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This paper discusses an uncertain portfolio selection problemwith consideration of background risk and asset liquidity. In addition,
the transaction costs are also considered. The security returns, background asset return, and asset liquidity are estimated by
experienced experts instead of historical data. Regarding them as uncertain variables, a mean-risk model with background risk,
liquidity, and transaction costs is proposed for portfolio selection and the crisp forms of the model are provided when security
returns obey different uncertainty distributions. Moreover, for better understanding of the impact of background risk and liquidity
on portfolio selection, some important theorems are proved. Finally, numerical experiments are presented to illustrate themodeling
idea.

1. Introduction

Portfolio selection discusses the problem of how to allocate
one’s capital in different risky securities to maximize the
return of portfolio for a given risk. Markowitz [1] first
proposed the mean-variance model in 1952, which laid the
foundation of modern portfolio theory and has been the
most impact-making development in mathematical finance
management. However, measuring the risk by the variance
of return of a portfolio has some limitations and there is
computational difficulty to construct large-scale portfolio.
In view of this, scholars studied other methods to measure
investment risk of the portfolio and built a lot of portfolio
optimization models, such as mean-semivariance model [2,
3], expected absolute deviation model [4], Value-at-Risk
model [5], Conditional Value-at-Risk models [6], mean-
semivariance-CVaR model [7], and mean-risk curve model
[8]. In this paper, we will use risk curve defined in uncertain
environment [9] as the risk measurement.

In real life, all the relevant information for an investment
decision cannot be confined in terms of return and risk.
Portfolio selection models that take into account more
criteria other than the return and risk have becomewell liked.
Transaction cost is one of the main concerns for portfolio

managers. Arnott and Wagner [10] found that ignoring
transaction costs would lead to an inefficient portfolio. In
some situations, investors may consider other factors such
as liquidity. Liquidity has been measured as the degree of
chance involved in the conversation of an investment into
cash without any significant loss in value. Parra et al. [11]
proposed themodel that consists of three criteria: return, risk,
and liquidity. Fang et al. [12] presented a portfolio rebalancing
model with transaction costs based on fuzzy decision theory
considering three criteria: return, risk, and liquidity. Thus,
transaction costs and liquidity are considered in the portfolio
selection model we will discuss.

These researches assume that all that investors face only
portfolio risk when making portfolio selection decisions.
Yet, in reality, investors also face other sources of risk like
labor income, investments in real estate, and unexpected
expenses related to health issues that cannot be traded in the
financial market; these sources of risk are usually referred to
as background risk [13, 14]. To help investors select portfolio
in face of background risk, Baptista offered conditions for
investors to optimally delegate their wealth management
to portfolio managers in face of background risk [15]. We
refer to the assets that are exposed to background risk as
background assets. Investors concern not only the risk of
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financial assets within portfolio but also the background risk.
Many studies have showed that the presence of background
risk can affect investments [16]. For example, Heaton and
Lucas found that labor and entrepreneurial incomes affected
portfolio selection [17]. Rosen andWu showed that investors
with bad health were more willing to put most of their capital
in the low risk asset rather than risky assets [18]. Some studies
reveal that investors who consider background risk will
becomemore risk averse and prefer to choose safer assets [19].
Therefore, a portfolio selectionmodel where background risk
is considered will be discussed in this paper.

In portfolio theory, the security returns are generally
considered as random variables. However, there may be lack
of enough historical data in some emerging markets. Partic-
ularly, for background asset returns, there is much subjective
impression rather than randomness; then if people still use
probability theory to solve this problem, counterintuitive
resultsmay occur [20, 21]. In the situation, scholars found that
the security returns data and background asset returns can be
estimated by experienced experts and fuzzy set theory [22]
can be used to deal with this problem. Then, fuzzy theory is
also applied to portfolio selection [23, 24]. Huang established
the mean-variance model [25] and mean-semivariance [26]
model for portfolio selection in fuzzy environment. Qin et al.
presented fuzzy cross-entropy method for portfolio selection
[27]. In 2010, Li et al. formulated mean-variance-skewness
models [28] which considered the skewness to measure the
asymmetry of fuzzy portfolio return. Furthermore, Fuzzy
mean-variance-skewness portfolio selection model by inter-
val analysis which considers some criteria like transaction
costs, liquidity, and so forth was proposed in 2011 [29].
Although fuzzy portfolio optimization provided alternatives
to estimate security returns with lack of data, fuzzy the-
ory suffers from criticism since a paradox will appear. In
order to better describe the subjective imprecise quantity,
in 2007, Liu developed uncertainty theory [30]. Based on
this framework, Huang introduced uncertainty theory to
portfolio selection and produced an uncertain portfolio
theory [31]. Later, Huang found that risk curve is a good way
to measure risk in uncertain environment and built a mean-
risk model. In 2012, Huang established a risk index model
[32] and a mean-variance model [33] for portfolio selection
and the security returns were given by experts’ evaluations.
For optimal project selection and schedule, Huang et al.
presented mean-semivariance model [34] and mean-chance
model [35] based on uncertainmeasure.Moreover, themean-
variance model for portfolio optimization problem in the
simultaneous presence of random and uncertain returns was
proposed by Qin [36]. Numerous studies have been done
about uncertain portfolio selection but a few papers consider
background risk and regard background asset returns as
uncertain variables. Until 2016, Huang and Di researched the
model with background risk for portfolio selection [37].

