃
𝑙
has 𝜇
𝐴
(𝑢) = 1 and 𝜇

𝐴
𝑐(𝑢) = 0,

the right pole 𝑃
𝑟
has 𝜇
𝐴
(𝑢) = 0 and 𝜇

𝐴
𝑐(𝑢) = 1, and 𝑃

𝑚
is the

gradual qualitative change in the point of reference contin-
uum interval [1, 0] (for 𝐴) and [0, 1] (for 𝐴𝑐), meaning that
𝜇
𝐴
(𝑢) = 𝜇

𝐴
𝑐(𝑢) = 0.5.

Assume that𝐷
𝐴
(𝑢) = 𝜇

𝐴
(𝑢) − 𝜇

𝐴
𝑐(𝑢) is called the relative

difference of 𝑈 to 𝐴. As shown in Figure 8:

If 𝜇
𝐴
(𝑢) > 𝜇

𝐴
𝑐(𝑢), then 1 > 𝐷

𝐴
(𝑢) > 0;

If 𝜇
𝐴
(𝑢) = 𝜇

𝐴
𝑐(𝑢), then𝐷

𝐴
(𝑢) = 0;

If 𝜇
𝐴
(𝑢) < 𝜇

𝐴
𝑐(𝑢), then −1 < 𝐷

𝐴
(𝑢) < 0.

Assume that 𝑉 = {(𝑢,𝐷) | 𝑢 ∈ 𝑈,𝐷
𝐴
(𝑢) = 𝜇

𝐴
(𝑢) −

𝜇
𝐴
𝑐(𝑢), 𝐷 ∈ [−1, 1]}.
𝑉 is called the fuzzy variable set and 𝐴

+
, 𝐴
−
, and 𝐴

0
are

called the attraction basin (main), rejection basin (main), and
gradual qualitative change boundary, respectively.

Assume that 𝐶 is the variable element set of 𝑉 and 𝐶 =

{𝐶
𝐴
, 𝐶
𝐵
, 𝐶
𝐶
}, where 𝐶

𝐴
is a variable model set, 𝐶

𝐵
is a varia-

ble model parameter set, and𝐶
𝐶
is the other variable element

set excluding the model and its parameters.
When summarizing the above statement, we can con-

clude that the criterionmodes of the variable fuzzy qualitative
and quantitative changes are as follows.

(1) If 𝐷
𝐴
(𝑢) > 0 and 𝐷

𝐴
(𝐶(𝑢)) > 0, then 𝐷

𝐴
(𝑢) ⋅

𝐷
𝐴
(𝐶(𝑢)) > 0 is a quantitative change.

(2) If 𝐷
𝐴
(𝑢) > 0 and 𝐷

𝐴
(𝐶(𝑢)) < 0, then 𝐷

𝐴
(𝑢) ⋅

𝐷
𝐴
(𝐶(𝑢)) < 0 is a gradual qualitative change

(through𝐷
𝐴
(𝑢) = 0).

(3) If 𝐷
𝐴
(𝑢) < 0 and 𝐷

𝐴
(𝐶(𝑢)) < 0, then 𝐷

𝐴
(𝑢) ⋅

𝐷
𝐴
(𝐶(𝑢)) > 0 is a qualitative change.

(4) If 𝐷
𝐴
(𝑢) < 0 and 𝐷

𝐴
(𝐶(𝑢)) > 0, then 𝐷

𝐴
(𝑢) ⋅

𝐷
𝐴
(𝐶(𝑢)) < 0 is a gradual qualitative change

(through𝐷
𝐴
(𝑢) = 0).

Therefore, we can conclude that if 𝐷
𝐴
(𝑢) > 0 or𝐷

𝐴
(𝑢) <

0, the criterionmodes of the quantitative and gradual qualita-
tive changes of the variable fuzzy set are𝐷

𝐴
(𝑢) ⋅ 𝐷

𝐴
(𝐶(𝑢)) >

0 and𝐷
𝐴
(𝑢) ⋅ 𝐷

𝐴
(𝐶(𝑢)) < 0, respectively.

As shown in Figure 8, the left and right poles 𝑃
𝑙
and 𝑃

𝑟
,

where𝐷
𝐴
(𝑢) = 1 and𝐷

𝐴
(𝑢) = −1, are both abrupt qualitative
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Table 3: Basic information on Contract F (2003.02–2003.09) 10,000 Yuan.

