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Abstract

Background: Databases of perturbation gene expression signatures and drug sensitivity provide a powerful
framework to develop personalized medicine approaches, by helping to identify actionable genomic markers and
subgroups of patients who may benefit from targeted treatments.

Results: Here we use a perturbation expression signature database encompassing perturbations of over 90 cancer
genes, in combination with a large breast cancer expression dataset and a novel statistical denoising algorithm, to
help discern cancer perturbations driving most of the variation in breast cancer gene expression. Clustering estrogen
receptor positive cancers over the perturbation activity scores recapitulates known luminal subtypes. Analysis of
individual activity scores enables identification of a novel cancer subtype, defined by a 31-gene AKT-signaling module.
Specifically, we show that activation of this module correlates with a poor prognosis in over 900 endocrine-treated
breast cancers, a result we validate in two independent cohorts. Importantly, breast cancer cell lines with high activity
of the module respond preferentially to PI3K/AKT/mTOR inhibitors, a result we also validate in two independent
datasets. We find that at least 34% of the downregulated AKT module genes are either mediators of apoptosis or have
tumor suppressor functions.

Conclusions: The statistical framework advocated here could be used to identify gene modules that correlate with
prognosis and sensitivity to alternative treatments. We propose a randomized clinical trial to test whether the 31-gene
AKT module could be used to identify estrogen receptor positive breast cancer patients who may benefit from
therapy targeting the PI3K/AKT/mTOR signaling axis.

Background
Tumors are often found to carry a large number of aberra-
tions, including genetic mutations, genomic copy-number
aberrations, as well as epigenetic changes [1-3]. Irrespec-
tive of the underlying mechanism, if the resulting changes
are functional, then these may cause downstream changes
in signaling pathway activity resulting in abnormal cellular
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features such as uncontrolled cell growth or evasion of
apoptosis. However, it is thought that only a relatively
small fraction of the observed aberrations, even if func-
tional, constitute important drivers of tumor growth and
progression [4,5].
Although recent The Cancer Genome Atlas (TCGA)

studies have identified many candidate driver mutations
and copy-number aberrations across different cancer
types, the net effect of such perturbations in any given
cancer might be hard to predict [6,7]. Indeed, as pointed
out recently by Gatza et al. [8], the mere presence of a can-
didate driver mutation in a given cancer does not imply
that the associated signaling pathway is necessarily dereg-
ulated. Thus, to realize the goals of personalizedmedicine,
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one needs to assess the functional consequence of spe-
cific cancer perturbations in the cancer of a given patient.
This in turn requires the analysis of functional data, for
instance gene or protein expression/activity. As advocated
here, and also in Gatza et al. [8], one way to address this
formidable challenge is to assess the in vivo activity of can-
cer perturbations by interrogating prior, possibly in vitro
derived, perturbation gene expression signatures in the
transcriptomic profile of the given cancer. In our context,
a perturbation experiment describes the effect on the cel-
lular phenotype of a functional change to a single (or a
few) gene(s) [6]. This perturbation approach may not only
help dissect driver and passenger events, but also help
define patient subgroups who might benefit from specific
targeted drug treatments [6,9].
However, to use perturbation gene expression signa-

tures to estimate perturbation or pathway activity scores
in tumors is a complex task. Indeed, we have argued in
the past that naive computation of these activity scores
may result in highly suboptimal inferences, because many
of the genes making up perturbation signatures may
reflect confounding sources of variation, and thus repre-
sent false positives [10,11]. One immediate reason why
this may be so, is that single perturbation experiments
can only be studied properly in an in vitro setting, which
inevitably ignores the effects of the tumor microenvi-
ronment [12,13]. Thus, translating the effects of gene
perturbations in cell-line models to primary tumour sam-
ples is a complex endeavor due to the effects of the tumor
microenvironment, but also due to variations in the bio-
logical background (no given cell line can recapitulate
the precise aberration profile of an in vivo tumor sam-
ple) and complex in vitro effects. As a result of this,
we have argued that such perturbation signatures must
be denoised before using them to estimate perturbation
activity scores in individual tumor samples or cancer
cell lines [11]. To this end, we developed a statistical
algorithm, called DART (Denoising Algorithm using Rel-
evance network Topology), which allows a denoising of
the perturbation signature in the data of interest to be
performed [11]. Underlying this DART methodology is
the hypothesis that a subset of the genes making up the
perturbation signaturesmay indeed be relevant in the can-
cer of interest [11]. DART allows this hypothesis to be
tested by assessing the consistency of the gene expres-
sion correlation patterns in relation to those predicted by
the prior information from the in vitro signature. Impor-
tantly, we showed that the filtering and denoising step
implemented in DART, improved statistical inference of
perturbation/pathway activity levels [11].
Here, we further improve on the existing DART algo-

rithm, and apply the improved method to the problem of
endocrine resistance in estrogen receptor positive (ER+)
breast cancer [14,15]. It is well known that a significant

proportion of ER+ breast cancers do not respond well to
endocrine therapy, and for which there is still a lack of
alternative therapeutic targets. Thus, our aim is to use
a novel perturbation gene expression signature approach
to identify subgroups of ER+ patients who respond less
well to endocrine therapy, but who may benefit from
treatments targeting cancer genes that are active in these
tumor subgroups. To address this, we integrate a large
database of over 90 gene expression perturbation signa-
tures, reflecting perturbations of many important breast
cancer genes, with the most comprehensive breast cancer
gene expression dataset, the METABRIC set, comprising
two independent subsets of 774 (the discovery set) and
651 (the validation set) ER+ samples, respectively [3]. In
performing this integration, we first identify the pertur-
bations that drive most of the variation in gene expres-
sion across breast cancer. Subsequently, we explore the
molecular taxonomy of ER+ breast cancer, which results
from analyzing the activity patterns of these perturbation
signatures. Focusing on those activity profiles represent-
ing actionable perturbations and predicting endocrine
resistance in ER+ breast cancer, we identify a 31-gene
AKT signaling module, which also predicts sensitivity
to AKT/PI3K/mTOR inhibitors [16,17], thus providing a
means of identifying ER+ patients who could potentially
benefit from such treatment.

Results
Variable perturbation signatures in breast cancer
The overall strategy we propose is summarized in Figure 1.
We first assembled a database of 90 perturbation expres-
sion signatures from the C6 signature class of the Molec-
ular Signatures Database (MSigDB) (Figure 1, Materials
andmethods). The perturbations included activation (e.g.,
using a retrovirus to overexpress an oncogene) or silenc-
ing (e.g., an RNA interference experiment), and targeted
many genes that are important in cancer, including breast
cancer (e.g., ERBB2, TP53, MYC, AKT, RB1, CCND1,
etc., see Additional file 1: Table S1). Each one of these
perturbation signatures consisted of two gene lists, one
involving genes upregulated in response to the pertur-
bation, and another involving genes that are downregu-
lated. Since these perturbations were artificially induced
in cell-line models, we wanted to first assess if the pat-
terns of up- and downregulation of the genes making up
these perturbation signatures are reflected in their cor-
relative expression patterns across primary breast tumors
(Figures 1 and 2, Materials and methods) [11]. To this
end, we first used the normalized gene expression data
from the METABRIC discovery cohort [3], encompass-
ing almost 1,000 different breast cancers to estimate
gene pairwise correlations in expression for all the genes
within a given perturbation signature (Figures 1 and 2,
Materials and methods). The overall scheme for an
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Figure 1 Overall strategy. A database of (in vitro) perturbation gene expression signatures is denoised for relevance in a particular cancer type
(here ER+ breast cancer) by using a large training expression set of (in vivo) tumor samples, representative of that cancer type. The denoising is done
with the DART-CLQ algorithm (see Figure 2), which results in a small number of clique gene modules, from which improved estimates of
perturbation activity can be derived. Using the perturbation activity score matrix one can then identify associations between perturbations and
clinical outcome. The same clique gene modules allow estimation of perturbation activity scores in independent in vivo tumor sample datasets and
in panels of cell lines, allowing associations with outcome to be validated, and to identify potential drug treatments that may benefit certain patient
subgroups. BC, breast cancer; ER+, estrogen receptor positive; MSigDB, Molecular Signatures Database.

