
Franke et al. Journal of Internet Services and Applications (2015) 6:27
DOI 10.1186/s13174-015-0040-6

RESEARCH Open Access

Smart crowds in smart cities: real life, city
scale deployments of a smartphone based
participatory crowdmanagement platform
Tobias Franke1*, Paul Lukowicz1 and Ulf Blanke2

Abstract

We describe a platform for smart, city-wide crowd management based on participatory mobile phone sensing and
location/situation specific information delivery. The platform supports quick and flexible deployments of end-to-end
applications for specific events or spaces that include four key functionalities: (1) Mobile phone based delivery of
event/space specific information to the users, (2) participatory sensor data collection (from app users) and flexible
analysis, (3) location and situation specific message multicast instructing people in different areas to act differently in
case of an emergency and (4) post mortem event analysis. This paper describes the requirements that were derived
through a series of test deployments, the system architecture, the implementation and the experiences made during
real life, large scale deployments. Thus, until today it has been deployed at 14 events in three European countries (UK,
Netherlands, Switzerland) and was used by well over 100,000 people.

Keywords: Crowd management, Crowd sourcing, Large scale cooperative sensing, Smartphones

1 Introduction
Pedestrian crowds are an integral part of cities. Planing
for crowds, monitoring crowds and managing crowds,
are fundamental tasks in city management. As a conse-
quence, crowd management is a sprawling R&D area (see
related work) that includes theoretical models, simulation
tools, as well as various support systems. There has also
been significant interest in using computer vision tech-
niques to monitor crowds. However, overall, the topic of
crowd management has been given only little attention
within the smart city domain. In this paper we report on
a platform for smart, city-wide crowd management based
on a participatory mobile phone sensing platform. Origi-
nally, the apps based on this platform have been conceived
as a technology validation tool for crowd based sens-
ing within a basic research project. However, the initial
deployments at the Notte Bianca Festival1 in Malta and
at the Lord Mayor’s Show in London2 generated so much
interest within the civil protection community that it has

*Correspondence: tobias.franke@dfki.de
1German Research Center for Artificial Intelligence (DFKI), Kaiserslautern,
Germany
Full list of author information is available at the end of the article

gradually evolved into a full-blown participatory crowd
management system and is now in the process of being
commercialized through a startup company. Until today it
has been deployed at 14 events in three European coun-
tries (UK, Netherlands, Switzerland) and used by well over
100,000 people.

1.1 Contributions
In this paper we describe the design, implementation and
experiences with a large scale participatory platform for
city wide crowd management. The platform enables the
quick and flexible deployment of end-to-end applications
for specific public spaces or events that include four key
functionalities:

1. Mobile phone based delivery of event/space specific
information to the users. In a nutshell, this is the
classic city/event information app functionality that
motivates users to download and run the App.

2. Participatory sensor data collection from app users
(on an opt-in basis) and translation of that data into
an appropriate representation of the crowd state and
its evolution. This provides responsible crowd
managers with a “heat map-like”, concise, real time

© 2015 Franke et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-015-0040-6-x&domain=pdf
mailto: tobias.franke@dfki.de
http://creativecommons.org/licenses/by/4.0/

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 2 of 19

overview of the spatial and temporal evolution of the
state of the crowd in the entire area.

3. Support for location and situation specific messaging
allowing the messages to instruct people in different
areas to act differently in case of an emergency. This
allows for smart, adaptive emergency response and
evacuation strategies to be implemented in real time.

4. The ability for post mortem analysis of an event as
means of future planning.

On the research level, this paper makes the following
specific contributions:

1. The concept of crowd management as a use case for
participatory smart city technology including a
requirements analysis based on several real life
deployments of different prototypes.

2. The architecture and implementation of a
corresponding platform comprising of

• A generic, configurable, multi-platform app to
facilitate collaborative, city-wide sensing as well
as location and situation sensitive information
delivery

• A data processing backend that collects and
stores the sensor data from the participants and
converts them into situational awareness of the
crowd state.

• A configuration front end that allows the
generic app platform to be quickly instantiated
according to the specific event/space.

• An event management front end that provides
the visualization of the crowd state and allows
for an easy creation of situation and location
specific messages.

All of the above is implemented in a modular way
allowing easy integration of additional functionality
(e.g. new sensor data analysis and visualization
schemes).

3. Results and experiences from large scale real life
deployments ranging from the information that the
system can deliver about an event over the statistics
of app usage to quantitative and qualitative results of
user interviews (with both event visitors and civil
protection personnel).

1.2 Related work
Obtaining knowledge about the current size and density
of a crowd is one of the central aspects of crowd monitor-
ing [1]. For the last decades, automatic crowd monitoring
in urban areas has mainly been performed by means of
image processing [2]. One use case for such video-based
applications can be found in [3], where a CCTV camera-
based system is presented that automatically alerts the
staff of subway stations when the waiting platform is

congested. However, one of the downsides of video-based
crowdmonitoring is the fact that video cameras tend to be
considered as privacy invading. Therefore, [4] presents a
privacy preserving approach to video-based crowd mon-
itoring where crowd sizes are estimated without people
models or object tracking.
With respect to the mitigation of catastrophes induced

by panicking crowds (e.g. during an evacuation), city
planners and architects increasingly rely on tools simulat-
ing crowd behaviors in order to optimize infrastructures.
Murakami et al. [5] presents an agent based simulation for
evacuation scenarios. Shendarkar et al. [6] presents a work
that is also based on BSI (believe, desire, intent) agents –
those agents however are trained in a virtual reality envi-
ronment thereby giving greater flexibility to the modeling.
Kluepfel et al. [7] on the other hand uses a cellular automa-
ton model for the simulation of crowd movement and
egress behavior.
With smartphones becoming everyday items, the con-

cept of crowd sourcing information from users of mobile
application has significantly gained traction [8]. Roitman
et al. [9] presents a smart city system where the crowd
can send eye witness reports thereby creating deeper
insights for city officials. Szabo et al. [10] takes this
approach one step further and employs the sensors built
into smartphones for gathering data for city services such
as live transit information. Ghose et al. [11] utilizes the
same principle for gathering information on road con-
ditions. Pan et al. [12] uses a combination of crowd
sourcing and social media analysis for identifying traffic
anomalies.
We have previously published papers focusing on the

sensing part of our system. In [13] we describe in details
how the data gathered using the mobile phones is being
processed and visualized. In [14] the accuracy of our
data processing and visualization method is evaluated
using video footage from an event where the system was
deployed. It is shown that while the user penetration of
our system was below 1% during this event our method-
ology nevertheless achieved a correlation factor of 0.83
between the actual crowd density (obtained by counting
people on videos) and our system’s calculated crowd den-
sity. While our previous work dealt with the matter of
assessing crowd parameters in detail, this paper is con-
centrating on presenting the entire approach as a whole
by providing insights into use cases, the overall system
architecture and lessons learned.