Time Month Plan for
this month

Actual progress
during this month

Total Progress
since

commencement

Percentage of
actual progress to
planned progress

Change in contract
price

2003.2 14 880.1126 597.9812 5991.5486 0.68 8695.2054
2003.3 15 938.522 717.9559 6709.5045 0.765 8555.2054
2003.4 16 918.4406 530.2455 7239.75 0.58 8555.2054
2003.5 17 959.0213 630.8527 7820.6027 0.6578 8655.2054
2003.6 18 766.6541 218.3175 8029.8021 0.2848 9021.8495
2003.7 19 766.6541 259.7389 8219 0.3388 9221.8495
2003.8 20 68.6561 391.8619 8611.4029 0.586 9221.8495
2003.9 21 593.301 182.7692 8774.9369 0.308 9141.8495

Table 4: Investment cost risk calculations for Contract F 10,000 Yuan.

Time
Number of

project changes
this month

Investment cost
deviation value

(accumulated Change)
Earned value Investment cost

deviation rate
Progress

deviation rate

2003.2 −1,614.1201 7,605.669 −0.2122 −0.1856
2003.3 −140 −1,754.1201 8,463.625 −0.2073 −0.2050
2003.4 0 −1,754.1201 8,993.87 −0.1950 −0.2050
2003.5 100 −1,654.1201 9,474.723 −0.1746 −0.1911
2003.6 366.6441 −1,287.476 9,317.278 −0.1382 −0.1427
2003.7 200 −1,087.476 9,306.476 −0.1169 −0.1179
2003.8 0 −1,087.476 9,698.879 −0.1121 −0.1179
2003.9 −80 −1,167.476 9,942.413 −0.1174 −0.1277

Pl Pm Pr

DA(u) = 1 1 > DA(u) > 0 DA(u) = 0 0 > DA(u) > −1 DA(u) = −1

Figure 8: Relative difference function schematic.

change boundaries. If 𝐷
𝐴
(𝑢) > 0, 𝐷

𝐴
(𝑢) changes from a

certain positive value to “1” (abrupt change), then 𝐷
𝐴
(𝑢) ⋅

𝐷
𝐴
(𝐶(𝑢)) = |𝐷

𝐴
(𝑢)| is an abrupt qualitative change (without

𝐷
𝐴
(𝑢) = 0). If 𝐷

𝐴
(𝑢) < 0, 𝐷

𝐴
(𝑢) changes from a certain

negative value to “−1” (abrupt change), then −|𝐷
𝐴
(𝑢)| ⋅

𝐷
𝐴
(𝐶(𝑢)) = |𝐷

𝐴
(𝑢)| is also an abrupt qualitative change

(without𝐷
𝐴
(𝑢) = 0).

Therefore, we can see that the criterion mode for abrupt
qualitative change without 𝐷

𝐴
(𝑢) = 0 can be summarized as

𝐷
𝐴
(𝑢) ⋅ 𝐷

𝐴
(𝐶(𝑢)) = |𝐷

𝐴
(𝑢)|.

As this process continues, the criterion mode for abrupt
qualitative change with 𝐷

𝐴
(𝑢) = 0 can be summarized as

𝐷
𝐴
(𝑢) ⋅ 𝐷

𝐴
(𝐶(𝑢)) = −|𝐷

𝐴
(𝑢)|.

Because current construction projects tend to excessively
favor internal indices in dynamic index monitoring for
safe early warning systems, the abnormal state of external
indices, such as cost and progress, can also have a negative
effect on safety situations. This study uses the changes in
construction progress and investment for the 210 road section
of a national highway as an example to verify the effectiveness
of this qualitative and quantitative change model [30]. This
road starts at the Qiujiahe River on the cross-boundary

Table 5: [𝑎, 𝑏] and [𝑏, 𝑑] interval eigenvalues for the deviation index.

𝑥
1

𝑥
2

[𝑎
1
, 𝑏
1
] [𝑏

1
, 𝑑
1
] [𝑎

2
, 𝑏
2
] [𝑏

2
, 𝑑
2
]

[−0.1, −0.18] [−0.18, −0.25] [−0.1, −0.18] [−0.18, −0.25]

between Sichuan and Chongqing and ends at Heishizi in the
Jiangbei District of Chongqing, connecting with the Yuchang
highway. The highway has a total length of 53.108 kilometer.
Tables 3 and 4 summarize the progress and investment costs,
respectively, for Contract F of this project.