example perturbation signature is shown in Figure 2. For
each signature, this resulted in a heat map of statisti-
cally significant gene pairwise correlations (Figure 2A).
To assess consistency of the correlative patterns with the
predictions from the perturbation signature, we count
the number of pairs where the directionality is consistent
with the prior in vitro information (Figure 2A, Materials
and methods). Statistical significance of this consistency
score is obtained by Monte Carlo simulation as described
by us previously [11]. Thus, this procedure results in
a consistency and significance score for each pertur-
bation signature, which tells us whether this signature
exhibits patterns of variation in the METABRIC set which
is consistent with the patterns of up- and downregula-
tion predicted by the in vitro experiment. We performed
this consistency analysis separately for the ER+ and ER−
breast cancer METABRIC subsets, since ER controls the
expression of a very large number of genes, which could
confound correlation and skew statistical significance
estimates.

Of the 90 perturbation signatures, we found that only 57
and 38 induced correlation networks in the ER+ and ER−
subsets, respectively, which were significantly consistent
with the prior in vitro predictions (Monte Carlo test P <

0.001, Materials andmethods). Thus, in the ER− case, less
than 50% of the in vitro perturbation signatures showed
correlative patterns consistent with the prior information.
Only for the perturbation signatures deemed consistent by
this analysis, can we assume that the inter-tumor expres-
sion variability of the genes making up these signatures
reflects corresponding inter-tumor variations in the activ-
ity of the given perturbation. Hence, perturbation activity
profiles are only computed for these significantly variable
and consistent signatures.

The DART-CLQ algorithm and validation of perturbation
activity estimates
To compute perturbation activity values for one of
these consistent signatures, we first prune the correla-
tion network by removing those pairs (edges) where the
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Figure 2 The DART-CLQ algorithm. (A) Given an in vitro perturbation signature (depicted one of 40 genes) of up- and downregulated genes, one
computes gene pairwise correlations in expression over the samples of a large training set. One would expect two genes that are commonly up- or
downregulated in the in vitro signature to exhibit positive correlations, whereas two genes with one up- and the other downregulated, would be
predicted to be anti-correlated (upper diagonal). If the perturbation signature has explanatory power in the training expression set, one would
expect that observed correlations (lower diagonal) should agree, statistically, with the predicted ones, and if so, a consistency score can be derived.
(B) If the consistency score is statistically significant, the correlation network is pruned to remove those observed correlations for which the
directionality is inconsistent with the prior information, leaving only consistent and significant correlations. (C) The consistent and significant
correlations define a correlation network with a maximally connected component as depicted. DART-CLQ infers all the largest cliques in this
component and merges them (in practice, largest cliques exhibit very strong overlaps) to define an approximate clique gene module (CLQ-MOD).
An example of a clique within this module is indicated by the square nodes (genes). (D) Given the approximate clique gene module, perturbation
activity is now estimated by first z-normalizing each of a module gene’s expression profile (mean centering and unit variance scaling) over the
samples and then constructing a weighted average, where we weight each gene according to its degree in the module (kg) and whether it was
predicted to be up- (σg = 1) or downregulated (σg = −1). We note that the difference between DART-CLQ and DART is that DART estimates the
activity score over the full maximally connected correlation network.

directionality of correlation was inconsistent with the
prior information (Figure 2B). This results in a pruned
correlation network with a large maximally connected

component, and with isolated nodes representing genes
in the signature that do not show any significant or con-
sistent correlations (and which are hence removed from
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the process). In our previous DART algorithm, perturba-
tion activity would be estimated over the whole maximally
connected network [11]. However, this often resulted in
averaging expression profiles over a relatively large num-
ber of genes. We posited that improved inference could be
obtained by focusing on the largest cliques in the pruned
correlation network. Although the largest cliques may not
be unique, we found that they generally exhibited very
strong overlaps, justifying their merging, and resulting in
approximate clique modules typically of size of∼10 to 100
genes (Figure 2C). The resulting novel algorithm, called
DART-CLQ (denoising algorithm using relevance net-
work topology and cliques), thus estimates perturbation
activity by constructing a weighted average of normal-
ized expression profiles over the genes in this approximate
clique gene module (Figure 2D).
To validate DART-CLQ, we first focused on a well-

known cancer gene,TP53. An associated perturbation sig-
nature, reflecting TP53 deactivation, was also among the
consistent signatures derived in the ER+ subset of breast
cancer, resulting in a 35-gene clique module. Although
TP53 is not mutated in all cancers, deactivation of TP53
signaling is a near-universal feature of cancer, and so we
argued that the best possible test of DART-CLQ would
be a comparison of TP53 activity levels between nor-
mal and cancer tissue. Indeed, we posited that the TP53
clique module, although derived from the perturbation
signature in ER+ breast cancer, would exhibit a higher
signature score in cancer tissue compared to normal sam-
ples: we note that since the original in vitro perturbation
signature measures deactivation, that a higher signature
score in cancer is consistent with a higher frequency of
inactivation in the neoplasias. To test this, we computed
activity scores for the TP53 DART-CLQ module in an
Affymetrix gene expression dataset encompassing nor-
mal and cancer samples for five different tissue types
[18], for which there was also associated RNA sequenc-
ing (RNA-seq) expression data from the TCGA (Materials
and methods). This confirmed that the score was indeed
higher in cancer independent of tissue type (Figure 3A).
Importantly, using our original DART algorithm, or using
naive Spearman rank correlations to derive the score
did not result in significant differences across all cancer
types (Figure 3B,C, Materials and methods), supporting
the view that DART-CLQ achieves more reliable activity
estimates. The improved robustness of DART-CLQ over
DART and the Spearman correlation was further con-
firmed in the same tissue types using five independent
normal/cancer RNA-seq expression sets from the TCGA
(Additional file 1: Figure S1).
To test DART-CLQ further, we observed that a num-

ber of independently derived perturbation signatures, but
which affected the same oncogenes and tumor suppres-
sors, generated perturbation activity profiles that were

highly correlated, indicating the consistency and integrity
of the procedure. For example, two different perturba-
tion signatures of STK33 yielded cliques of 38 and 44
genes, respectively, with a common overlap of only 14
genes, yet their activity profiles were highly correlated
(Additional file 1: Figure S2). Similarly, two perturbation
signatures for KRAS activation, derived for two differ-
ent tissue types, also revealed broad statistical agreement
(Additional file 1: Figure S2) despite there being no gene
in common between the two clique modules of 16 and 30
genes, respectively. Using our previous DART algorithm,
or naive Spearman rank correlations, to derive the activity
scores resulted in lower R2 values for STK33 and in non-
significant positive correlations for KRAS (Additional
file 1: Figure S2), once again supporting the view that
DART-CLQ achieves more reliable activity estimates.