2 The crowdmanagement use case
Crowd phenomena are a well studied yet by far non-trivial
example of collective human behaviors [15, 16]. Under-
standing and controlling such phenomena has significant
practical relevance in civil protection applications such as,
for example, the management of large scale public events

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 3 of 19

Fig. 1 Crowd state parameters visualized in form of a heat map. It can be clearly seen how the crowd state evolves over the duration of an event

and emergency evacuation. Problems with crowd man-
agement can have disastrous consequences. Well known
examples of crowd disasters include the 1990 stampede in
Mecca (where 1426 people died inside a pedestrian tun-
nel) [17] or the 2010 German Love Parade disaster where
21 people were trampled to death (with more than 500
having been injured) when a mass panic broke out [18].
Two key requirements for successful crowd manage-

ment are situational awareness and the ability to exert
influence on the crowd.

2.1 Situational awareness
In planning and managing crowds at large scale events,
situational awareness goes far beyond the mere ability to
observe the area in question [14, 19]:

1. Individual observations must be put together into a
coherent picture that provides information about
relevant global parameters such as density
distribution, motion directions, turbulence etc.

2. Developments and trends need to be monitored and
analyzed as they evolve over time so that problems
cannot only be spotted when they occur, but be
foreseen in time to be prevented.

3. It should be possible to review the entire course of an
event retrospectively to identify problems and
irregularities and understand their causes. While,
fortunately, major accidents are rare, deviations from
the plan, unexpected behaviors and potentially
dangerous situations are common. Understanding
how and why they happened is critical for reducing
the probability of major incidents in the future.

Traditionally, situational awareness during public events
has been based on observations and reports from civil
protection forces deployed on site. Obviously, this lead to
patchy, non-real time information with limited reliability

as people sporadically report via radio what they see. As
a consequence, CCTV cameras have nowadays become
an indispensable tool, providing timely, reliable informa-
tion that can be recorded and replayed later on. However,
even with a large number of cameras, the information
tends to be patchy (one rarely has complete coverage of
the entire area) and most of all requires complex interpre-
tation in terms of the overall coherent picture and global
parameters. Thus, going from seeing dozens of parallel
video streams from isolated locations to having a reliable
global picture of the overall crowd density and motion is
not trivial. Deriving trends, making predictions, or find-
ing causes for problems in such streams is even more
difficult. As a consequence, tools are needed that collect,
aggregate and interpret information from the entire event
area (and possibly beyond it) and automatically generate
an easily understandable representation of the relevant
global crowd state parameters and their evolution in time
and space (see Fig. 1). One possible approach is the auto-
matic evaluation of video streams to count people and
even track their movement. Another one – pursued in
our system – is to rely on (voluntarily provided) sensor
information from peoples’ smartphones.

2.2 Crowd control
The main tool of crowd management during large
scale public events is the physical layout of the space
defined and implemented in advance. It includes barri-
ers, entrances, exits, gangways etc. In general, the layout
is based on theoretical models and simulations [15]. Given
(1) an initial crowd state (e.g. size, initial distribution),
(2) a physical space layout, and (3) a certain general crowd
behavior (e.g. everyone heading towards the nearest exit,
or most people moving in one direction) such models
can predict the evolution of global parameters such as
the density distribution, evacuation time or average phys-
ical pressure within the crowd. During the event, crowd

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 4 of 19

management needs to react to changes in the crowd’s
state and behavior in order to make sure that key parame-
ters remain within acceptable bounds and no undesirable
phenomena (e.g., panic, stampede, blockages, jams, etc.)
occur. To this end two main types of actions can be taken:
(1) dynamic changes in space configuration (e.g. closing
entrances, opening new exits, creating new barriers) and
(2) issuing instructions to the crowd in order to influ-
ence its behavior. While, within certain limits given by
the venue, physical space reconfiguration can be prepared
beforehand (e.g. placing removable and movable barri-
ers, or posting security personnel to redirect people) and
executed effectively, issuing complex instructions to the
crowd and ensuring compliance is a difficult problem.
Today, it often involves “primitive” approaches such as
security forces shouting through megaphones and raising
improvised signposts. Obviously, the amount and com-
plexity of information that can be delivered this way is
limited. In particular it is difficult to deliver differentiated
instructions (e.g. send different parts of the crowd to dif-
ferent exits) and background information explaining the
necessity of certain measures (crucial to ensure compli-
ance). By contrast, a location and activity sensitive App
can deliver complex, personalized and situation adapted
instructions and convincing explanations in real time.

3 Participatory app based crowdmanagement
system

Our work is based on the observation that more and more
cities, tourist resorts, sports clubs, concerts and parades
have their own apps and people increasingly rely on such
apps to plan and manage their visit. Many such apps
already use sensors (in particular location) for context and
situation adapted information delivery. As a consequence
they are a potentially perfect vehicle for both collecting
data about a crowd and delivering personalized, situa-
tion specific information and instructions. A key research
question addressed in this paper is what is needed to
realize this potential. The answer is based on a series of
deployments during which our system has been incre-
mentally evolved and validated building on feedback from
various stakeholders (for details, see the box “Howwas the
System perceived?”) and usage by around 100,000 people
until now [20, 21].

3.1 Basic considerations
The core functionality of the proposed system is the esti-
mation of crowd density distribution from individual loca-
tion fixes provided by a subset of users (the ones who have
installed the app). From the point of view of practicality
the two main questions are:

1. How many users need to install the app to provide a
useful estimate?

2. How much communication load does the system
generate?

3.1.1 Required number of users
In simple terms density estimation means that, for any
given area within the relevant space, we can provide the
percentage of visitors who are located there. Our sys-
tem determines this percentage from the sample of users
who are running our app: if x percent of the users run-
ning our app are within a given area, we assume the
same to be true for all users. Thus, we essentially per-
form statistical sampling which is a common technique for
example in opinion surveys and for which the relationship
between sample size and the accuracy of the estimate is
well understood.
For a sufficiently large sample size n, the distribution of

a population proportion will be closely approximated by a
normal distribution and therefore the margin of error for
the estimation of a population proportion (MEp) can be
calculated with the Wald method using the formula

MEp =
√
p̂(1 − p̂)

n
· zα/2

where p̂ is the sample proportion and zα/2 is the 100
(1−α/2)th percentile of the standard normal distribution
(the confidence level). Since we are aiming for a confi-
dence level of 95% and we do not know the actual sample
proportion, we use zα/2 = 1.96 and set p̂ to the worst-case
percentage 50%. Hence, the formula becomes

MEp =
√
0.25
n

· 1.96

Thus, if theMEp computed from the above formula is for
example 1% then, with the probability of 0.95 (our chosen
confidence), the true number of people within a given area
will be within ±1% of the percentage estimated from the
data provided by the app users.
Looking at the deployment during the 2013 Zurich festi-

val as an example, a total of 28,000 people were uploading
location data into our system – with about 4,000 simul-
taneous uploaders at peak times (see Fig. 11 towards the
end of this paper for reference). Setting n = 4,000 leads
to MEp = 0.0155 – an error margin of roughly 1.5%. The
total number of visitors over the three day festival period
was roughly 2 million, which equals about 660,000 unique
visitors per day with a peak of approximately 300,000 peo-
ple being at the festival area at the same time. Hence, at
a confidence level of 95% our system has an error margin
of roughly 0.0155 × 300,000 = 4650 people during peak
times.
To understand the significance of this number we need

to look at the type of density effects that are relevant
for event planning and crowd management. According to
[22], large scale events are planning with an average crowd