In this paper, risk curve will be employed to measure
investment risk since it provides information about all the
likely losses, and security returns, background asset returns,
and asset liquidity will be discussed in uncertain environ-
ment. Therefore, a new mean-risk model with background
risk for uncertain portfolio selection will be proposed and

transaction costs and liquidity are considered. We analyze
some important properties in order to illustrate the effect
of background risk and liquidity on portfolio selection. Our
model is compared with the model in Huang and Di’s paper
[37] with transaction costs and asset liquidity.

The remainder of the paper is organized as follows.
Section 2 in detail describes the model we proposed for
portfolio selection based on uncertainty theory and gives
some important theorems. In Section 3, we employ the
numerical examples to illustrate the validity and significance
of the model. Section 4 lists the conclusions. In Appendix, we
review the necessary knowledge about uncertainty theory.

2. The Portfolio Selection Models

2.1. Basic Conceptions. Investors’ uncertain return includes
both uncertain portfolio return from financial assets and
uncertain return from background assets. When these asset
returns are given by experts’ estimations, it is better to use
uncertain variables to describe them. Since all the back-
ground assets have same features that are different from
financial assets, that is, nontradable and unhedgeable, the
popular way is to use one parameter 𝑟𝑏 to show the returns
from all the background assets in real life. In addition,
we assume that the background asset return rate has zero
expected value.The assumption that nontradable background
asset has zero expected return rate, which is in consistent
with assumptions of most researches studying portfolio with
background risk [15, 38]. The model we will propose is also
applicable in the situation where the expected value of the
background asset return rate differs from zero.

Firstly, the definitions of risk curve and confidence curve
will be introduced as follows.

Definition 1 (see [9]). Let 𝜉 be an uncertain return rate of a
security and 𝑟𝑓 the risk-free interest rate. Then the curve

𝑅 (𝑟) = 𝑀{𝑟𝑓 − 𝜉 ≥ 𝑟} , ∀𝑟 ≥ 0, (1)

is called the risk curve of the security.

Since all investors know that they may lose as well as
gain in investment, they will have a maximum tolerance
towards occurrence chance of each likely loss level; we call
it confidence curve 𝛼(𝑟). A portfolio is safe if its risk curve is
below the confidence curve and a portfolio is risky if any part
of its risk curve is above the confidence curve.

2.2. Assumptions and Notations. Let us consider a financial
market with 𝑛 risky assets. An investor allocates his total
capital among the risky assets. For the 𝑖th risky asset (𝑖 =1, 2, . . . , 𝑛) and background assets, the following notations
will be used:

𝑥𝑖: the proportion of the total capital invested in
security 𝑖
𝑝𝑖: the closing price of the ith security at present
𝑝󸀠𝑖 : the estimated closing price of the ith security in
the next month
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𝑑𝑖: the estimated dividend of the ith security during
the month
𝜉𝑖: (𝑝󸀠𝑖 +𝑑𝑖 −𝑝𝑖)/𝑝𝑖 = the return rate of the ith security
𝑟𝑏: the returns from all background assets
𝑐𝑖: the transaction cost
𝑘𝑖: the constant cost per change on a proportion, 𝑘𝑖 ≥0
𝜂𝑖: the turnover rate of the 𝑖th security
𝑟𝑓: risk-free interest rate

2.3. The Uncertain Models. Let us consider the transaction
cost 𝑐𝑖 to be a V-shape function of the difference between
a given portfolio 𝑥0 = (𝑥01, 𝑥02, . . . , 𝑥0𝑛) and a new portfolio𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) and it is incorporated explicitly into the
portfolio return. Thus the transaction cost of the ith risky
asset can be expressed as

𝑐𝑖 = 𝑘𝑖 󵄨󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥0𝑖 󵄨󵄨󵄨󵄨󵄨 , 𝑖 = 1, 2, . . . , 𝑛. (2)

Hence the total transaction cost is
𝑛∑
𝑖=1

𝑐𝑖 = 𝑛∑
𝑖=1

𝑘𝑖 󵄨󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥0𝑖 󵄨󵄨󵄨󵄨󵄨 . (3)

Then the expected return of the portfolio 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)
with transaction cost is given by

𝐸 (𝜉1𝑥1 + 𝜉2𝑥2 + ⋅ ⋅ ⋅ + 𝜉𝑛𝑥𝑛 + 𝑟𝑏) − 𝑛∑
𝑖=1

𝑘𝑖 󵄨󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥0𝑖 󵄨󵄨󵄨󵄨󵄨 . (4)

For a new investor it can be assumed that 𝑥0𝑖 = 0, 𝑖 =1, 2, . . . , 𝑛. We consider that the investor is a new investor and
he has no security on hand in the models below.

The investor’s total return which includes the portfolio
return and background assets return can be expressed as 𝑟𝑝 =∑𝑛𝑖=1 𝜉𝑖𝑥𝑖 + 𝑟𝑏 − ∑𝑛𝑖=1 𝑘𝑖𝑥𝑖. Let us define the risk curve of the
portfolio as follows:

𝑅 (𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑟𝑏, 𝑘1, . . . , 𝑘𝑛; 𝑟)
= 𝑀{𝑟𝑓 − (𝜉1𝑥1 + ⋅ ⋅ ⋅ + 𝜉𝑛𝑥𝑛 + 𝑟𝑏 − 𝑛∑

𝑖=1

𝑘𝑖𝑥𝑖) ≥ 𝑟} ,
∀𝑟 ≥ 0,

(5)

where the expected value of 𝑟𝑏 is 0 and the variance value is 𝜌.
Thebackground assets are independent of other 𝑛 risky assets.