Perturbation signature activity profiles recapitulate known
breast cancer subtypes
Having demonstrated that DART-CLQ obtains sensible
activity estimates and having identified the most vari-
able and consistent perturbation signatures, we next asked
how ER+ breast cancer samples would cluster over the
estimated perturbation activity profiles. Applying Con-
sensusCluster [19], we identified a near optimal five-
cluster solution, with two main clusters of 341 and 377
samples, respectively, one intermediate-sized cluster (51
samples) and two clusters consisting of a few outliers (4
and 1 samples, respectively) (Figure 4). Demonstrating
the biological significance of the activity patterns, the two
main clusters correlated strongly with luminal A/B sub-
type status (Fisher test, P < 2 × 10−16). Indeed, many of
the perturbation signatures correlated with luminal A/B
subtype status (Additional file 1: Table S2). For instance,
luminal-B tumors were characterized by high activity of
specific activating perturbations, such as high polycomb
EZH2, EDD and high SHH, E2F3,MYC signaling Figure 4
and Additional file 1: Table S2). Luminal-B tumors were
also characterized by high activity of deactivation signa-
tures such as that of well-known tumor suppressors (e.g.,
RB and P53), but also that of less well-known genes such
as CRX and NRL (Figure 4). In general, those perturba-
tion signatures that were highly active in the luminal-B
enriched cluster also exhibited strong positive correla-
tions with proliferation prognostic indices such as the
genome grade index (GGI) [20] or the molecular prog-
nostic index (MPI) [21] (Figure 4). In particular, this was
the case for the RB deactivation and E2F1/E2F3 activation
signatures, which are known to regulate cell prolifera-
tion directly (Figure 4). We further note that we observed
strong positive correlations between MYC and E2F3 acti-
vation signatures (Pearson ∼0.75) consistent with E2F3
being a downstream target of MYC. An even stronger cor-
relation was observed between the RB deactivation and
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Figure 3 Validation of the DART-CLQ algorithm. (A) Box plots of predicted activity scores from DART-CLQ of a p53 deactivation signature
between normal (N) and cancer (C) tissue in five different tissue types from the Affymetrix study of Yu et al. [18]. Number of samples being
compared are given below each box plot. P value is from a Wilcoxon rank sum test. (B) As (A), but for activity scores estimated using DART. (C) As
(A), but for activity scores estimated using the Spearman correlation coefficient (SCC). C, cancer; N, normal; SCC, Spearman correlation coefficient.

E2F3 activation signature (Pearson >0.85), also consis-
tent with RB being a direct repressor of E2F3. Luminal-A
tumors were characterized by high activity of EGFR, RAF,
KRAS activating signatures and surprisingly by a PTEN
deactivation signature. Of note, the smaller intermediate
cluster defined another luminal-A subtype, characterized
by high activity of CCND1, beta-catenin and MTOR sig-
naling.

An AKT genemodule correlates with poor outcome in
endocrine-treated ER+ breast cancer
Next, we decided to focus on the specific subset of
ER+ patients who only received anti-hormone therapy

(tamoxifen or aromatase inhibitors) with or without radio-
therapy. It is well known that not all ER+ patients respond
well to tamoxifen, yet the molecular basis for this is still
unclear [14,15], and there is currently also a lack of alter-
native therapies for this subgroup of patients. Thus, to
identify potential alternative treatments (Figure 1), we
first carried out a survival analysis for the 57 consistent
and highly variable perturbation signatures, focusing on
endocrine-treated ER+ patients only. To gain power, we
merged the two METABRIC cohorts, resulting in 926
eligible patients, and used independent datasets for val-
idation. Of the 57 perturbation signatures, 42 were sig-
nificantly associated with clinical outcome in univariate
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Figure 4 Perturbation signature activity scores recapitulate known subtypes of ER+ breast cancer. ConsensusCluster heat map of
perturbation activity scores across the 774 ER+ breast cancers of the METABRIC discovery set. Samples clustered using the ConsensusCluster
algorithm (the five-cluster solution is shown). Distribution of breast cancer intrinsic subtypes (PAM50) across the five inferred clusters is indicated
(sky blue: luminal-A, blue: luminal-B, green: normal-like, pink: HER2+, red: basal). Perturbation signatures have been clustered using hierarchical
clustering (dendrogram has been suppressed) according to similarity of activity profiles over samples. Color bars to the right depict the Pearson
correlations of the perturbation activity scores with the GGI and MPI. ER+, estrogen receptor positive; GGI, genome grade index; MB-D, METABRIC
discovery set; MPI, molecular prognostic index.

analysis (Additional file 1: Table S3 and Figure S3), with 17
of these also remaining significant in multivariate analysis
adjusted for stage, grade and tumor size, and after cor-
rection for multiple testing (Benjamini–Hochberg false
discovery rate, FDR < 0.15, Table 1).

Given that random gene expression signatures have
often been shown to correlate spuriously with outcome
[22,23], it is important to assess the overall prognostic
significance of the 17 associations in Table 1 by another
means. As a first test, we constructed a set of 90 random
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Table 1 Perturbation signaturemodules fromDART-CLQ predicting outcome in the endocrine-treated ER+METABRIC set
in both univariate andmultivariate analysis (adjusted for grade, stage and tumor size)

Univariate Multivariate

n = 926 n = 685

Module HR (95% CI) P* HR (95% CI) P* Class

CYCLIN_D1_KE(UP) 1.14 (1.04–1.25) 0.005 1.12 (1.01–1.25) 0.039 Prolif

CSR_LATE_UP 1.19 (1.08–1.32) 0.001 1.13 (1.01–1.27) 0.039 NotTgt

AKT_UP 1.18 (1.07–1.31) 0.001 1.13 (1.01–1.27) 0.041 Tgt

PIGF_UP 0.86 (0.78–0.94) 0.001 0.88 (0.79–0.97) 0.014 HR < 1

ATF2_S_UP 1.2 (1.08–1.32) 0.001 1.14 (1.01–1.28) 0.035 NotTgt

ATF2_UP 1.21 (1.09–1.34) <0.001 1.15 (1.02–1.3) 0.019 NotTgt

E2F3_UP 1.21 (1.1–1.33) <0.001 1.13 (1.01–1.27) 0.033 Prolif

SRC_UP 0.83 (0.75–0.91) <0.001 0.88 (0.78–0.99) 0.036 HR < 1

PRC2_EDD_UP 1.21 (1.1–1.33) <0.001 1.15 (1.02–1.29) 0.018 NotTgt

MTOR_UP.N4 1.19 (1.08–1.32) 0.001 1.15 (1.02–1.3) 0.022 Tgt

PTEN_DN.V2 0.84 (0.76–0.94) 0.001 0.87 (0.76–0.98) 0.023 NotTgt

RB_P107_DN 1.2 (1.09–1.31) <0.001 1.13 (1.01–1.27) 0.037 NotTgt

RB_P130_DN 1.21 (1.1–1.34) <0.001 1.13 (1–1.27) 0.044 NotTgt

KRAS.300_UP 0.78 (0.7–0.87) <0.001 0.79 (0.7–0.89) <0.001 NotTgt

KRAS.600_UP 0.82 (0.74–0.92) <0.001 0.83 (0.73–0.94) 0.004 NotTgt

KRAS.600.LUNG.BREAST_UP 0.84 (0.75–0.94) 0.003 0.84 (0.74–0.96) 0.01 NotTgt

KRAS.KIDNEY_UP 0.83 (0.75–0.92) <0.001 0.85 (0.76–0.96) 0.008 NotTgt

Hazard ratios (HRs), 95% confidence intervals (CIs) and Cox regression P values are indicated. Perturbation activity scores were scaled to unit variance before running
the Cox regression to allowmeaningful comparison of HR values. Last column labels the original perturbation signatures according to whether they are targetable
(Tgt, i.e., they exhibit HR >1 and there are drug inhibitors for them), not targetable (NotTgt, i.e., either no specific drug exists, or a drug does exist but the module
exhibits HR <1), or if they are directly implicated in the cell cycle/proliferation (Prolif). *All P values reported in this table pass a Benjamini–Hochberg corrected FDR
threshold of 0.15.