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 5 of 19

density of 2 persons per square meter. In some countries
(e.g. Germany) this value is even part of the law. While 4
persons per square meter are considered as very crowded,
[22] furthermore states that in reality the crowd density
hardly ever surpasses 6 persons per square meter (which
is considered as critically crowded). In order to provide a
feeling for those density values, Fig. 2 shows two examples
of crowd densities recorded during public viewing events.
Summarizing the above, for crowd management pur-

poses we need to be able to reliably distinguish between a
number of different density states (e.g. less than 2, around
2, around 4, around 6 persons per square meter, etc.). How
does that relate to the margin of error described above?
The answer is: through spatial resolution. The margin of
error is given as absolute number of people. Integrating
the density over an area also gives us an absolute num-
ber of people. The larger the area the larger not only the
absolute number of people but also the absolute number
of people by which the relevant density states differ.
Coming back to the specific example from the Zurich

festival, we consider a zone with an area of 75 m by 75 m.
This leads to 11,250 people per zone in case of a density of
2 persons per square meter. The worst-case number of 6
persons per square meter leads to 33,750 people per zone.
With our margin of error we can estimate the number of
people within a given area to within ±4650 people. This
allows us to easily distinguish the relevant states, as the
distance between them is more than double the margin of
error.
In the following we want to give a better general feel-

ing for the parameters. Table 1 shows how different zone
sizes influence the number of people within each cell and
consequently the minimal sample size that’s needed in
order to detect critical states with the same quality as
it was achieved in the Zurich example. In summary, the

Fig. 2 Examples of different crowd densities during public viewing
events. Top: 3.8 persons perm2, bottom: 5.0 persons perm2

Table 1 Influence of zone size on the number of people within a
zone and the minimal sample sizeminn which is needed to
detect critical states

Persons per m2 minn

2 4 6

25 m x 25 m 1250 2500 3750 320,000

50 m x 50 m 5000 10,000 15,000 20,000

75 m x 75 m 11,250 22,500 33,750 4000

100 m x 100 m 20,000 40,000 60,000 1260

125 m x 125 m 31,250 62,500 93,750 520

more people are in a cell, the more levels of density our
system can distinguish. Of course the trade-off is that this
higher resolution in crowd density comes with a loss of
spatial resolution. Figure 3 demonstrates the influence of
the sample size onMEp at a fixed confidence level of 95%.

3.1.2 Communication load
The second point we want to discuss with respect to basic
considerations is our approach’s data consumption. If the
system uses too much of the user’s data plan, it will not
be accepted on a wide basis. As it will be shown later on
in this paper, there are two main data streams which need
to be analyzed for this: (1) location data being uploaded
to our server and (2) content updates (i.e. event specific
information such as schedules, maps, etc.) and messages
which are sent from the event organizers to the app users.
With respect to content updates and messages, making

a general statement is impossible as that amount of data
very much depends on the specific event. Usually, apps
are delivered with all the contents already on board, hence

Fig. 3 Influence of sample size onMEp

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 6 of 19

the amount of additional data traffic required for con-
tent updates depends largely on how much information
needs to be added to the app after its publication to an
app store. The same is true for messaging: it is impossible
to generalize the messaging behavior of an event orga-
nizer. However, given that messages and content updates
are consisting of 90% textual information, the data volume
is definitely not exuberant. However, since the apps poll
the server backend for content updates and messages, it is
possible to quantify the amount of data that is being used
for those update requests.
Table 2 summarizes the amount of data traffic caused by

our system. Please note that those numbers include both
the amount of data consumed for sending the request as
well as for receiving the server reply. It can be seen that
even in cases where the system is active for 24 h, the result-
ing traffic is very low – especially considering the fact that
most smartphone users have flat rate contracts nowadays.

3.2 Evolution and deployment history
As described in the introduction, the system was orig-
inally developed as a participatory data collection test
platform. As such, it was first deployed during the Notte
Bianca festival in Malta. In a simple festival information
application it embedded the ability to collect (with user
informed consent) time stamped location data and trans-
mit it to a remote data server. In addition, CCTV cameras
were set up at key locations to collect crowd density
ground truth.
After the event, a simple visualization of the crowd den-

sity from the smartphone data was compared with the
video footage (see Fig. 4) and a survey was conducted
to asses how users perceived the system. Both were dis-
cussed with the civil protection forces in charge of the
festival. Two main conclusions have emerged from the
above:

• Despite a very low penetration of the software (only
less than one percent of the visitors had used it), at
least at a qualitative level, the estimate of the crowd
density was surprisingly accurate.

• The system was very well received by the civil
protection forces (Civil Protection Department of
Malta and the Ministry of Home Affairs). They
particularly emphasized the importance of the real

Table 2 Data traffic consumed by app-based crowd management
system

Upload Update

Traffic per call 1.0 KB 1.1 KB

Traffic per hour 60.0 KB 66.0 KB

Traffic per day 1.4 MB 1.6 MB

time crowd density information for identifying areas
where incidents might be most likely to occur.

From the above conclusions it was decided to move
from a mere data collection platform to a full blown
crowd and event management application. Therefore, a
presentation was given to decision makers responsible for
public safety in the City of London. Its goal was to find
the right event that would (1) be willing to support our
team during the creation of the application with feed-
back from an organizer’s point of view and (2) have the
ability to deploy and evaluate the application at a large
scale.
The LordMayor’s Show was identified as an ideal candi-

date. During a series of workshops with the event’s orga-
nizers, the following main requirements were elaborated
for the event management system:

1. It should not only consider emergency aspects but
instead cover the whole bandwidth of event
information. This also included the application’s
ability to adapt to last minute changes which are
quite common in event management.

2. It should facilitate a unidirectional communication
channel from the event organizers to the event
visitors to be able to control the crowd efficiently by
sending commands to the visitors’ smartphones.
Special emphasis was given to the need for location
based messages which allow for sending a message
only to those people located in a specific geographic
area.

Given that during the time of the workshops several new
opportunities for deployments arose (e.g. at the West End
Live Festival in London or within the Westminster 2012
Olympics app), it became quickly apparent that creating
a new standalone app for each deployment would not
be feasible. Consequently, the decision was made to add
another requirement for the event management system:

3. It should be based on a generic framework which
could be quickly adapted to the requirements of each
event without the need for any programming
whatsoever.