Liquidity is the degree of the chance of converting an
investment into cash without any significant loss in value. In
general, the securities liquidity may be reflected by turnover
rate. Turnover rate is the number of shares traded divided by
the number of shares outstanding in that stock and think of
it as an intuitive metric of the liquidity of the stock. Investors
usually prefer greater liquidity. It is known that turnover rates
of the securities in the future cannot be predicted accurately.
Therefore, we regard turnover rates as uncertain variables.

Keeping in mind what we have discussed above, for
a new investor, the uncertain portfolio selection model is
constructed as follows:

max 𝐸 [𝜉1𝑥1 + 𝜉2𝑥2 + ⋅ ⋅ ⋅ + 𝜉𝑛𝑥𝑛 + 𝑟𝑏] − 𝑛∑
𝑖=1

𝑘𝑖𝑥𝑖
s.t. 𝑅 (𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑟𝑏, 𝑘1, . . . , 𝑘𝑛; 𝑟) ≤ 𝛼 (𝑟) ,

∀𝑟 ≥ 0,
𝐸 [ 𝑛∑
𝑖=1

𝜂𝑖𝑥𝑖] ≥ 𝑙,
𝑛∑
𝑖=1

𝑥𝑖 = 1,
𝑥𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(6)

The first constraint ensures the portfolio is safe, and the
second one assures that liquidity is no less than some given
level 𝑙, where 𝛼(𝑟) and 𝑙 will be allocated by the investor.

The variation of model (6) is the following:

max 𝐸 [𝜉1𝑥1 + 𝜉2𝑥2 + ⋅ ⋅ ⋅ + 𝜉𝑛𝑥𝑛 + 𝑟𝑏] − 𝑛∑
𝑖=1

𝑘𝑖𝑥𝑖
s.t. 𝑅 (𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑟𝑏, 𝑘1, . . . , 𝑘𝑛; 𝑟) ≤ 𝛼 (𝑟) ,

∀𝑟 ≥ 0,
𝑀{ 𝑛∑
𝑖=1

𝜂𝑖𝑥𝑖 ≥ 𝑙} ≥ 𝛽,
𝑛∑
𝑖=1

𝑥𝑖 = 1,
𝑥𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛,

(7)

where 𝑀 denotes the uncertain measure and the second
constraint tells that the chance of the liquidity exceeding a
threshold level 𝑙 should not be less than a preset tolerable level𝛽.
2.4. Deterministic Forms of the Uncertain Model

Theorem 2. LetΦ𝑖 denote the continuous and strictly increas-
ing uncertainty distribution of the ith security return rate 𝜉𝑖
whose inverse function Φ−1𝑖 (𝛼(𝑟)) exists and is unique for each𝛼(𝑟) ∈ (0, 1), 𝑖 = 1, 2, . . . , 𝑛, respectively. Suppose the uncertain
return rate of background asset 𝑟𝑏 has continuous and strictly
increasing uncertainty distribution functionΘ.Then themean-
riskmodel with background risk (6) can be transformed into the
following linear model:

max 𝑥1𝐸 [𝜉1] + 𝑥2𝐸 [𝜉2] + ⋅ ⋅ ⋅ + 𝑥𝑛𝐸 [𝜉𝑛] − 𝑛∑
𝑖=1

𝑘𝑖𝑥𝑖
s.t. 𝑥1Φ−11 (𝛼 (𝑟)) + 𝑥2Φ−12 (𝛼 (𝑟)) + ⋅ ⋅ ⋅

+ 𝑥𝑛Φ−1𝑛 (𝛼 (𝑟)) + Θ−1 (𝛼 (𝑟)) − 𝑛∑
𝑖=1

𝑘𝑖𝑥𝑖
≥ 𝑟𝑓 − 𝑟, ∀𝑟 ≥ 0,
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𝐸[ 𝑛∑
𝑖=1

𝜂𝑖𝑥𝑖] ≥ 𝑙,
𝑛∑
𝑖=1

𝑥𝑖 = 1,
𝑥𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(8)

Proof. It follows from Theorem A.9 that the objective func-
tion of model (6) can be transformed into the objective
function of model (8).

Since

𝑅 (𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑟𝑏, 𝑘1, . . . , 𝑘𝑛; 𝑟) = 𝑀{𝑟𝑓

− (𝜉1𝑥1 + 𝜉2𝑥2 + ⋅ ⋅ ⋅ + 𝜉𝑛𝑥𝑛 + 𝑟𝑏 − 𝑛∑
𝑖=1

𝑘𝑖𝑥𝑖) ≥ 𝑟}

= 𝑀{𝜉1𝑥1 + 𝜉2𝑥2 + ⋅ ⋅ ⋅ + 𝜉𝑛𝑥𝑛 + 𝑟𝑏 ≤ 𝑟𝑓 − 𝑟

+ 𝑛∑
𝑖=1

𝑘𝑖𝑥𝑖} ,

(9)

then according to the monotonicity property of uncertain
variable, it can be found that

𝑥1Φ−11 (𝛼 (𝑟)) + 𝑥2Φ−12 (𝛼 (𝑟)) + ⋅ ⋅ ⋅ + 𝑥𝑛Φ−1𝑛 (𝛼 (𝑟))
+ Θ−1 (𝛼 (𝑟)) − 𝑛∑

𝑖=1

𝑘𝑖𝑥𝑖 ≥ 𝑟𝑓 − 𝑟. (10)

The theorem is completed.

Next,model (8)will be converted into the following forms
when the distribution of security return rates is determined.