perturbation signatures, matched for the same size and
distribution of up- and downregulated genes as the orig-
inal 90 MSigDB perturbation signatures (Materials and
methods). These random signatures were run through
the same DART-CLQ algorithm on the ER+ METABRIC
dataset. Because the signatures are random, we would
not expect their consistency scores to be statistically
significant. Confirming this, none of the 90 random sig-
natures attained consistency scores that passed the signif-
icance level of 0.001, which contrasts strongly with the 57
MSigDB perturbation signatures that did pass this level
of significance (Additional file 1: Figure S4). Next, we
decided to test expression signatures from an unrelated
biological context, following the strategy of Venet et al.
[22]. Specifically, we used a large expression dataset of
353 normal tissue specimens from 65 different anatom-
ical sites [24], to derive signatures of differential expres-
sion between tissue types that are unrelated to breast,
including brain, lymph nodes and prostate (Materials and
methods). As in Venet et al., we reasoned that these tissue-
specific signatures should not exhibit as strong prognostic
association as our 17 DART-CLQ modules, if the latter
represent genuine associations. Applying DART-CLQ to a

total of 66 different signatures derived from pairwise com-
parisons of 12 anatomical sites, revealed that 63 of these
had a significant consistency score P-value (P < 0.001).
For these 63 signatures, we then performed Cox regres-
sions in the endocrine-treated ER+ METABRIC samples,
both univariately and multivariately. Next, we counted the
number of signatures with a Cox P value more extreme
than the largest Cox P value reported in Table 1. In the
univariate case, we observed 12 signatures, i.e., 19% of the
63 signatures, with a more extreme P value than 0.005
(FDR < 0.15), and only 8 (i.e., 12%) with a P value less
than 0.002 (Additional file 1: Figure S5). A similar result
was obtained in the multivariate case (Additional file 1:
Figure S5). Thus, we find a good agreement between our
earlier FDR estimate of 0.15 and these estimates obtained
by picking signatures that should be unrelated to breast
cancer. In summary, this randomization analysis supports
the view that the prognostic associations in Table 1 are
genuine and not due to random chance.
Of the 17 prognostic DART-CLQ modules, those cor-

relating most strongly with outcome corresponded to
KRAS perturbations (a total of four signatures, Table 1).
KRAS, however, is notoriously difficult to target. Another
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four of the top signatures (e.g., two RB deactivation, one
E2F3 and one CCND1 signature) were directly related
to proliferation (Table 1 and Figure 4). Of the remain-
ing nine signatures, only four are clearly targetable (PIGF,
SRC, AKT(AKT1) and mTOR). However, only for the
AKT and mTOR modules did we observe that high activ-
ity predicted poor clinical outcome (HR > 1, Table 1).
Although AKT and mTOR signaling are closely related
signaling pathways, we decided to focus on the AKTmod-
ule, because the original AKT perturbation signature was
derived by explicit overexpression of AKT1, in contrast to
the mTOR signature that had been derived by the action
of everolimus [25]. Moreover, aberrant AKT signaling
has been proposed as one potential mechanism underly-
ing endocrine resistance in ER+ breast cancer [15]. On
the other hand, recent work has also shown that activat-
ing mutations in PIK3CA, a frequent alteration in breast
cancer [3], does not predict the response to endocrine
treatment [26-28]. We therefore decided to explore if a
functional marker of aberrant AKT signaling (such as our
AKT gene module) may be a more relevant indicator of
endocrine resistance.
To explore this, we first assessed whether the AKTmod-

ule correlates with outcome in untreated (no chemother-
apy or endocrine therapy but may include radiotherapy)
ER+ patients. In contrast with the endocrine-treated sub-
set, the association in the untreated group was no longer
significant (Table 2). To validate the results, we col-
lected another two large ER+ gene expression datasets,
matched for sample size, with everyone in one cohort
having received tamoxifen [20], whilst in the other the
patients were all untreated (i.e., they received only radio-
therapy) [29]. This analysis confirmed that the association
with outcome was specific to the treated ER+ cohort
(Table 2). To validate the findings further, we collected
yet another pair of ER+ datasets, albeit of smaller sample
size, one treated with tamoxifen [30] whereas the other
was untreated (i.e., they received only radiotherapy) [31].
Once again, we found that the AKT module was more
strongly associated with outcome for the ER+ endocrine-
treated cohort (Table 2). A separate meta-analysis for the
three treated and three untreated ER+ cohorts further
confirmed the strong statistical significance of the associa-
tion in the endocrine-treated cohorts, with no significance
in the untreated sets (Table 2). The ability of the AKT
gene module to stratify treated ER+ patients with differ-
ent survival rates was confirmed further by Kaplan–Meier
analysis (Figure 5).

The AKT genemodule predicts sensitivity specifically to
AKT/mTOR drug inhibitors
Since several AKT/mTOR pathway inhibitors have been
shown to be effective for endocrine-resistant breast
cancer cell lines [32], we decided next to investigate

if the in vivo derived AKT gene module would be
able to predict the response to drugs targeting the
AKT/mTOR pathway. We collected an expression dataset
of 45 breast cancer cell lines, for which a drug sen-
sitivity screen, with − log10GI50 scores, for over 70
drugs had also been performed [16], including known
AKT inhibitors (Sigma1.2 and triciribine), PI3K inhibitors
(TGX221, GSK2119563, GSK1059615 and AS.252424),
mTOR inhibitors (rapamycin and temsirolimus) and dual
PI3K/mTOR inhibitors (GSK2126458 and BEZ235). Using
the same AKT clique module inferred for the METABRIC
discovery set, we estimated perturbation activity scores
for the breast cancer cell-line panel. The obtained activity
scores should reflect the relative activity of AKT signal-
ing in the breast cancer cell lines, and thus we posited that
the drug sensitivity values correlating most strongly with
the activity scores would be those of PI3K/AKT/mTOR
inhibitors. Confirming this, the top seven correlated
drugs included five PI3K/AKT1/mTOR inhibitors, i.e.,
rapamycin, Sigma1.2, TGX221, GSK2126458 and tri-
ciribine (Figure 6A). We note that although the P val-
ues were only significant for rapamycin and Sigma1.2,
the probability of observing so many PI3K/AKT/mTOR
inhibitors among the top-ranked drugs, purely by ran-
dom chance, is only 0.006 (one-sided Wilcoxon rank sum
test, Figure 6A,B). Interestingly, had we used the orig-
inal full AKT perturbation signature and a Spearman
correlation (i.e., without using DART-CLQ) to estimate
perturbation activity, we would have found that the top
drug (gefitinib) is not a PI3K/AKT/mTOR inhibitor, with
rapamycin and Sigma1.2 only ranking fourth and tenth,
respectively. Moreover, we would have observed tamox-
ifen to be ranked higher than Sigma1.2, whereas using
DART-CLQ, tamoxifen was ranked much lower, as we
would expect from a gene module that predicts insensitiv-
ity or resistance to tamoxifen (Figure 6A). Using DART-
CLQ, we also observed that breast cancer cell lines with
high AKT module activation scores exhibited sensitivity
to a pro-apoptotic drug (fascaplysin), a result that was also
not forthcoming using the full AKT signature. From all
this, we can conclude that DART-CLQ was instrumental
in identifying a specific AKT gene module (derived from
the METABRIC discovery set), which can simultaneously
predict tamoxifen resistance in ER+ breast cancer patients
and sensitivity to PI3K/AKT/mTOR signaling inhibitors.
Next, we decided to validate these findings in an inde-

pendent drug sensitivity screen. Since the screen from
the Cancer Cell Line Encyclopedia contained few drugs
[33], and these were not highly specific to the AKT/PI3K/
mTOR signaling axis, we decided to use the screen gener-
ated by the Genomics Drug Sensitivity in Cancer (GDSC)
project [17]. Using the same AKT gene module as before,
we estimated activity scores for 39 breast cancer cell
lines (Affymetrix gene expression data), which were then
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Table 2 Cox regression results of the AKT genemodule