Since the smartphone app part of the system should be
usable by as many people as possible, it would have to run
on the majority of smartphones. In practice, this means
that the app needed to support the Android and the iOS
operating systems which currently make up for roughly
96% of the smartphonemarket. As themain scientific goal
of the application was gathering sensor data, the smart-
phone apps needed to be implemented natively since the
hybrid development approach has too many disadvan-
tages with respect to accessing platform specific hardware

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 7 of 19

Fig. 4 Crowd density visualized compared with video footage recorded at the Notte Bianca festival 2011 in Valetta, Malta

features. Consequently, a fourth and last requirement was
added to the list:

4. The framework should support the creation of native
smartphone apps for the iOS and Android operating
systems.

Based on the findings of the workshops and the list of
requirements mentioned above, the system presented in
this article was created. It mainly consists of two compo-
nents. Firstly, a web application focusing on the needs of
event organizers and emergency and civil protection staff
offers the means to (1) define the design and the func-
tionality of the smartphone app to be deployed and (2) to
analyze the collected data from the crowd and to interact
with the crowd via messages. For details about the web
application’s functionality, please refer to the sections 4.2
and 4.3.
The second main component of the system is the

generic app for the iOS and Android operating system
which is deployed at the events. Based on the outcome of
the workshops, a set of modules for the app was defined
(see section 4.1 for a complete list). At runtime, the
generic app receives information about its design, menu
structure and activated modules enabling it to present
itself to the user in exactly the way intended by the event
organizers. This ability of the app to reconfigure itself at
runtime allows event organizers to change contents of the
app at any time – even when the event is already taking
place can information or features be added remotely to
react to the current circumstances.
During the first deployments, the user base of the sys-

tem was quite small (a couple of thousand app users
per event). However, the deployment during the inau-
guration festivities in Amsterdam for King Willem of
the Netherlands in April 2013 was the big breakthrough:
thanks to an integration of the app into the event’s

publicity campaign a total of more than 70,000 people
downloaded the app (about 10% of the event specta-
tors). Regardless of these numbers we were unable to
actually perform any data recordings during the event
because the largest Dutch telecommunication provider
opposed to the system due to fears of network con-
gestion on the highest political level. While these fears
were cleared eventually, it was too late to perform a data
recording.
Therefore, the first big impact deployment of the system

was during the 2013 Zurich festival with a total of 28,000
active app users contributing data over a period of three
days [21]. The resulting data set is the largest of its kind
according to our knowledge.
Since the Zurich deployment, the system has been

routinely used in several European events and the inter-
est in the technology is rapidly growing. Furthermore, a
Windows Phone app has been added to the framework.
Table 3 gives an overview about the deployments that

have been carried out until the end of 2014. Please note
that a sizable part of the deployments were labelled as
“minor deployments” where the research team had no
control about app distribution and merely provided the
technology for interested partners. As a consequence of
this, no solid numbers with respect to number of visi-
tors and number of app downloads are available since this
information was not disclosed. Only the “major deploy-
ments” were under full control of the researchers. Also,
the number of visitors for each event (where available) are
estimates as all of them were non-ticketed events without
access control – hence, no overall ground truth data was
available.

4 Basic functionality
Summarizing the above, the system’s functionality can be
divided into three categories: (1) features for the event
visitors, (2) features directed at the event organizers and

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 8 of 19

Table 3 Overview of the system’s deployments between 2011 and 2014

Event name # Visitors # App downloads # Data contributors

Major Deployments

Notte Bianca, 2011 ≈ 100,000 ≈ 1000 ≈ 340

Lord Mayor’s Show, 2011 ≈ 500,000 ≈ 3000 ≈ 830

Lord Mayor’s Show, 2012 ≈ 500,000 ≈ 1000 ≈ 920

Zurich New Year’s Eve, 2012 n.a. ≈ 5000 ≈ 3000

Dutch Coronation, 2013 ≈ 750,000 ≈ 70,000 n.a.

Zurich Festival, 2013 ≈ 2,000,000 ≈ 56,000 ≈ 28,000

Minor Deployments

West End Live Festival, 2012 n.a. n.a. ≈ 950

Westminster Olympics App, 2012 n.a. n.a. ≈ 2300

Vier Daagse Feesten, 2013 n.a. n.a. ≈ 2100

Amsterdam Gay Pride, 2013 n.a. n.a. ≈ 1800

Tilburgse Kermis, 2013 n.a. n.a. ≈ 1500

Koningsdag, 2014 n.a. n.a. ≈ 4600

Vier Daagse Feesten, 2014 n.a. n.a. ≈ 2200

Leids Ontzet, 2014 n.a. n.a. ≈ 1700

(3) features for the emergency and civil protection
services.

4.1 Visitor features
Visitors of an event are exclusively using the app ele-
ment of the system. From their point of view, the
app provides the services they need in order to get
all the necessary information about the event. The
actual feature set of the app differs between events
and also depends on the event’s requirements (see
Fig. 5 for some examples). The following list contains
all features which can be included in apps using our
framework:

• The Map Module displays geographic contents
such as points of interest (POIs) and routes either

Fig. 5 Screenshots of selected app features from the Westminster
2012 Olympics app (from left to right: London travel planner, map,
event information)

on a platform specific map (i.e. Google Maps,
Apple Maps or Bing Maps) or on a custom map
provided by the event organizers. POIs can be
annotated with extra information such as images,
texts and links. Furthermore, the user can navigate
to POIs.

• The Event Calendar Module gives users an overview
about the details of events that stretch out over a
longer period of time. In case of the app for the
London 2012 Olympics for example, it contained all
competitions, concerts and other relevant events with
detailed information such as maps, images, texts and
links.

• The One Day Event Module provides a list based
overview about the proceedings of short events.

• The Contact Module allows users to contact the
event organizers and other important entities via
phone or email and also gives them the option to visit
their website.

• The Checklist Module can be used to inform visitors
about items they need to bring along. The City of
London Police for example uses this module in their
app to tell people about the items they should have in
their houses in case of emergencies.

• The Messaging Module acts as a generic inbox for
broadcast and location based messages sent by the
event organizers and the emergency forces. Messages

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 9 of 19

are being received via several channels (travel,
general, emergency, location specific) to allow for an
easy prioritization by the users.

• The RSS Reader allows app users to read
event-relevant news that are being published as RSS
feeds.

• In some cases, event organizers want to make Static
Contents available for the visitors via the app. One
example for this might be the map of a city’s subway
system.

• The City of London Police had a special module
made for their app: the Street Level Crime Viewer.
This module allows app users based in the UK to
view the crimes that took place in an area of one
kilometer around their current position allowing
them for example to check if an area is known for
frequent burglaries before moving there.

• Given the fact that most app users are very
enthusiastic about social media, a Twitter Module
was added to our framework to give users access to
news spread this way.

• One of the easiest ways to add existing contents to
our apps is by using the Web Content Module. The
app for the London 2012 Olympics for example,
incorporated the city’s public transport information
system using this module.

• A special case of the Web Content Module is the
Mobile Heat Map Module which displays the crowd
density heat map with a fixed view port.

• The Badge Collector is a great module to motivate
event visitors to use the app more frequently. It sets
certain goals for the users (e.g. spending a certain
amount of time in a certain region) and awards them
with badges if they reached that goal.

• The Friend Finder is another motivational module: it
allows to select some of the user’s Facebook friends
and share the user’s location with them. This enables
app users to coordinate their stay at the event better
with their friends.

• The app framework’s Privacy Modules have the
purpose of informing the app users about what
exactly the app is doing. They give a detailed
overview about the status of each sensor, show
information on when and where a recording is being
performed and also give the option to opt out of the
crowd sensing feature.

4.2 Event organizer features
Event organizers mostly interact with the web application
element of our system. Before an event, their main task is

to create apps and fill them with content. To learn more
about this process, please refer to the box “How toManage
a King’s Coronation?”.
During an event, our system gives event organizers the

option to change their app’s behavior and content with
the click of a button. This way, organizers can add for
example geographical contents to the app’s map section
to mark certain locations as closed or to highlight routes
people should take to move to different parts of the
venue.
Furthermore, event organizers need to be able to com-

municate with the visitors directly via messages. This task
is also accomplished through the web UI. Messages can
either be sent as broadcasts (please also see the box “How
to Manage a King’s Coronation” for details) in which case
they are received by all app users or as location based
messages, meaning that they are only received by people
who are located within the geographic area targeted by the
message.