Theorem3. Suppose the return rates of the ith securities are all
normal uncertain variables 𝜉𝑖 ∼ 𝑁(𝜇𝑖, 𝜎𝑖), 𝑖 = 1, 2, . . . , 𝑛. The
return rate of background asset is 𝑟𝑏 and 𝑟𝑏 ∼ 𝑁(0, 𝜌). Then
model (8) can be transformed into the following form:

max 𝑥1𝜇1 + 𝑥2𝜇2 + ⋅ ⋅ ⋅ + 𝑥𝑛𝜇𝑛 − 𝑛∑
𝑖=1

𝑘𝑖𝑥𝑖

s.t. 𝑛∑
𝑖=1

(𝜇𝑖 − √3𝜎𝑖𝜋 ln1 − 𝛼 (𝑟)𝛼 (𝑟) ) ⋅ 𝑥𝑖

− √3𝜌𝜋 ln 1 − 𝛼 (𝑟)𝛼 (𝑟) − 𝑛∑
𝑖=1

𝑘𝑖𝑥𝑖 ≥ 𝑟𝑓 − 𝑟,
∀𝑟 ≥ 0,

𝐸 [ 𝑛∑
𝑖=1

𝜂𝑖𝑥𝑖] ≥ 𝑙,
𝑛∑
𝑖=1

𝑥𝑖 = 1,
𝑥𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(11)

Theorem4. Suppose the return rates of the ith securities are all
zigzag uncertain variables 𝜉𝑖 ∼ 𝑧(𝑎𝑖, 𝑏𝑖, 𝑐𝑖), 𝑖 = 1, 2, . . . , 𝑛. The
return rate of background asset is 𝑟𝑏 and 𝑟𝑏 ∼ 𝑁(0, 𝜌). Then
model (8) can be transformed into the following form.

When 𝛼(𝑟) ∈ (0, 1/2],
max

𝑛∑
𝑖=1

𝑎𝑖 + 2𝑏𝑖 + 𝑐𝑖4 𝑥𝑖 − 𝑛∑
𝑖=1

𝑘𝑖𝑥𝑖
s.t. 𝑛∑

𝑖=1

2𝛼 (𝑟) (𝑏𝑖 − 𝑎𝑖) 𝑥𝑖 + 𝑛∑
𝑖=1

𝑎𝑖𝑥𝑖
− √3𝜌𝜋 ln 1 − 𝛼 (𝑟)𝛼 (𝑟) − 𝑛∑

𝑖=1

𝑘𝑖𝑥𝑖 ≥ 𝑟𝑓 − 𝑟,
∀𝑟 ≥ 0,

𝐸 [ 𝑛∑
𝑖=1

𝜂𝑖𝑥𝑖] ≥ 𝑙,
𝑛∑
𝑖=1

𝑥𝑖 = 1,
𝑥𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(12)

2.5. Discussion of the Uncertain Models

Theorem 5. For any given 𝑟 and confidence curve 𝛼(𝑟) (0 <𝛼(𝑟) < 0.5), the expected return of the optimal portfolio with
background risk is smaller than that without background risk.

Proof. When no background risk is considered, model (8)
becomes of the following form:

max 𝑥1𝐸 [𝜉1] + 𝑥2𝐸 [𝜉2] + ⋅ ⋅ ⋅ + 𝑥𝑛𝐸 [𝜉𝑛] − 𝑛∑
𝑖=1

𝑘𝑖𝑥𝑖
s.t. 𝑥1Φ−11 (𝛼 (𝑟)) + 𝑥2Φ−12 (𝛼 (𝑟)) + ⋅ ⋅ ⋅

+ 𝑥𝑛Φ−1𝑛 (𝛼 (𝑟)) − 𝑛∑
𝑖=1

𝑘𝑖𝑥𝑖 ≥ 𝑟𝑓 − 𝑟, ∀𝑟 ≥ 0,

𝐸 [ 𝑛∑
𝑖=1

𝜂𝑖𝑥𝑖] ≥ 𝑙,
𝑛∑
𝑖=1

𝑥𝑖 = 1,
𝑥𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(13)



Mathematical Problems in Engineering 5

Since 𝐸(𝑟𝑏) = 0, the objective function of model (13) is same
as that of model (8).

Suppose 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) is the optimal solution of
model (8), then for any given 𝑟 ≥ 0, we have

𝑓1 (𝑋, 𝛼 (𝑟)) = 𝑥1Φ−11 (𝛼 (𝑟)) + 𝑥2Φ−12 (𝛼 (𝑟)) + ⋅ ⋅ ⋅
+ 𝑥𝑛Φ−1𝑛 (𝛼 (𝑟)) + Θ−1 (𝛼 (𝑟)) − 𝑛∑

𝑖=1

𝑘𝑖𝑥𝑖
= 𝑟𝑓 − 𝑟,

𝑓2 (𝑋) = 𝐸[ 𝑛∑
𝑖=1

𝜂𝑖𝑥𝑖] = 𝑙.

(14)

Let 𝑔1(𝑋, 𝛼) and 𝑔2(𝑋) be the first constraint and second
constraint of model (13), respectively. In real life, many
investors only care about 0 < 𝛼(𝑟) < 0.5, because investors’
tolerance level should not be larger than 0.5, because “𝛼(𝑟) >0.5” means the investors know that the chance of the
occurrence of risk is very large; then they cannot tolerate. So𝛼(𝑟) < 0.5 and Θ−1(𝛼(𝑟)) < 0. Then

𝑔1 (𝑋, 𝛼) = 𝑓1 (𝑋, 𝛼) − Θ−1 (𝛼 (𝑟)) > 𝑟𝑓 − 𝑟,
𝑔2 (𝑋) = 𝑓2 (𝑋) = 𝑙. (15)

That is to say, 𝑋 is a feasible solution of model (13).
In a similar way, let 𝑋󸀠 be the optimal solution of model

(13); it is easy to prove that 𝑋󸀠 is not the feasible solution of
model (8).Thus,we can know that𝑋 ̸= 𝑋󸀠. Since the objective
functions of model (8) and model (13) are same, thus for a
given 𝑟 value the expected return of the optimal portfoliowith
background risk is smaller than thatwithout background risk.