Treated ER+ cohort METABRIC Loi Zhang Combined Fisher test

Univariate n = 926 n = 250 n = 136

HR (95%) 1.18 (1.07–1.31) 1.6 (1.24–2.05) 1.56 (0.97–2.51)

P 0.001 0.0003 0.06 <0.00001

Multivariate n = 685 n = 207 n = 136a

HR (95%) 1.13 (1.00–1.27) 1.49 (1.11–2.00) 1.56 (0.97–2.51)

P 0.041 0.008 0.06 0.001

Untreated ER+ cohort METABRIC Wang Miller Combined Fisher test

Univariate n = 360 n = 209 n = 127

HR (95%) 1.12 (0.95–1.32) 1.13 (0.91–1.39) 1.32 (0.83–2.10)

P 0.17 0.26 0.23 0.16

Multivariate n = 272 n = 209a n = 126

HR (95%) 1.09 (0.89–1.34) 1.13 (0.91–1.39) 0.96 (0.61–1.54)

P 0.41 0.26 0.88 0.58

These are for endocrine-treated [20,30] and untreated [29,31] ER+ cohorts, as indicated, as well as for a meta-analysis under a combined Fisher test. Untreated means
cases did not receive either endocrine or chemotherapy, but may have received radiotherapy. The number of samples, hazard ratios (HRs), 95% confidence intervals
and log-rank test P values are given for both univariate and multivariate (adjusted for stage/nodal status, grade and tumor size) analyses. Perturbation activity scores
were scaled to unit variance before running the Cox regressions to allowmeaningful comparison of HR values.
aNote that for the Wang dataset [29], all samples were lymph node negative and no information on tumor size and grade was available. Similarly, for the Zhang
dataset [30], no additional clinical information was available. For the Miller dataset [31], the multivariate analysis was adjusted for size and grade only since all
untreated samples were lymph node negative. For the METABRIC set, overall survival was used as the endpoint; for all others we used distant-metastasis-free survival.
In all cases, outcome data were censored at 10 years.

correlated to − log10IC50 values for 140 drugs, includ-
ing rapamycin and 10 other AKT/PI3K/mTOR inhibitors.
Remarkably, all 11 AKT/PI3K/mTOR inhibitors ranked
above the top 65% correlation quantile (Wilcoxon rank
sum test P < 0.0001, Figure 6C), with four drugs (includ-
ing rapamycin) ranked among the top 10% (i.e., above the
90% quantile). However, for this screen rapamycin did not
rank top, presumably because for this drug there were only
ten cell lines with drug sensitivity values. Thus, we sought
further validation using another drug sensitivity screen
[34], for which breast cancer cell-line expression data had
been generated with RNA-seq, thus allowing us to also
assess cross-platform reproducibility. As in the other two
screens, AKT/PI3K/mTOR inhibitors were preferentially
ranked at the top (Wilcoxon rank sum test P < 10−5,
Figure 6D), with rapamycin ranked highest.

Biological significance of the AKT clique genemodule
Given the clear clinical significance of the AKT genemod-
ule in predicting poor response to endocrine therapy in
vivo and sensitivity to AKT/mTOR signaling inhibitors in
vitro, we decided next to explore the biological signifi-
cance of the 31 genes making up the AKT gene clique
module (Additional file 1: Table S4). The AKT activa-
tion signature was originally derived by transgene expres-
sion of human AKT1 in mouse prostate, and consisted
of 187 downregulated and 172 upregulated genes [25].
Interestingly, however, only two (DHCR7 and UBE2C) of
the 31 genes making up the clique are upregulated in

response to AKT1 activation, the rest all being downreg-
ulated (Figure 7 and Additional file 1: Table S4). Quite
remarkably, both DHCR7 andUBE2C are members of the
recent EndoPredict score assay, which provides prognos-
tic information for endocrine-treated ER+/HER2− breast
cancer patients [35,36]. Among the 31 genes, a total of
6 are associated with extracellular region gene ontology
terms (HTRA1, EFEMP1, EFEMP2, CD248, SLIT3 and
LPL). Most importantly, however, a significant propor-
tion (34%) of the downregulated genes in the module are
apoptosis mediators, or have been reported to constitute
putative tumor suppressors, notably FAS, SFRP2, GAS1,
KLF2, LPL, SCARA5, PTGIS, SLIT3 and HTRA1 [37-49],
including the metastasis suppressor RECK [50] (Figure 7).
Thus, the identified AKT gene module links AKT signal-
ing to inhibition of specific genes that are important in
mediating apoptosis (or which have other tumor suppres-
sive functions), consistent with the pro-survival effector
function of AKT signaling.

Discussion
In this study we have showcased a novel algorithm, called
DART-CLQ, for personalized medicine, by application to
the problem of endocrine resistance in ER+ breast cancer.
Our aim was to identify novel subgroups of ER+ breast
cancer patients who do not respond to endocrine therapy
but whomay benefit from alternative targeted treatments.
Starting out from a large panel of 90 perturbation sig-
natures, encompassing perturbations of many important
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Figure 5 Kaplan–Meier survival analysis of the AKT genemodule in ER+ breast cancer. (A) Kaplan–Meier curves of the endocrine-treated ER+
patients in the METABRIC set as well as for the datasets of Loi et al. [20] and Zhang et al. [30], with samples stratified according to the lower,
intermediate and upper tertiles of the AKT module activation score. Number of samples in each tertile is indicated. Hazard ratios, 95% confidence
intervals and Cox regression P values between lower and higher tertiles are given. (B) As (A) but for the untreated ER+ patients of the METABRIC set,
as well as the untreated ER+ patients of Wang et al. [29] and Miller et al. [31]. Untreated here means no endocrine therapy or chemotherapy, but may
include radiotherapy. ER+, estrogen receptor positive; HR, hazard ratio; MB, METABRIC; Prob, probability; OS, overall survival; DM, distant metastasis.

breast cancer genes, we first identified those signatures
that showed consistency and variability across the largest
available breast cancer gene expression dataset [3]. We
identified a total of 17 perturbation signature modules
that correlated with survival in the subset of ER+ patients
who had been treated either with tamoxifen or with aro-
matase inhibitors, in both univariate as well as multi-
variate analysis (Table 1). Of these 17, there were only 2
actionable signatures, both mapping to the AKT/mTOR
signaling axis. One of these modules corresponded to an
original perturbation signature reflecting activated AKT1.
This is noteworthy for various reasons. First, AKT signal-
ing has been proposed as one putative mechanism under-
lying tamoxifen and endocrine resistance in ER+ breast
cancer [15,51]. Supporting this, our AKT gene module
was associated with poor outcome in a meta-analysis
encompassing three independent endocrine-treated ER+
cohorts (Figure 5, Table 2). Second, recent studies have
not been able to demonstrate the clinical utility of PI3K
mutations and other genomic aberrations within the AKT
signaling pathway as markers of endocrine response in