4.3 Emergency and civil protection features
Like event organizers, emergency forces mostly use the
system’s Web UI component for their work during an
event. They too can change the behavior of the app –
however, the reason for doing so is much more serious.
Imagine an actual incident where important safety

advice needs to be sent out to event visitors as quickly
as possible. Using the Web UI, the emergency responders
can disable all app features that are not directly relevant
to the mitigation of the potentially hazardous situation,
thereby focusing the users’ attention on the important
information.
The messaging features – especially the location based

messages – can be used to steer different parts of the
crowds into different directions to decrease the crowd
density in critical locations. Adding geographic contents
such as escape routes and safety zones to the app’s map
module is another valuable feature for crowd managers
during an incident.
The most frequently used feature from an emergency

and civil protection officer’s point of view however, is the
crowd density heat map. It enables those officers to gain
an instant overview about the crowd behavior through
an easy to understand visualization. This feature allows
crowd managers to deploy their personnel on the ground
in an efficient and sensible fashion as they can react to the
crowd’s movements. Figure 6 shows an example of such a
heat map.
After an event is over, our system can play back the

recorded crowd data allowing for a “post-mortem” anal-
ysis of the event. During numerous deployments, this
feature proofed itself to be a unique tool to learn from
an event and to improve crowd management related mea-
sures for future events.

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 10 of 19

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 11 of 19

Fig. 6 Sample heat map

5 System architecture and implementation
In the following, we are describing the architecture of
the system’s three main components: the generic app
which can be easily customized to the events’ specific
requirements, the data processing back-end and the web
front-end which is used by event organizers to access the
system’s features. In contrast to existing crowd sourcing
solutions (see related work section for examples) which
are tailor made for one specific use case, our system archi-
tecture allows for a quick adaptation to the requirements
of the user. This allows for flexible deployments in all
sorts of events and smart city scenarios (where crowd
control and targeted messaging are also of high value)
without the need to re-engineer either the app component
or the back-end. The entire process of creating an app (for
details, please refer to the box “How to Manage a King’s
Coronation?”) only takes a couple of hours at most with
the biggest effort being the entering of event specific data
(schedules, geographic information, etc.) into the system
via the web front-end. Details about the system’s unique
flexibility are mentioned in the following sections.

5.1 Generic app
The generic app is the foundation of all event apps gen-
erated with our framework (see Fig. 7). It consists of four
major parts: (1) the central appmanager, (2) a sensorman-
ager dealing with all tasks related to sensing and uploading
data, (3) a statistics manager responsible for gathering
usage data and sending it to the system’s cloud based back-
end and (4) layout and update managers responsible for
dynamically reconfiguring both the apps’ look & feel and
their contents.
The biggest challenge was to make the generic app as

dynamically reconfigurable as possible in order to quickly
deploy event apps. At the same time the entire configu-
ration process must be executable by people without pro-
gramming skills. We reached that goal by encapsulating
all the information about the app’s layout, used modules

and contents for each module in JavaScript Object Nota-
tion (JSON). The JSON files are generated through the
web application element of the system (see section 5.3) in
a user friendly fashion.
The updating mechanism of the app is realized by its

update manager which controls a whole host of so-called
update channels. Each update channel corresponds to one
modality of the app – e.g. layout, map content, techni-
cal information, etc. The update channels poll the cloud
based backend in regular intervals to check if the infor-
mation the app has stored is still up to date. In case of an
update, the new JSON file is passed to the update manager
which stores it in the central data store object and noti-
fies all relevant objects of the new data. These objects are
then responsible for (1) retrieving the new data and (2) for
reconfiguring themselves accordingly.
The layout manager is responsible for setting the app

up according to its layout JSON file and is one of the first
objects to be created during the app’s startup procedure. It
parses the JSON to get the information about the basic app
structure – i.e. colors of UI elements, icons and names of
tabs, menus, menu items and background pictures. When
a user selects a menu item, the layout manager creates the
corresponding object in an “get instance by name style”.
Consequently, the different event apps are always com-
piled with all modules “on board” – only at runtime it is
decided which objects are actually needed and which ones
aren’t.
The app modules all inherit from a MainView object

which encapsulates common functionalities such as noti-
fying the statistics manager when a feature has been
invoked. Furthermore, all app modules implement an
interface defining the proper initialization routines. Dur-
ing its initialization, an app module reads the startup
information delivered with the layout JSON to present
itself correctly. For example in case of the web content
module, this startup information consists of nothing more
than a URL that should be displayed by the module.
The sensor manager is not only responsible for record-

ing data from different sensor modalities and for forward-
ing this data to the upload manager. It is also responsible
for deciding when and where the sensors must be acti-
vated and deactivated – in light of recent privacy dis-
cussions this is an especially important task. Based on
the recording schedule JSON, the sensor manager enables
the phone’s rough location sensing modalities (i.e. energy
aware location sensing through WiFi and GSM triangula-
tion). Once the user is near the recording zone, the sensor
manager switches to precise location sensing to get a clear
idea about whether or not the user is in that zone. If
the user is in the recording zone and has also consented
to sharing his phone’s sensor data, the sensor manager
enables the recording of data. This whole process is also
time triggered meaning that if the user is in a recording

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 12 of 19

Fig. 7 Architecture of the generic app

zone but there’s no recording scheduled at the current
time, the sensor manager won’t activate the data record-
ing. Furthermore, the entire checking process happens on
the device. In other words, this means that the devices are
responsible for checking their geographic location and the
current time and for comparing those parameters to the
recording schedule. Consequently, no data is leaving the
phone at any time until the user agrees to participating in
the recording.
During a recording the data is stored in an upload buffer

by the upload manager. This buffer is sent to the server
once every minute. At the moment, the recorded sensor
data is platform specific. On iOS and Windows Phone,
our system only records GPS data including the user’s
heading, speed and the GPS fix’s accuracy. On Android
however, the app also offers the option to record the num-
ber of Bluetooth devices in the phone’s vicinity. This data
offers some valuable insights into the crowd density in the
user’s direct proximity.
The statistics manager has the simple job of keeping

track of when and where each feature of the app has been
used. Each module sends a corresponding notification to
themanager. If a user stays on a screen formore than three
seconds, the manager considers the feature as having been
used and creates a record for it. This record contains the
name of the feature, the time of use and the location of the
usage. In case of navigation and POI information requests,
the record also contains the location of the navigation’s
target or the POI’s name and location. This information

can be used to gain greater insights into how the app was
used and allows for a more detailed post-event analysis.
Once every three minutes, the statistics manager sends
the collected data to the system’s backend. For the sake
of privacy, the user ID is not being sent along with the
data so it’s impossible to create a precise usage record of
individual people.
Finally, the central app manager is responsible for con-

trolling the app’s run loop. It registers with the smart-
phone platform’s push notification service, initializes the
main objects and controls the app’s transition between
background and foreground behavior.