Theorem 6. For any given 𝑟, the expected value of the optimal
portfolio with liquidity is not larger than that without liquidity.

Proof. When no liquidity is considered, model (8) becomes
of the following form:

max 𝑥1𝐸 [𝜉1] + 𝑥2𝐸 [𝜉2] + ⋅ ⋅ ⋅ + 𝑥𝑛𝐸 [𝜉𝑛] − 𝑛∑
𝑖=1

𝑘𝑖𝑥𝑖
s.t. 𝑥1Φ−11 (𝛼 (𝑟)) + 𝑥2Φ−12 (𝛼 (𝑟)) + ⋅ ⋅ ⋅

+ 𝑥𝑛Φ−1𝑛 (𝛼 (𝑟)) + Θ−1 (𝛼 (𝑟)) − 𝑛∑
𝑖=1

𝑘𝑖𝑥𝑖
≥ 𝑟𝑓 − 𝑟, ∀𝑟 ≥ 0,
𝑛∑
𝑖=1

𝑥𝑖 = 1,
𝑥𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(16)

The objective function of model (8) is same as that of
model (16). Let 𝐸1 and 𝐸2 be the optimal expected value

of model (8) and model (16), respectively; the correspond-
ing optimal solution is 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) and 𝑋󸀠 =(𝑥󸀠1, 𝑥󸀠2, . . . , 𝑥󸀠𝑛). We will prove 𝐸1 ≤ 𝐸2 by using proof by
contradiction.

Suppose𝐸1 > 𝐸2; since𝑋 is the optimal solution ofmodel
(8), then

𝑓1 (𝑋, 𝛼 (𝑟)) = 𝑥1Φ−11 (𝛼 (𝑟)) + 𝑥2Φ−12 (𝛼 (𝑟)) + ⋅ ⋅ ⋅
+ 𝑥𝑛Φ−1𝑛 (𝛼 (𝑟)) + Θ−1 (𝛼 (𝑟)) − 𝑛∑

𝑖=1

𝑘𝑖𝑥𝑖
= 𝑟𝑓 − 𝑟,

𝑓2 (𝑋) = 𝐸[ 𝑛∑
𝑖=1

𝜂𝑖𝑥𝑖] = 𝑙.

(17)

Obviously, 𝑋 is the optimal solution of model (16) and the
optimal expected value is 𝐸1. But 𝐸1 > 𝐸2, so there is a
contradiction with the fact that 𝐸2 is the optimal expected
value of model (16). Thus, we should have 𝐸1 ≤ 𝐸2. Theorem
is proved.

If liquidity and transaction cost are considered in the
model ofHuang andDi’s paper [37], then themodel inHuang
and Di’s paper is converted into the following form:

max 𝐸 [𝜉1𝑥1 + 𝜉2𝑥2 + ⋅ ⋅ ⋅ + 𝜉𝑛𝑥𝑛 + 𝑟𝑏] − 𝑛∑
𝑖=1

𝑘𝑖𝑥𝑖
s.t. 𝑥1Φ−11 (𝛼) + 𝑥2Φ−12 (𝛼) + ⋅ ⋅ ⋅ + 𝑥𝑛Φ−1𝑛 (𝛼)

+ Θ−1 (𝛼) − 𝑛∑
𝑖=1

𝑘𝑖𝑥𝑖 ≥ 𝐻,

𝐸[ 𝑛∑
𝑖=1

𝜂𝑖𝑥𝑖] ≥ 𝑙,
𝑛∑
𝑖=1

𝑥𝑖 = 1,
𝑥𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛,

(18)

where 𝛼 and 𝐻 are given values.

Theorem 7. The optimal solution of model (8) is also the
optimal solution of model (18), but not vice versa.

Proof. If r is a deterministic value, model (8) can degenerate
model (18). It is obvious that the optimal solution of model
(18) is only one solution of model (8) for a given r but is not
always the optimal solution of model (8).

Theorem 8. For any given r and confidence curve 𝛼(𝑟) (0 <𝛼(𝑟) < 0.5), the expected value of the optimal portfolio with
background risk and liquidity constraint is smaller than that
without background risk and liquidity constraint.
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Proof. When no background risk and liquidity is considered,
model (8) becomes of the following form:

max 𝑥1𝐸 [𝜉1] + 𝑥2𝐸 [𝜉2] + ⋅ ⋅ ⋅ + 𝑥𝑛𝐸 [𝜉𝑛] − 𝑛∑
𝑖=1

𝑘𝑖𝑥𝑖
s.t. 𝑥1Φ−11 (𝛼 (𝑟)) + 𝑥2Φ−12 (𝛼 (𝑟)) + ⋅ ⋅ ⋅

+ 𝑥𝑛Φ−1𝑛 (𝛼 (𝑟)) − 𝑛∑
𝑖=1

𝑘𝑖𝑥𝑖 ≥ 𝑟𝑓 − 𝑟, ∀𝑟 ≥ 0,
𝑛∑
𝑖=1

𝑥𝑖 = 1,
𝑥𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(19)

Since 𝐸(𝑟𝑏) = 0, the objective function of model (19) is same
as that of model (8).