ER+ breast cancer [26-28,51]. Thus, it is significant that
our AKT gene module is able to predict outcome for
endocrine-treated ER+ breast cancer, when these key
alterations cannot, in line with similar findings reported
recently in Loi et al. [51]. Importantly, all this supports the
original hypothesis that the activation status of the sig-
naling pathway is more important than the presence of
specific alterations within the pathway [8,11]. Third, AKT
signaling is an actionable aberration, amenable to targeted
therapy. In this regard, it is important to note that the
same AKT gene module that correlates with poor out-
come in endocrine-treated ER+ breast cancer, was also
able to predict a high activity score in breast cancer cell
lines that were particularly sensitive to treatment with
PI3K/AKT/mTOR inhibitors (Figure 6). Not only does
this provide another independent validation of the bio-
logical significance of our AKT gene module, but also
provides ameans of identifying ER+ breast cancer patients
who do not respond well to endocrine therapy and who
instead may benefit from additional treatment targeting
the AKT/mTOR signaling axis, independently of whether
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Figure 6 AKT genemodule predicts sensitivity to AKT/mTOR signaling inhibitors. (A) Spearman rank correlation between the predicted AKT
perturbation activity score and drug sensitivity (− log10GI50) values assessed over a panel of 45 breast cancer cell lines. Drugs have been ranked
according to strength of correlation. Magenta: significant positive correlation, white: no significant correlation, cyan: significant negative correlation.
Drugs that are PI3K/AKT/mTOR inhibitors are indicated in red. The Wilcoxon rank sum test P value testing for any skew of these inhibitors towards
positive correlations is given. (B) Scatter plots of drug sensitivity against AKT activity scores for the two top ranked drugs in (A). Spearman rank
correlation coefficients (SCCs) and associated P values are indicated. (C) Spearman rank correlation between the predicted AKT perturbation activity
score and drug sensitivity (− log10GI50) values as assessed over a panel of 39 breast cancer cell lines from the Genomics and Drug Sensitivity in
Cancer project. Note that for this set, the number of cell lines for each drug differs, hence individual P values are suppressed. Drugs that are
PI3K/AKT/mTOR inhibitors are indicated in red. The Wilcoxon rank sum test P value testing for a positive skew of the PI3K/AKT/mTOR inhibitors
towards positive correlations is given. (D) As (C), but for the data from Daemen et al. [34], which used − log10GI50 values. Correlations estimated
over 42 breast cancer cell lines. Drugs that are PI3K/AKT/mTOR inhibitors are indicated in red. The Wilcoxon rank sum test P value testing for a
positive skew of the PI3K/AKT/mTOR inhibitors towards positive correlations is given. +ve, positive; −ve, negative; Cor, correlation; GDSC, Genomics
Drug Sensitivity in Cancer Project; RNA-seq, RNA sequencing; SCC, Spearman rank correlation coefficient; Sig., significant; DS, drug sensitivity.
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Figure 7 The AKT clique gene module. List of genes making up the
31-gene AKT clique module used to estimate AKT perturbation
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response to AKT activation. We indicate in bold those genes that have
been reported to have tumor suppressor roles in cancer. The two
genes upregulated in the perturbation signature are members of the
EndoPredict assay. Diff.

key genomic or epigenomic alterations are present in this
pathway or not.
There are, however, two important caveats. First, the

specificity of our AKT module to predict non-response
in endocrine-treated ER+ breast cancers requires further
testing through a randomized clinical trial. Indeed, we
note that although our AKT module did not correlate
with outcome in the untreated ER+ cohorts, two of these
cohorts were completely independent of the endocrine-
treated ER+ cohorts, thus not allowing for a proper com-
parison. Second, the breast cancer cell lines used for the
drug sensitivity screens are of course independent of the
primary breast tumors used to show the prognostic sig-
nificance of the AKT module. Thus, in future it will be
important to assess themodule in patient-derived cell-line
models.
The biological significance of the AKT gene module

identified here is supported by detailed analysis of the
genes making up the module (Figure 7). Quite remarkably,
the two genes upregulated in this module (DHCR7 and
UBE2C) are two members of the EndoPredict assay, an
RT-PCR assay for predicting response to endocrine treat-
ment in ER+/HER2− breast cancer [35,36]. Even more
interestingly, at least 34% of the 29 downregulated genes

(a total of 10 genes), have reported tumor suppressor
functions, albeit most of these in other cancer types. Of
particular interest is GAS1, an apoptosis inducer, which
is inactivated in a wide range of different cancers [41],
as well as RECK, a tumor and metastasis suppressor [50].
Thus, our data link AKT signaling to the downregulation
and inactivation of a number of tumor suppressor genes,
including mediators of apoptosis. This is highly consistent
with the previously documented role of AKT signaling as
an effector of pro-survival signals. It is unclear, however,
how high AKT signaling activity leads to the downregula-
tion of all of these tumor suppressors. It will be interesting
to explore the underlying biological mechanisms that lead
to this downregulation, as this might reveal further novel
therapeutic targets.
We stress again that the novel key contribution of

this work is the identification of a gene module that
simultaneously correlates with a poor clinical outcome in
endocrine-treated ER+ breast cancer and with sensitiv-
ity to PI3K/AKT/mTOR inhibitors. Whether the associa-
tion with outcome is independent of proliferation indices,
which are known to be the strongest predictors of out-
come in ER+ breast cancer, is not of clinical significance.
This is because proliferation indices, such as GGI [20]
and MPI [52], do not present or define a specific action-
able target, since they are not constructed from a single
upstream perturbation that leads to the increased down-
stream cell proliferation. Indeed, one would not expect the
outcome associations of our perturbation signatures to
be independent of cell proliferation since the latter repre-
sents the phenotypic endpoint of upstream cancer driver
perturbations. Supporting this, most of the prognostic
associations of the perturbation signatures disappeared
once we adjusted for either GGI or MPI, both of which
were found to correlate with endocrine resistance in ER+
breast cancer (Additional file 1: Tables S5 and S6). To clar-
ify, given that our goal is to (i) identify actionable pertur-
bations driving poor outcome in endocrine-treated ER+
patients and (ii) identify the specific patients who may
benefit from an alternative targeted therapy, adjustment
for proliferation is not even desirable, since increased
proliferation is a consequence of the upstream driver
perturbation. Indeed, for our 31-gene AKT module, this
was found to correlate moderately (Pearson correlation
of ∼0.42) with proliferation indices (Figure 4).
Our success in identifying a potential alternative treat-

ment for a subgroup of ER+ patients, relied not only on
the overall strategy outlined here (Figure 1), but also on
the specific statistical algorithm (DART-CLQ, Figure 2).
We stress that naive application of perturbation signa-
tures, which are normally derived for cell-line models, to
in vivo data from primary cancers, may be prone to dif-
ficulties due to confounding effects related to the in vitro
culture or the specific cell-line model considered. In our
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view, a step towards improving the inference and utility of
these in vitro perturbation signatures, is first to denoise
them, using a large expression set that is representative
of the demographics of the cancer of interest. As shown
here, not performing this denoising step (for instance, by
computing Spearman rank correlations over the full per-
turbation signature) may lead to suboptimal inferences
of perturbation activity (Figure 3 and Additional file 1:
Figures S1 and S2). While our previous algorithm, DART
[11], also performs a denoising step, the improved perfor-
mance of DART-CLQ over DART is because DART-CLQ
infers perturbation activity from a highly correlated gene
module of a size that is also likely to be more biologically
relevant. Indeed, the naive correlation approach would
typically estimate perturbation activity using all genes in
the perturbation signature, falsely assuming that all these
genes are relevant in the in vivo context. For DART, the
correlation network over which perturbation activity is
estimated could still be quite large (over 100 genes). This
in turn may lead to unreliable diluted activity estimates as
gene correlations may fade out over larger networks. In
contrast, DART-CLQ identifies approximate clique gene
modules in the size range 10 to 100 genes maximum,
making the resulting perturbation activity estimates much
more robust and reliable (Figure 3 and Additional file 1:
Figures S1 and S2).
Although DART-CLQ was successful in identifying a