5.2 Data processing backend
The system’s backend needs to be considered as two sep-
arate sub-systems: (1) the system for administrating the
smartphone apps (i.e. for creating the layout and content
JSON files) and (2) the system for collecting and analyzing
the recorded sensor data whose output is, for example, the
crowd density heat map.
The administration system consists of an application

server, an SQL database and a dispatching cluster. In all
deployments up to now, we used Amazon S3 as storage
system for binary files tominimize the load on the system’s
backend.
The application server runs the web application which

will be described in the next section. The outputs of
the web application are the app configurations which are
being stored in the SQL database.

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 13 of 19

Fig. 8 Overview of the backend architecture

The dispatching cluster is the component with the heav-
iest load in this sub-system as all deployed event apps con-
tact the cluster in order to check for updates. Versioning of
app configuration data has been implemented using revi-
sion numbers – the app’s update channels send a request
to the dispatching cluster containing the app’s dispatch
ID and the revision number of the update channel. The
dispatching cluster then compares the received revision
number with the content’s current revision number and
sends back the new data in case of an update. Otherwise, it
sends back an empty reply, thereby signaling to the client
that the data is still up to date.
In order to perform as strongly as possible, the dispatch

nodes try to keep the app contents in memory at all times.
Whenever there’s a change in the SQL database, the dis-
patch nodes get a notification letting them know that there
is new data to dispatch. The nodes then create new JSONs
for each affected update channel and keep that data in
memory. This way, each update request can be handled
by simply comparing two integers and potentially sending
back pre-computed data.
The entire app administration sub-system is being

hosted on Amazon’s AWS cloud services for reasons
of cost effectiveness and to make sure that there are
always enough computing resources available to be able
to cope with peaks in user load. Following the advise of
Amazon consultants we decided to employ a multitude
of smaller computing instances instead of a small num-
ber of large instances. When using small Amazon EC2
instances (roughly comparable to single core 1.5 GHz

CPU machines with 1.7 GB of RAM) each instance is
able to handle approximately 800 users. The dispatch
cluster scales automatically based on the average load
on all dispatch nodes. When the average load is greater
than 0.8, an instance is being added – when it is lower
than 0.4 an instance is shut down. Spinning up a new
instance typically takes around 3 min. In all deploy-
ments up to now, this infrastructure worked without any
problems that would have affected the experience of the
end user.
For the heat map sub-system used for receiving

and aggregating the recorded data we relied on the
CoenoSense system [19] developed at ETH Zurich’s
Wearable Computing Lab until mid 2013.
In June 2013 we began migrating apps to a custom

made solution. Both systems have a sharded MongoDB3

at their core which was designed for maximum perfor-
mance and scalability from the beginning making it more
suitable than alternatives such as CouchDB (which uses
REST over HTTP compared to MongoDB’s much quicker
binary protocol between the DB server and the client
application).
Compared to CoenoSense, the new solution relies on

Lighttpd4 as a web server which provides a higher perfor-
mance. Another addition was the introduction of a queue
layer. The data packets received by the web server are
being passed on to a pool of input workers realized in the
Python programming language. These workers write the
data in a Beanstalkd5 queue where it’s being buffered. The
data is then being processed by output workers which are

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 14 of 19

also written in Python. The output workers store the data
in the sharded MongoDB. Benchmarks with 10,000 sim-
ulated concurrent users have shown that this solution for
the backend reaches a request response time of around
0.04 s.
The application server in this sub-system hosting the

web front end is explained in more detail in the following
section.

5.3 Web front end
Both the administration and the heat map sub-systems
offer an easy-to-use web interface to allow for a maximum
compatibility with client devices. The interfaces have been
tested with the latest builds of Firefox, Chrome and Safari.
Therefore, they can be run on a multitude of device cat-
egories ranging from desktop PCs to tablets and even
smartphones.
The administration front end is realized as a lightweight

Rails application. More complex UI elements such as the
map drawing tools and the calendar administration inter-
faces have been implemented using JavaScript and HTML
5 components. Each module’s administration tool stores
the user inputs into the SQL database. Simple modules
trigger the creation of their corresponding JSON files
after each change performed by the user. More complex
modules (e.g. the App Builder or the Map Editor) have
a “Publish” button that needs to be pressed by the user
before the current content of the module is published as a
JSON file.
The heat map web interface is realized using the Django

framework which is written in Python and requires an
additional SQL database (which has been omitted in Fig. 8
for reasons of clarity as it is unimportant to the heat
map itself) to store its administrative data. The frame-
work approach simplifies tasks such as user manage-
ment, URL handling and session security greatly. Usually,
heat map parameters such as initial zoom level etc. are
being set automatically via a REST API accessed by the

administration sub-system upon creating or editing a
recording period. However, the heat map web interface
allows for manual corrections of these values if the need
should arise. As this part of the system is only accessed
by administrators, it has been designed much more
simplistic compared to the app administration system
(see Fig. 9).
The heat map GUI itself requests the latest informa-

tion about crowd conditions in regular intervals from the
application server where it is stored in aMongoDB.When
doing so, it sends a timestamp along with the request spec-
ifying which data it is interested in. The application server
then fetches all the available location data from theMongo
DB cluster and returns a data structure that contains one
location for each user that contributed data at that specific
time.
The data is delivered by the application server to the

GUI in a compact JSON format. Only when that data
arrives at the GUI is it rendered. Offloading the heat map
rendering task to the client (i.e. the GUI) saves consider-
able resources on the server side thereby making sure that
the heat map can be accessed by many clients simultane-
ously. If the server was delivering rendered heat maps or
tiles to the clients, it would need to be scaled much larger
and thereby become much more expensive.
As mentioned earlier, the heat map view provides a time

slider for inspecting past data. Technically, this has been
implemented using an AJAX approach (a background call
to the server) which allows for an almost instant displaying
of the required data without a page refresh.
To provide a standard level of security against unau-

thorized access, the heat map is protected with a token
only known to the administrative backend which seam-
lessly integrates the heat map view provided by the heat
map sub-system’s front end. However, it is worth noting
that this view can also be accessed individually if the situa-
tion calls for it (e.g. if a police officer on the ground wants
to access it on a tablet device). Therefore, the heat map

Fig. 9 Screenshots of the web front ends (left: app management, right: heat map configuration)

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 15 of 19

administration system can generate a URL which gives
access to a webpage containing only the heat map without
any other elements of the system.

6 Results and lessons learned
As mentioned above, our system has been deployed at a
series of events throughout Europe and was used by well
over 100,000 people. Since a more detailed description
and evaluation of the crowd density estimation as it was
performed in Chapter 3.1.1 goes beyond the scope of this
system overview and experience paper – and has already
been published in [13] – we want to focus on a broader
description of the results of the deployments and report
on the user feedback.
As Figs. 1 and 4 demonstrate, visualizing the crowd

density in form of a heat map generated by crowd
sourced real-time location data provides a good repre-
sentation of the situation on the ground. Furthermore,
the visualization gives a good insight into the tempo-
ral and spatial evolution of the crowd, thereby facili-
tating situational awareness, prediction and post event
analysis.
One of the most important lessons learned during the

numerous deployments was that it is absolutely vital to
have a solid PR strategy for the distribution of the event
apps. Chapter 3.1.1 clearly shows that the system performs
well with only a few percent of the visitors sending data to
our backend. Our system has shown to work reliably with
a user penetration of around 1 or 2% – a user penetra-
tion of 10% would even allow for a very detailed analysis.
However, depending on the size of the event, even a small
percentage of app users can be a sizable absolute number.