(i) Suppose 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) is the optimal solution
of model (8); then for any given 𝑟 ≥ 0, we have

𝑓1 (𝑋, 𝛼 (𝑟)) = 𝑥1Φ−11 (𝛼 (𝑟)) + 𝑥2Φ−12 (𝛼 (𝑟)) + ⋅ ⋅ ⋅
+ 𝑥𝑛Φ−1𝑛 (𝛼 (𝑟)) + Θ−1 (𝛼 (𝑟))
− 𝑛∑
𝑖=1

𝑘𝑖𝑥𝑖 = 𝑟𝑓 − 𝑟,

𝑓2 (𝑋) = 𝐸[ 𝑛∑
𝑖=1

𝜂𝑖𝑥𝑖] = 𝑙.

(20)

Let 𝑔1(𝑋, 𝛼) be the first constraint of model (19),
because the expected value of 𝑟𝑏 is zero. In real life,
investors’ tolerance level should not be larger than 0.5.
Then 𝛼(𝑟) < 0.5 and Θ−1(𝛼(𝑟)) < 0; we obtain
𝑔1 (𝑋, 𝛼) = 𝑓1 (𝑋, 𝛼) − Θ−1 (𝛼 (𝑟)) > 𝑟𝑓 − 𝑟. (21)

That is to say, 𝑋 is a feasible solution of model (19).

(ii) Let𝑋󸀠 be the optimal solution of model (19); then for
any given 𝑟 ≥ 0, we have

𝑔1 (𝑋󸀠, 𝛼) = 𝑟𝑓 − 𝑟,
𝑓1 (𝑋󸀠, 𝛼) = 𝑔 (𝑋󸀠, 𝛼) + Θ−1 (𝛼 (𝑟))

= 𝑟𝑓 − 𝑟 + Θ−1 (𝛼 (𝑟)) < 𝑟𝑓 − 𝑟.
(22)

So, 𝑋󸀠 is not the feasible solution of model (8).

Thus, from (i) and (ii) we can know that 𝑋 ̸= 𝑋󸀠.
Since the objective functions of model (8) and model (19)
are the same, then it is easy to get that the expected return
of uncertain portfolio selection with background risk and
liquidity is smaller than that without background risk and
liquidity. Theorem 8 is proved.

Table 1: Normal uncertain return rates of 10 securities.

Security 𝑖 Uncertain return rate 𝜉𝑖
1 𝑁(0.027, 0.14)
2 𝑁(0.033, 0.19)
3 𝑁(0.032, 0.16)
4 𝑁(0.039, 0.20)
5 𝑁(0.031, 0.15)
6 𝑁(0.028, 0.15)
7 𝑁(0.030, 0.08)
8 𝑁(0.032, 0.18)
9 𝑁(0.025, 0.10)
10 𝑁(0.026, 0.06)

3. Numerical Experiment

In this section, numerical examples are presented to illustrate
the proposed uncertain model with background risk and
liquidity constraint for portfolio selection and to show the
effect of the background risk and liquidity on the portfolio
selection decision. The following results are programmed in
Matlab 2009a.

Suppose that the turnover rate of the ith security is
uncertain variable and the uncertainty distribution function
is in the following form:

Φ (𝑥) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

0, if 𝑥 < 𝑠
𝑥 − 𝑠2 (𝑡 − 𝑠) , if 𝑠 ≤ 𝑥 ≤ 𝑡

12 , if 𝑡 ≤ 𝑥 ≤ 𝑢
12 + 𝑥 − 𝑢2 (V − 𝑢) , if 𝑢 ≤ 𝑥 ≤ V

1, if 𝑥 > V,

(23)

where s, t, u, and v are real numbers with 𝑠 < 𝑡 < 𝑢 < V,
denoted by 𝑆(𝑠, 𝑡, 𝑢, V).

Then the turnover rate of the portfolio𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)
is∑𝑛𝑖=1 𝜂𝑖𝑥𝑖 = ∑𝑛𝑖=1(𝑠𝑖, 𝑡𝑖, 𝑢𝑖, V𝑖)𝑥𝑖. The liquidity is measured by𝐿(𝑥) = 𝐸(∑𝑛𝑖=1 𝜂𝑖𝑥𝑖) = ∑𝑛𝑖=1(𝑠𝑖 + 𝑡𝑖 + 𝑢𝑖 + V𝑖)𝑥𝑖/4.
Example 1. We select ten stocks. The data we select is from
the paper [9].The estimations of the security return rates and
turnover rates are given in Tables 1 and 2, respectively.

Suppose the monthly risk-free interest rate is 0.01, 𝑙 =0.025, 𝑘𝑖 = 0.001, and 𝑥0𝑖 = 0 for 𝑖 = 1, 2, . . . , 10. The
experts believe that the background asset return rate has
uncertainty distribution 𝑟𝑏 ∼ 𝑁(0, 0.01), and the investor
gives the confidence curve as follows:

𝛼 (𝑟) =
{{{{{{{{{

−2.75𝑟 + 0.43, 0 ≤ 𝑟 ≤ 0.12,
−0.5𝑟 + 0.16, 0.12 ≤ 𝑟 ≤ 0.3,
0.01, 𝑟 ≥ 0.3.

(24)
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Table 2: Turnover rates of 10 securities.

Security 𝑖 Turnover rate 𝜂𝑖
1 (0.011, 0.019, 0.009, 0.018)
2 (0.009, 0.024, 0.008, 0.025)
3 (0.007, 0.016, 0.0064, 0.018)
4 (0.013, 0.032, 0.011, 0.030)
5 (0.008, 0.015, 0.0076, 0.017)
6 (0.011, 0.026, 0.009, 0.028)
7 (0.012, 0.031, 0.011, 0.030)
8 (0.006, 0.031, 0.005, 0.026)
9 (0.011, 0.05, 0.0095, 0.047)
10 (0.008, 0.025, 0.006, 0.026)
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Figure 1: Confidence curve and risk curve when background risk
and liquidity are considered.