novel clinically relevant subtype of ER+ breast cancer,
it is important to also stress the challenge of interpret-
ing the perturbation activity score profiles. Of the 90
original perturbation signatures, many did not show sig-
nificant patterns of covariability in the in vivo expression
data, raising substantial concerns about procedures that
do not attempt to denoise the signatures before estimating
activity levels. We also observed a few exceptions where
patterns of variation were hard to reconcile with existing
knowledge. For instance, we observed a PTEN deactiva-
tion module, consisting of 20 genes, which was strongly
anti-correlated with AKT activation (Pearson correlation
coefficient −0.92), despite that there was only 1 gene
in common between the PTEN and AKT modules. This
strong anti-correlation was totally unexpected because
PTEN is a suppressor of AKT signaling, so high deactiva-
tion of PTEN should correlate with high AKT activity. We
verified that this apparent inconsistency was not caused
by a complex clique structure in the PTEN relevance net-
work. Much more likely, the inconsistency may reflect the
poor quality of the in vitro PTEN perturbation signature.
Supporting this view, the PTEN perturbation signature
was not among the consistent signatures in ER− breast
cancer, where PTEN loss is a much more frequent event
[2] and where, therefore, we would have expected this sig-
nature to be prominent. This only underscores the strong
need to develop a comprehensive screen of expression

perturbation signatures, all generated from the same cell
line and with the perturbations implemented using a pro-
tocol as uniform as possible. On a more positive note, it
is comforting that the majority of the perturbation sig-
natures showed patterns of variation and covariation that
were highly consistent with previous knowledge and data.
For instance, as remarked earlier, we observed strong cor-
relations between RB inactivation and E2F3 activation
signatures (Pearson >0.85), consistent with the role of RB
as an inhibitor of E2F3. Similarly, the high activity of MYC
signaling in luminal-B breast cancers is consistent with the
frequent amplification of its locus in this subtype of breast
cancer [3]. Thus, on the whole, the DART-CLQ algo-
rithmwas able to obtain activity estimates that were highly
consistent, supporting previous observations [10,11].

Conclusions
In summary, by integrating perturbation signatures with
gene expression data of primary tumors and cancer cell
lines with matched drug sensitivity data, we have been
able to identify a novel clinically relevant subtype of
ER+ breast cancer, as well as a targeted treatment (a
PIK3/AKT/mTOR inhibitor) that is likely to benefit this
specific patient subgroup. It will be interesting to test the
predictive nature of the 31-gene AKT module in a ran-
domized trial. The strategy implemented here, as well as
the novel DART-CLQ algorithm presented in this work,
will be of broad and great interest to the wider cancer
community.

Materials andmethods
Expression datasets of primary breast cancers
In this work we used the intra-sample normalized gene
expression datasets, as provided by the respective publi-
cations [3,20,29-31]. For all datasets, probes mapping to
the same Entrez gene ID were averaged. Inter-array nor-
malization was performed, if deemed necessary, by using
quantile normalization as implemented in the limma R
package [53]. For the METABRIC study [3], the data
matrix for the discovery set consisted of 24,924 genes
and 774 ER+ samples, whereas the validation set con-
sisted of the same number of genes and 651 ER+ samples.
The merged METABRIC set thus consisted of 1,425 ER+
patients, of which 926 had been treated with endocrine
therapy (either tamoxifen or aromatase inhibitors in com-
bination with or without radiotherapy). Of the 1,426 ER+
patients, 360 had not received any treatment or only
radiotherapy and these were classed in the untreated
group.
The two other ER+ endocrine-treated cohorts were

those of Loi et al. [20] (n = 250 eligible patients)
and Zhang et al. [30] (n = 136). The two independent
untreated (i.e., no endocrine treatment or chemotherapy)
ER+ cohorts were those of Wang et al. [29] (n = 209) and
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Miller et al. [31] (n = 127). Further details of these cohorts
can be obtained from the respective references.

Breast cancer cell line expression datasets with drug
sensitivity data
Likewise we downloaded the intra-sample normalized
(if available) expression data for breast cancer cell
lines that were screened for response to various drugs
[16,17,34]. For Heiser’s data [16], gene expression was
assessed using the Affymetrix GeneChip Human Gene 1.0
ST exon array platform. Gene-level summaries of expres-
sion were computed using AROMA and quantile normal-
ization [16]. The intra-sample log2-normalized (AROMA)
was downloaded from ArrayExpress (E-MTAB-181), and
then processed further using the same method as for the
primary breast cancer expression sets, resulting in a data
matrix of 15,714 unique Entrez gene IDs and 56 breast
cancer cell lines, of which 45 cell lines had drug sensitivity
data. − log10(GI50) drug sensitivity values were available
for 74 compounds.
For the GDSC data [17], gene expression was generated

with the Affymetrix U133A platform.We downloaded the
intra-sample normalized data available from the GDSC
website [54], which was then further processed using the
same procedure as before, resulting in a data matrix of
12,633 unique Entrez ID genes and 39 breast cancer cell
lines. − log10(GI50) scores were available for 140 com-
pounds.
For the Daemen et al. data [34], we used the normalized

RNA-seq gene expression data available from the GEO
website [55] under accession number [GEO:GSE48216].
This was then further processed using the same procedure
as before, including quantile normalization and removal
of low-variance genes, resulting in a data matrix of 18,295
unique Entrez ID genes and 56 breast cancer cell lines,
although − log10(GI50) scores for 90 compounds were
only available for 42 cell lines.

Normal/cancer expression datasets
To validate the DART-CLQ algorithm, we used the nor-
mal/cancer gene expression dataset from Yu et al. [18].
This study profiled, using Affymetrix U133A arrays,
over 300 normal/cancer samples from six tissue types,
including breast (13 normals + 183 cancers), lung (12 nor-
mals + 18 cancers), thyroid (16 normals + 35 samples),
liver (8 samples + 9 cancers) and colon (9 normals + 9 can-
cers). The intra-sample normalized data were processed in
the sameway as the other datasets, resulting in a dataset of
13,262 unique Entrez gene IDs and over 300 samples. We
also downloaded the RNA-seq (V2) level-3 data from the
TCGA [56] for the same six tissue types, i.e., using TCGA
nomenclature, these were BRCA (breast cancer), LSCC &
LUAD (lung cancer), THCA (thyroid cancer), LIHC (liver
cancer) and COAD (colon cancer).

Perturbation signatures from C6 class of the Molecular
Signatures Database
We obtained an original list of 189 gene expression per-
turbation signatures from the C6 class of MSigDB (v4.0)
[57]. Most of these perturbation signatures were derived
from overexpression (e.g., using retroviral or transgene
expression techniques) or underexpression (e.g., through
RNA interference) experiments. In this work, we denote
activating signatures as UP, and deactivating signatures
as DN. Of the 189 perturbation signatures, 180 come in
pairs, with one signature of a pair listing the genes upreg-
ulated in response to the perturbation, whilst the other
lists the genes downregulated in response to the same per-
turbation. Thus, these 180 perturbation signatures were
assembled into a list of 90 perturbation signatures, rep-
resenting 90 different experiments, with each signature
consisting of genes upregulated (+1) or downregulated
(−1) in response to the perturbation. It follows that these
perturbation signatures contain information only about
the directionality of the change in response to the per-
turbation and not their exact fold-changes. We point out
that this is not a problem, because the fold-changes for
the genes making up the perturbation signatures were
deemed statistically significant by the original studies in
which these perturbation signatures were derived. The
application of this database of 90 perturbation signatures
to breast cancer is supported since many of these signa-
tures were derived from perturbations of important breast
cancer genes. The full list of 90 perturbation signatures
and their definitions can be found in Additional file 1:
Table S1.