During our first deployments, visitors were only made
aware of the app via social medial channels and the event
website. The resulting number of downloads (see Table 3)
based on this PR approach was not very satisfying. Over
time we learned to better deal with this situation and
during the deployment at the coronation of the Dutch
King in 2013, roughly 10% of the event visitors had down-
loaded the app (about 70,000). The PR campaign respon-
sible for this success was employing numerous channels
ranging from online articles, social media campaigns and
print articles to actual TV coverage. As this might bemore
effort than some event organizers are willing to put into
PR for an app, the Zurich festival proved that there are
also simpler ways to achieve a solid number of downloads:
on top of a social media campaign and a prominent down-
load section on the event’s website, the app was simply
mentioned on all event posters and in event brochures.
In summary, it can be said that the event apps should be
made an integral part of the event planning process if the
system is to deliver reliable results.
The relevance of the data recorded with our system is

furthermore underlined by Fig. 10. It can be seen that the
estimated crowd size correlates with real life events using
the example of the 2013 Zurich festival. Furthermore, the
figure demonstrates one of the system’s weaknesses: net-
work outages. The fireworks are always one of the high-
lights of the Zurich festival. During the fireworks on July
5, so many people gathered on the bridge facing the Lake
Zurich, that parts of the cellphone network collapsed. This
can be clearly seen in Fig. 10. Possible solutions for deal-
ing with this problem are presented in the final section of
this paper.

Fig. 10 Plot of the crowd size at one particular location during the 2013 Zurich festival annotated with real life events

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 16 of 19

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 17 of 19

With respect to user acceptance of the system,
we performed debriefing sessions with civil protection
authorities and surveys with app users. While details
about both can be found in the box “How is the System
perceived?”, it seems particularly worth mentioning that
all participating authorities were keen on deploying the
system at a larger scale and also wanted to explore further
use cases for it. From an event management point of view,
it is very encouraging to know that 82% of all survey par-
ticipants would actively consult such an app in case of an
emergency, 94% would follow the app’s advice and only
less than 1% generally don’t trust advice given out on a
phone.
In the previous section we gave an overview of the sys-

tem’s architecture – in particular we described the generic
app’s main components. Amongst those components, the
Statistics Manager was mentioned. This object’s purpose
goes a lot further than just sending information about
how popular each feature of an app is. Instead, it collects
information about how the app is being used and which
requests have been made.
Specifically, it is being logged what feature is being used

where and when. Also, for requests concerning points
of interest (i.e. navigation requests or requests for more
information about the item), it is being logged when and
where the request was made, what was requested and
where the requested item is located at. Evaluating this
information on the system’s backend gives an insight into
what the crowd is currently interested in. This informa-
tion in turn, can be used as an even earlier predictor for
future crowd characteristics. For example, if a meaning-
ful part of the crowd is interested in a certain concert at
an event, the system could make an estimate about the
growth of the crowd in front of the concert stage.

Fig. 11 Correlation between the size of the crowd and the app usage

Figure 11 visualizes this approach using again the exam-
ple of the 2013 Zurich festival. The grey line represents
the evolution of the size of the crowd as measured by our
system – please note that for this particular event there
was no ground truth available as we had no access to video
footage and the event was also open to anybody, hence
there was no information about the number of tickets
available. The blue line represents the usage of the event
app. It can be clearly seen that changes in the app’s usage
curve antedate corresponding changes in the curve of the
crowd size.
We consider this representation of user interest an

important factor for predicting crowd behavior. Future
research will focus on further developing this approach.

7 Conclusion and future work
In this work we presented the evolution of a smartphone
based crowd management system from a simple research
prototype to a full blown event management solution
which is currently being commercialized. The system was
deployed at multiple large scale events throughout Europe
and was used by several civil protection authorities – all
of which highly valued the impact the system had on their
work.
The app element of the system was downloaded by well

over 100,000 people who collectively contributed over 100
million data points. The general public responded very
well to the concept of event apps collecting anonymous
data for the greater good.
We furthermore demonstrated the principal architec-

ture of all system components, thereby presenting a sys-
tem design for reconfigurable, scalable smartphone based
crowd sourcing systemswhich could also be used for other
purposes.
While our work’s outcomes show that the system is gen-

erally up to its task, there are a number of issues which
need to be addressed during future work:
One of the main problems we experienced is related

to network connectivity. Complete network failures were
never experienced during our deployments. However,
during a New Year’s Eve event, a 15 min blackout did
occur in an isolated area. During those times, the crowd
density heat map stayed empty in the affected area
for obvious reasons. Also, this area couldn’t be con-
tacted with messages during the outage. In case of an
emergency, such a network blackout could have drastic
consequences.
Therefore, one focus of future work should be on the

implementation of alternative means of communication
in case of network blackouts. The most obvious solution
seems to be the implementation of an AdHoc/Mesh-like
opportunistic networking approach to bridge those areas
without network connectivity.

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 18 of 19

Secondly, at one point our research work suffered from
the interference of a telecommunication provider who
claimed that the network wouldn’t support the traffic
caused by our app. While those arguments could be coun-
tered eventually, it still proved the point that we failed
to include telecommunication providers as an impor-
tant stakeholder in our concept. We’re therefore cur-
rently implementing means for providers to define critical
thresholds for their infrastructure which will not be
exceeded by our system.
Thirdly, future versions of our system will take feed-

back we received from civil protection authorities into
account. For example, GLA (Greater London Authority)
expressed the wish to have multiple agencies feed con-
tents into the same system so that it would allow for an
integrated workflow.
Finally, the system will be used to establish a living

lab at the Technical University of Kaiserslautern. There-
fore, a university app is currently being created which is
based on our framework. The goal is to establish a plat-
form that will enable research groups to run large scale
experiments using crowd sourced data from participating
students.

Endnotes
1http://www.nottebiancamalta.com
2http://www.lordmayorsshow.org
3http://www.mongodb.org
4http://www.lighttpd.net
5http://kr.github.io/beanstalkd/

Competing interests
The authors confirm that they have read SpringerOpen’s guidance on
competing interests and state that none of them have any competing
interests in the manuscript.

Authors’ contributions
TF designed the system under the supervision of PL and carried out most of
the deployments. UB organized and carried out the system’s deployment at
the 2013 Zurich festival and contributed to data analysis. TF and PL wrote the
manuscript. All authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank all student helpers – especially Torben
Schnuchel – who contributed to the creation of the system with countless
hours of programming work. The initial steps of this work were supported by
the Socionical project, funded under the European Commission’s FP7
program (grant: 231288). Further funding was received from the European
Commission’s FP7 program under grant agreement #600854 “Smart Society -
hybrid and diversity-aware collective adaptive systems: where people meet
machines to build smarter societies” and by the CoCoRec (Collaborative
Context Recognition in Dynamic, Multimodal Smart Environments) project
supported by the German Federal Ministry of Education and Research.

Author details
1German Research Center for Artificial Intelligence (DFKI), Kaiserslautern,
Germany. 2ETH Zurich, Zurich, Switzerland.