In sight of models (11), (13), and (16) in Section 2, we
discuss the optimal portfolio when security return rates are
normal uncertain variables and calculate allocation propor-
tions of ten securities to maximize corresponding expected
return rate. Set 𝑟 ∈ [0, 0.3] in the model and let 𝑟 =0, 0.03, 0.06, . . . , 0.3, respectively. The optimal portfolios in
three different situations can be shown in detail in Table 3.

The expected optimal portfolios with background risk
and liquidity, with background risk but without liquidity, and
with liquidity but without background risk are 2.78%, 3.10%,
and 2.86%, respectively. In addition, we have checked that the
risk curves of optimal portfolio of three different situations
are below the confidence curve; that is, corresponding port-
folio is in safe area. Actually, higher expected return rates than
the optimal expected value can be found in three situations,
but part of their risk curves is above the confidence curve;
that is, corresponding portfolio is in risky area.

In Figures 1, 2, 3, and 4, (1) the blue broken line
represents confidence curve; (2) the red curve represents risk
curve. It can be seen that risk curve is below the confidence
curve. Figure 1 shows the relationship between risk curve and
confidence curve of the model where background risk and
liquidity are considered.
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Figure 2: Confidence curve and risk curve of the model with
background risk but without liquidity.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
r

Figure 3: Confidence curve and risk curve of the model with
liquidity but without background risk.

Similarly, Figure 2 shows the relationship between risk
curve and confidence curve of the model where background
risk is considered but no liquidity is considered; Figure 3
shows the relationship between risk curve and confidence
curve of the model where liquidity is considered but no
background risk is considered.

Example 2. Using the data in Tables 1 and 2, we can compute
the optimal solution of model (18) when security return rates
are normal uncertain variables. In this model, let 𝛼 = 0.15,𝐻 = −0.08, 𝜌 = 0.01, 𝑙 = 0.025, 𝑘𝑖 = 0.001, and 𝑥0𝑖 = 0 for 𝑖 =1, 2, . . . , 10. Corresponding risk curve and risk point of this
model are shown in Figure 4. The point is below confidence
curve but part of risk curve is above the confidence curve;
thus the numerical experiment demonstrates that the optimal
solution of thismodel is not the optimal solution ofmodel (8)
in this paper.
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Table 3: Optimal portfolios in three different situations (%).

Security 𝑖 1 2 3 4 5 6 7 8 9 10
Proportion 1 0.00 0.00 0.00 12.47 0.00 0.00 40.52 0.00 47.02 0.00
Proportion 2 0.00 0.00 0.00 21.98 0.00 0.00 78.02 0.00 0.00 0.00
Proportion 3 0.00 0.00 0.00 20.89 0.00 0.00 32.59 0.00 46.51 0.00
Remark: Proportion 1 denotes the allocation proportion of the model with background risk and liquidity; Proportion 2 denotes the allocation proportion of
the model with background risk but without liquidity; Proportion 3 denotes the allocation proportion of the model with liquidity but without background risk.
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Figure 4: Risk point and risk curve of model (18).

4. Conclusions

In real life, background risk and asset liquidity may affect
their investments in financial securities. In the complex
financial and social environment, there are situations where
background assets return, the security returns, and asset
liquidity have to be evaluated by experienced experts due to
the unexpected things and the lack of historical data.

This paper has discussed that risk level can be measured
by risk curve and proposed uncertain portfolio selection
models with background risk, asset liquidity, and transaction
costs. The crisp equivalents of the model are provided.
In addition, for any given r, many properties have been
discussed to illustrate the influence of the background risk
and asset liquidity on portfolio selection. Different from
Huang’s model, our model can consider all the possible risk
that investors could tolerate.

Finally, both the numerical experiment results and the
analysis show that the proposed models are effective and
background risk and asset liquidity have a great effect on the
optimal strategies.

Appendix

Uncertainty Theory

In this section, uncertain measure, uncertain variable, and
uncertainty distribution will be introduced for easy under-
standing of the paper. In 2007, Liu [30] proposed uncertainty

theory and got a wide range of applications. Firstly, we
introduce the definition of uncertain measure.

Definition A.1 (see [30]). Let 𝐿 be 𝜎-algebra over a nonempty
set Ω. A set function 𝑀 : 𝐿 → [0, 1] is called an uncertain
measure if it satisfies the following four axioms:

(1) (Normality) 𝑀{Ω} = 1.
(2) (Self-Duality) 𝑀{Γ} + 𝑀{Γ𝑐} = 1.
(3) (Countable Subadditivity) For every countable

sequence of events {Γ𝑖}, one has
𝑀{∞⋃
𝑖=1

Γ𝑖} ≤ ∞∑
𝑖=1

𝑀{Γ𝑖} . (A.1)

The triplet (Ω, 𝐿,𝑀) is called an uncertainty space.
(4) (Product Measure [39]) For uncertainty spaces(Ω𝑖, 𝐿 𝑖,𝑀𝑖), 𝑖 = 1, 2, . . ., the product uncertain

measure is

𝑀{ ∞∏
𝑖=1

Γ𝑖} = ∞⋀
𝑖=1

𝑀𝑖 {Γ𝑖} , (A.2)

where Γ𝑖 are arbitrary chosen events from 𝐿 𝑖 for 𝑖 =1, 2, . . ., respectively.
It is easy to prove that any uncertain measure M is

increasing. That is,

𝑀{Γ1} ≤ 𝑀{Γ2} (A.3)

for any events Γ1 ⊂ Γ2.
Definition A.2 (see [30]). An uncertain variable is a function𝜉 : (Ω, 𝐿,𝑀) → 𝑅; that is, for any Borel set B of real numbers,
the set

{𝜉 ∈ 𝐵} = {𝜒 ∈ Ω | 𝜉 (𝜒) ∈ 𝐵} (A.4)

is an event.