The DART-CLQmethod for computing activity scores from
perturbation signatures
DART-CLQ is a slight modification of our previous
DART algorithm [11]. Both algorithms attempt to infer
a measure of activity of a given gene expression per-
turbation signature (which most typically will have been
derived in an in vitro setting), in an in vivo sample
for which a genome-wide gene expression profile is
available.
The key concept behind DART (and DART-CLQ) is a

signature denoising step that aims to remove potentially
confounding variation from the in vitro derived signa-
ture before estimating activity levels of the perturbation
signature in in vivo samples. Briefly, the denoising step fol-
lows the DART procedure [11]: one uses a large training
gene expression dataset of in vivo primary cancer sam-
ples to estimate pairwise correlations in gene expression
for all pairs of genes in the given perturbation signature.
The directionality of these correlations may be consistent
or inconsistent with the predictions of the perturbation
signature itself (see below for a formal definition of con-
sistency). A consistency score can be obtained by counting
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the fraction of consistent pairwise correlations and sta-
tistical significance estimated using a Monte Carlo simu-
lation procedure (1,000 Monte Carlo runs), as described
by us previously [11]. Those perturbation signatures pass-
ing a P < 0.001 threshold are deemed consistent and
only these are used in further analyses. We note for
these consistent perturbation signatures, those correla-
tions that are nevertheless inconsistent with the prior
information are removed from the correlation network,
leaving behind a relevance correlation network of signifi-
cant and consistent gene pairwise correlations. From this
pruned or denoised correlation network, one then esti-
mates a sample-specific activity level of the perturbation
signature. At this point, DART and DART-CLQ differ in
how the activity level is estimated. Whereas DART uses
the whole pruned correlation network, DART-CLQ infers
the largest cliques within the pruned correlation network
and then estimates activity using only genes within a
module obtained by merging the largest cliques together.
Importantly, in either method, no phenotypic informa-
tion is ever used in the denoising step, thus the training
refers solely to the inference of a subset of the signature
genes that are most relevant for obtaining the activity esti-
mates. In more detail, the key steps of DART-CLQ are as
follows:

• Assess consistency of the prior information contained
in the perturbation signature with the gene pairwise
correlation patterns of signature genes, as observed in
the training set. Specifically, if two genes A and B are
upregulated in the perturbation signature, then we
would expect both of these genes to be more highly
expressed in samples where the given perturbation is
activated. Conversely, for a sample where the
perturbation is not active or inactive, the two genes
would exhibit lower expression. Thus, we would
expect genes A and B to be correlated as assessed in
the training gene expression dataset. Similarly, if gene
A is upregulated and gene C is downregulated in the
perturbation signature, then we would expect A and
C to be anti-correlated, assuming of course that this
perturbation signature exhibits relevant variation
across the samples of the in vivo gene expression
dataset. Importantly, using Monte Carlo
permutations, we can evaluate the statistical
significance of an overall consistency score obtained
as the number of gene pairs for which the observed
correlation is consistent with that predicted by the
perturbation signature [11].

• For those signatures that exhibit statistically
significant consistency levels, we prune their
correlation relevance networks to remove
edges/correlations that are inconsistent with the
prior information. The rest of the signatures, which

are inconsistent, are ignored, since the lack of
statistical consistency means that the prior
information contained in the signature is not seen to
explain variation in the in vivo training data, so there
is no statistical justification for computing activity
scores for these signatures.

• Given the pruned correlation network of a consistent
perturbation signature, where each edge
(representing a gene pair) now represents a
statistically significant pairwise correlation for which
the directionality agrees with that of the prior
information, we now identify the largest clique(s) in
this network. In practice, these cliques often exhibit
very large overlaps with each other. Thus, we
construct the union of all genes making up the largest
cliques, and extract the relevance network of this
subset of genes. Although the resulting network may
not be a clique, it will be a highly connected
subnetwork approximating a clique, which we call a
clique module.

• Given this gene clique module, the activity score is
now computed exactly as in the previous DART
algorithm [11]. Specifically, we construct a weighted
average of the z-score normalized expression profiles
of the genes making up the module, with the weights,
σg , being +1 for genes that were upregulated in the
original perturbation signature, while being −1 for
genes that were downregulated. This scheme thus
allows us to keep track of the directionality of the
activity levels. Thus, in a sample were an upregulated
gene is highly expressed, its z-score will be positive,
and the prior weight being also positive means that
this gene makes a positive contribution to the activity
score, as required. Likewise a gene predicted to be
downregulated by the perturbation and that is lowly
expressed in that same sample, will have a negative
z-score as well as a negative weight, thus also
contributing positively to the score, as required. In
terms of equations:

S(p)
s ∝

∑

g∈CLQ-MOD(p)
kgσ

(p)
g zgs (1)

where S(p)
s denotes the activity score of perturbation

signature p in sample s, σ (p)
g = 1 (−1) if gene g is

upregulated (downregulated) in perturbation
signature p, zgs denotes the z-score normalized gene
expression level of gene g in sample s and where
CLQ-MOD(p) denotes the clique module inferred
for perturbation signature p. In the above, kg denotes
the connectivity or degree of gene g in the clique
module, although this will vary insignificantly within
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the module, as most genes will have very similar if not
identical degree.

Construction and testing of random signatures
To provide independent tests of the statistical signifi-
cance of the prognostic associations reported in Table 1,
we used two separate strategies based on the notion of
random signatures. In one approach, we constructed 90
random perturbation signatures, matched to the same size
and distribution of up- and downregulated genes of the
90 MSigDB C6 perturbation signatures. These 90 ran-
dom signatures were processed in the same way, by run-
ning them through DART-CLQ, to assess whether their
observed correlative patterns are consistent with those
predicted by the signature. In this analysis, none of the 90
random signatures achieved a level of significance of their
consistency score (Monte Carlo test P < 0.001), com-
pared to 57 of the 90 MSigDB C6 signatures that did pass
this level of significance. Thus, no further Cox regressions
of the 90 random signatures were required since all ran-
dom signatures already failed the consistency score test
built within DART-CLQ. Results were unchanged under
repeated constructions of 90 random signatures.
In the second approach, we followed the strategy of

Venet et al. [22] to test expression signatures that, in
principle, should be unrelated to breast cancer prognosis.
To construct such expression signatures we used a large
expression dataset of 353 normal tissue specimens from
65 different anatomical sites [24], to derive signatures of
differential expression between tissue types (anatomical
sites) that are unrelated to breast epithelial cells. This
set of sites included skeletal muscle, spinal cord, prostate
gland, lymph nodes, liver, coronary artery, testes, ton-
sil and four different sites from the brain (hypothalamus,
midbrain, hippocampus and cerebral cortex). For each
of these sites, we had at least three independent sam-
ples. From these 12 anatomical sites, we performed 66
(= 12× 11× 0.5) pairwise differential expression analysis
comparisons, selecting in each case the top 337 differen-
tially expressed genes, as inferred using limma [53]. We
selected the top 337, because this was the average size
of the MSigDB C6 perturbation signatures. As in Venet
et al., we reasoned that these 66 anatomical-site-specific
signatures should not exhibit as strong prognostic associ-
ation as our 17 DART-CLQ modules, if the latter repre-
sent genuine associations. Thus, we ran the 66 signatures
through DART-CLQ, which identified a subset of 63 with
significant consistency scores. For these 63, Cox regres-
sions were performed in the same endocrine-treated ER+
METABRIC subset and that resulted in 12 attaining Cox
P values stronger than the largest P value of the 17 DART-
CLQ modules. We thus estimated an empirical FDR of
approximately 12/63 � 0.19, in close agreement with the
Benjamini–Hochberg estimate of 0.15.

Availability
The DART algorithm is freely available from Bioconduc-
tor [58]. DART-CLQ represents a minor modification
of DART, and an R script implementing the modified
DART-CLQ method for estimating perturbation activity
estimates is freely available as Additional file 2 and from
SourceForge [59] under the MIT license.

Additional files

Additional file 1: Contains all supplementary figures, supplementary
tables and their respective legends.

Additional file 2: R script to estimate perturbation activity using
DART-CLQ.
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