The linear formula for the relative difference in this appli-
cation document [31] is

𝐷
𝐴
(𝑢) = (

𝑥
𝑖
− 𝑏
𝑖

𝑎
𝑖
− 𝑏
𝑖

) 𝑥
𝑖
∈ [𝑎
𝑖
, 𝑏
𝑖
] ,

𝐷
𝐴
(𝑢) = (

𝑥
𝑖
− 𝑏
𝑖

𝑑
𝑖
− 𝑏
𝑖

) 𝑥
𝑖
∈ [𝑏
𝑖
, 𝑑
𝑖
] ,

(4)

where 𝑥
1
is the investment cost deviation rate, 𝑥

2
is the

progress deviation rate, the comprehensive evaluation of risk
is based on the twodeviation rates, and the relative differences
between the investment cost and progress from February
2003 to September 2003 are calculated separately according to
the [𝑎, 𝑏] and [𝑏, 𝑑] interval eigenvalues in Table 5.

Assume that the weight vector of the two indices is 𝜔 =

(0.5, 0.5). Then, the relative difference in monthly risk is
𝐷
𝐴
(𝑢) = ∑

2

𝑖=1
𝜔
𝑖
⋅ 𝐷
𝐴
(𝑢)
𝑖
. Table 6 shows the monthly com-

prehensive relative difference.
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Table 6: Relative differences for Contract F (2003.2–2003.9).

Time 2003.2 2003.3 2003.4 2003.5 2003.6 2003.7 2003.8 2003.9
𝐷
𝐴
(𝑢) −0.27 −0.37 −0.27 0.26 0.26 0.78 0.80 0.76

The closer the value of𝐷
𝐴
(𝑢) is to −1, the greater the risk

and the greater the pressure for safety are.The closer the value
is to 1, the safer the project is. Based on the results in Table 6,
we can see the change in tendency to risk. The safety level
experiences a gradual qualitative change from April to May,
while the changes from February to April and from May to
September are both quantitative.The change is negative from
February to April, indicating that the deviation in progress
and investment costs during this period have a negative effect
on safety production, and the change fromMay to September
is positive, indicating that the deviation in progress and
investment costs during this period does not have a negative
external effect on safety situations.The results are simple and
intuitive, and the existence of association rulesmeans that the
occurrence of safety issues is a combined action of multiple
risk elements.Therefore, it is far from sufficient to set a warn-
ing degree threshold for individual risk elements to ensure
safety when monitoring dynamic indices. This method can
also be applied to the dynamicmonitoring ofmultiple indices
and intervals. We can create corresponding control measures
based on the results, thereby curbing safety issues.

6. Conclusions

Early warning technologies are used to determine both safety
situations and safety losses. Good early warning technologies
can not only reduce losses by limiting the available accident
sources but can also indirectly lower investment costs by
guiding safety input benefit maximization. Different from
other existing research, the following conclusions and recom-
mendations are made based on this research.

(1) By using analogical reasoning-based CBR, this paper
gives a basi schematic for solutions to safe early warn-
ing technologies by practically solving the three-key
issues of index selection, accident cause association
analysis, andwarning degree forecast, which also pen-
etrate the whole process of safe management.

(2) Combined with the characteristics of highway pro-
jects, as well as the possible problems in the process
of data processing, this paper introduces association
rule mining, support vector machine classifiers and
variable fuzzy qualitative and quantitative change cri-
terionmodes in order to keep the data of high fidelity.
Together with experiments proving the effectiveness
of the methods, the proposed method is a completely
feasible and effective means of improving our coun-
try’s early warning technologies.

(3) With the gradual application of artificial intelligence
to the security of construction projects, the CBR tech-
nology can be applied to safe early warning systems
for construction projects in our country. However,
research shows that a lack of existing cases and the
complexity of the data are the biggest bottlenecks in

the application of CBR. Therefore, further study of
CBR technology and the settlement of data process-
ing, case statistics, and searches of highway construc-
tion safe early warning systems are key to improving
the practicability of safe early warning systems and
safety management.
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