Definition A.3 (see [30]). For any 𝑥 ∈ 𝑅, the uncertainty
distribution of an uncertain variable 𝜉 is defined as Φ(𝑥) =𝑀{𝜉 ≤ 𝑥}. It is said to be regular if it is a continuous and
strictly increasing function with respect to 𝑥 at which 0 <Φ(𝑥) < 1, and

lim
𝑥→−∞

Φ (𝑥) = 0,
lim
𝑥→+∞

Φ (𝑥) = 1. (A.5)
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The inverse function Φ−1(𝛼) is called the inverse uncertainty
distribution of 𝜉 if it exists and is unique for each 𝛼 ∈ (0, 1).
Inverse uncertainty distribution plays a crucial role in the
operations of independent uncertain variables.

Next we introduce some commonly used uncertainty
distributions.

Definition A.4 (see [30]). An uncertain variable is called
zigzag if it has a zigzag uncertainty distribution:

Φ (𝑥) =

{{{{{{{{{{{{{{{{{{{{{{{{{

0, if 𝑥 ≤ 𝑎,
(𝑥 − 𝑎)2 (𝑏 − 𝑎) , if 𝑎 ≤ 𝑥 ≤ 𝑏,
(𝑥 + 𝑐 − 2𝑏)2 (𝑐 − 𝑏) , if 𝑏 ≤ 𝑥 ≤ 𝑐,
1, if 𝑥 ≥ 𝑐,

(A.6)

denoted by 𝑍(𝑎, 𝑏, 𝑐), where 𝑎, 𝑏, 𝑐 are real numbers with 𝑎 <𝑏 < 𝑐.
Definition A.5 (see [30]). An uncertain variable is called
normal if it has a normal uncertainty distribution:

Φ (𝑥) = (1 + exp(𝜋 (𝑒 − 𝑥)√3𝜎 ))−1 , 𝑥 ∈ 𝑅, (A.7)

denoted by𝑁(𝑒, 𝜎), where 𝑒 and 𝜎 are real numbers with 𝜎 >0.
Definition A.6 (see [40]). An uncertain variable 𝜉 is called
empirical if it has an empirical uncertainty distribution:

Φ (𝑥)

=
{{{{{{{{{{{

0, if 𝑥 < 𝑥𝑖,
𝛼𝑖 + (𝛼𝑖+1 − 𝛼𝑖) (𝑥 − 𝑥𝑖)𝑥𝑖+1 − 𝑥𝑖 , if 𝑥𝑖 < 𝑥 < 𝑥𝑖+1, 1 ≤ 𝑖 < 𝑛,
1, if 𝑥 > 𝑥𝑛,

(A.8)

where 𝑥1 < 𝑥2 < ⋅ ⋅ ⋅ < 𝑥𝑛 and 0 ≤ 𝛼1 ≤ 𝛼2 ≤ ⋅ ⋅ ⋅ ≤ 𝛼𝑛 ≤ 1.
Theorem A.7 (see [30]). Let 𝜉1, 𝜉2, . . . , 𝜉𝑛, 𝜉𝑛+1, . . . , 𝜉𝑛+𝑚
be independent uncertain variables with continuous and
strictly increasing uncertainty distribution functions Ψ1,Ψ2, . . . , Ψ𝑛, Ψ𝑛+1, . . . , Ψ𝑛+𝑚, respectively. Let 𝑓(𝑥1, 𝑥2, . . .,𝑥𝑛, 𝑥𝑛+1, . . . , 𝑥𝑛+𝑚) be strictly increasing with respect to𝑥1, 𝑥2, . . . , 𝑥𝑛 and strictly decreasing with respect to 𝑥𝑛+1,𝑥𝑛+2, . . . , 𝑥𝑛+𝑚. Then

𝜉 = 𝑓 (𝜉1, 𝜉2, . . . , 𝜉𝑛, 𝜉𝑛+1, . . . , 𝜉𝑛+𝑚) (A.9)

is an uncertain variable whose inverse uncertainty distribution
function is

Φ−1 (𝛼) = 𝑓 (Ψ−11 (𝛼) , Ψ−12 (𝛼) , . . . , Ψ−1𝑛 (𝛼) ,
Ψ−1𝑛+1 (1 − 𝛼) , . . . , Ψ−1𝑛+𝑚 (1 − 𝛼)) , 0 < 𝛼 < 1. (A.10)

Definition A.8 (see [30]). The expected value of an uncertain
variable 𝜉 is defined by

𝐸 [𝜉] = ∫+∞
0

𝑀{𝜉 ≥ 𝑥} 𝑑𝑥 − ∫0
−∞

𝑀{𝜉 ≤ 𝑥} 𝑑𝑥 (A.11)

provided that at least one of the two integrals exists.

Theorem A.9 (see [30]). Let 𝜉1 and 𝜉2 be independent
uncertain variables with finite expected values. Then for any
real numbers 𝑎1 and 𝑎2, one has

𝐸 [𝑎1𝜉1 + 𝑎2𝜉2] = 𝑎1𝐸 [𝜉1] + 𝑎2𝐸 [𝜉2] . (A.12)
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