Received: 26 May 2015 Accepted: 5 November 2015

References
1. Rahmalan H, Nixon MS, Carter JN. On crowd density estimation for

surveillance: IET; 2006. http://digitallibrary.theiet.org/content/
conferences/10.1049/ic_20060360.

2. Davies AC, Yin JH, Velastin SA. Crowd monitoring using image
processing. Electron Commun Eng J. 1995;7(1):37–47.

3. Lo B, Velastin S. Automatic congestion detection system for underground
platforms. In: Intelligent Multimedia, Video and Speech Processing, 2001.
Proceedings of 2001 International Symposium on. IEEE; 2001. p. 158–61.

4. Chan AB, Liang Z-S, Vasconcelos N. Privacy preserving crowd
monitoring: Counting people without people models or tracking. In:
Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on. IEEE; 2008. p. 1–7.

5. Murakami Y, Minami K, Kawasoe T, Ishida T. Multi-agent simulation for
crisis management. In: Knowledge Media Networking, 2002. Proceedings.
IEEE Workshop on. IEEE; 2002. p. 135–9.

6. Shendarkar A, Vasudevan K, Lee S, Son Y-J. Crowd simulation for
emergency response using bdi agent based on virtual reality. In:
Proceedings of the 38th conference on Winter simulation, Winter
Simulation Conference. IEEE; 2006. p. 545–53.

7. Kluepfel HL. A cellular automaton model for crowd movement and
egress simulation. Fakultät für Physik: PhD thesis, Universität
Duisburg-Essen; 2003.

8. Asimakopoulou E, Bessis N. Buildings and crowds: Forming smart cities
for more effective disaster management. In: Innovative Mobile and
Internet Services in Ubiquitous Computing (IMIS), 2011, Fifth International
Conference on. IEEE; 2011. p. 229–34.

9. Roitman H, Mamou J, Mehta S, Satt A, Subramaniam L. Harnessing the
crowds for smart city sensing. In: Proceedings of the 1st international
workshop on Multimodal crowd sensing. ACM; 2012. p. 17–8.

10. Szabo R, Farkas K, Ispany M, Benczúr A, Batfai N, Jeszenszky P, et al.
Framework for smart city applications based on participatory sensing. In:
Cognitive Infocommunications (CogInfoCom), 2013,IEEE 4th International
Conference on. IEEE; 2013. p. 295–300.

11. Ghose A, Biswas P, Bhaumik C, Sharma M, Pal A, Jha A. Road condition
monitoring and alert application: Using in-vehicle smartphone as
internet-connected sensor. In: ervasive Computing and Communications
Workshops (PERCOMWorkshops), 2012, IEEE International Conference on.
IEEE; 2012. p. 489–91.

12. Pan B, Zheng Y, Wilkie D, Shahabi C. Proceedings of the 21st ACM
SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM; 2013. p. 344–53.

13. Wirz M, Franke T, Roggen D, Mitleton-Kelly E, Lukowicz P, Troster G.
Inferring crowd conditions from pedestrians’ location traces for real-time
crowd monitoring during city-scale mass gatherings. In: Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE), 2012,
IEEE 21st International Workshop on. IEEE; 2012. p. 367–72.

14. Wirz M, Franke T, Roggen D, MitletonKelly E, Lukowicz P, Tröster G.
Probing crowd density through smartphones in city-scale mass
gatherings. EPJ Data Sci. 2013;2(1):1–24.

15. Helbing D, Buzna L, Johansson A, Werner T. Self-organized pedestrian
crowd dynamics: Experiments, simulations, and design solutions.
Transport. Sci. 2005;39(1):1–24.

16. Helbing D, Farkas IJ, Molnar P, Vicsek T. Simulation of pedestrian crowds
in normal and evacuation situations. Pedestrian Evacuation Dyn. 2002;21:
21–58.

17. Ngai KM, Burkle FM, Hsu A, Hsu EB. Human stampedes: a systematic
review of historical and peer-reviewed sources. Disaster Med Publ Health
Preparedness. 2009;3(04):191–5.

18. Helbing D, Mukerji P. Crowd disasters as systemic failures: analysis of the
love parade disaster. EPJ Data Sci. 2012;1(1):1–40.

19. Wirz M, Franke T, Mitleton-Kelly E, Roggen D, Lukowicz P, Tröster G.
Coenosense: A framework for real-time detection and visualization of
collective behaviors in human crowds by tracking mobile devices. In:
Proceedings of the European Conference on Complex Systems 2012.
Springer; 2013. p. 353–61.

20. Franke T, Lukowicz P, Wirz M, Mitleton-Kelly E. Participatory sensing and
crowd management in public spaces. In: Proceeding of the 11th annual
international conference on Mobile systems, applications, and services.
ACM; 2013. p. 485–6.

http://www.nottebiancamalta.com
http://www.lordmayorsshow.org
http://www.mongodb.org
http://www.lighttpd.net
http://kr.github.io/beanstalkd/
http://digitallibrary.theiet.org/content/conferences/10.1049/ic_20060360
http://digitallibrary.theiet.org/content/conferences/10.1049/ic_20060360

Franke et al. Journal of Internet Services and Applications (2015) 6:27 Page 19 of 19

21. Blanke U, Troster G, Franke T, Lukowicz P. Capturing crowd dynamics at
large scale events using participatory gps-localization. In: Intelligent
Sensors, Sensor Networks and Information Processing (ISSNIP), 2014, IEEE
Ninth International Conference on. IEEE; 2014. p. 1–7. http://ieeexplore.
ieee.org/xpl/login.jsp?tp=&arnumber=6827652&url=http%3A%2F
%2Fieeexplore.ieee.org%2Fiel7%2F6820824%2F6827478%2F06827652.
pdf%3Farnumber%3D6827652.

22. Oberhagemann D. Statische und dynamische Personendichten bei
Grossveranstaltungen. Technical Report of the Association for the
Improvement of German Fire Protection TB 13-01. 2012. http://www.vfdb.
de/download/TB_13_01_Grossveranstaltungen.pdf.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6827652&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel7%2F6820824%2F6827478%2F06827652.pdf%3Farnumber%3D6827652
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6827652&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel7%2F6820824%2F6827478%2F06827652.pdf%3Farnumber%3D6827652
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6827652&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel7%2F6820824%2F6827478%2F06827652.pdf%3Farnumber%3D6827652
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6827652&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel7%2F6820824%2F6827478%2F06827652.pdf%3Farnumber%3D6827652
http://www.vfdb.de/download/TB_13_01_Grossveranstaltungen.pdf
http://www.vfdb.de/download/TB_13_01_Grossveranstaltungen.pdf

	Abstract
	Keywords

	1 Introduction
	1.1 Contributions
	1.2 Related work

	2 The crowd management use case
	2.1 Situational awareness
	2.2 Crowd control

	3 Participatory app based crowd management system
	3.1 Basic considerations
	3.1.1 Required number of users
	3.1.2 Communication load

	3.2 Evolution and deployment history

	4 Basic functionality
	4.1 Visitor features
	4.2 Event organizer features
	4.3 Emergency and civil protection features

	5 System architecture and implementation
	5.1 Generic app
	5.2 Data processing backend
	5.3 Web front end

	6 Results and lessons learned
	7 Conclusion and future work
	Endnotes
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

