
Research Article
Charges and Electromagnetic Radiation as
Topological Excitations

Manfried Faber

Atominstitut, Technische Universität Wien, Österreich, Austria
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We discuss a model with stable topological solitons in Minkowski space with only three degrees of freedom, the rotational angles
of a spatial Dreibein. This model has four types of solitons differing in two topological quantum numbers which we identify with
electric charge and spin.The vacuum has a two-dimensional degeneracy leading to two types of massless excitations, characterised
by a topological quantum number which could have a physical equivalent in the photon number.

1. Introduction

In our mathematical description of nature we use two
different concepts. Following Einstein we formulate gravity
in a geometrical language, whereas particle physics uses the
algebraic formulae of quantum field theory. To unify the two
very successful theories most physicists try quantized gravity.
I go here into the opposite direction and follow first steps in
a geometrical formulation of particle physics. We should find
out from experiments the direction which we should take in
our investigations. Nature may give us some hints about the
mechanisms. I get my first intuition from the sine-Gordon
model and its experimental realisation with a pendulum
model. The mathematics of the sine-Gordon model is nicely
described in [1]. Here I want only to repeat the most inter-
esting physical pictures of this model. It is a fully relativistic
model in 1 + 1D, where the velocity of light corresponds
to the propagation velocity 𝑐 of small amplitude waves. In
the experimental realisation (see [1]), this velocity is of the
order of 1m/s. Besides waves, we find two types of particle-
like excitations, kinks, and antikinks. They behave in many
ways like particles. Their energy density is concentrated in a
certain region in space with a total energy defining the mass.
The three contributions to the energy, stress energy, potential
energy, and kinetic energy have different dependencies on the
velocity V of a moving kink. The potential energy is decreas-
ing; stress energy and kinetic energy are increasing with V.

As expected for a relativistic model, the three contributions
nicely sum up to a mass increasing with 𝛾 = 1/√1 − (V/𝑐)2. A
moving kink is Lorentz contracted. In the mechanical model,
we can easily imagine what nature does to decrease the size
of the kink. To accelerate the pendula at the front of the
kink the angle between them has to increase, leading to a
smaller size of the kink.The pendulummodel gives me some
idea on how nature could work to realise the phenomena of
special relativity. Even more impressive is the existence of
two types of kinks, kinks and antikinks and their interaction.
They behave like charged particles: kinks and kinks repel;
kinks and antikinks attract each other. In soft collisions
kinks behave similarly to billiard balls. In hard collisions
the diameters of kinks shrink proportional to 1/𝛾 and get
point-like. Further, we can observe how kinks and antikinks
annihilate. In the mechanical model the annihilation due
to friction effects gives rise to the emission of waves. In
the abstract theoretical model solitons and antisolitons get
through each other with a small time delay. Mathematically
we can separate the various kink configurations in homotopy
classes differing in their winding number. This is condensed
in the relation Π1(S1) = Z of homotopy theory.

I get a second hint from a simple model teaching us about
the nature of 4𝜋-rotations. I saw it for the first time in Figure41.6 on page 1149 of “Gravitation” byMisner et al. [2]. A ball is
attached with several wires to the surrounding, for example,
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with eight wires to the corners of a cube. Rotating the ball
one or two times around some axis leads to a complete mess
of the strings. But after a 4𝜋-rotation one can disentangle
the wires without moving the ball. We can learn from this
model that a body which is connected to the surrounding
returns only after a 4𝜋-rotation to his original state. For a
disconnected body this happens already after a 2𝜋-rotation.
This is mathematically formulated in the relationΠ1(S3) = 1.
There is a continuous transition between 4𝜋-rotations and
no rotation. This ball model gives me a hint on how possibly
nature realises particles with spin 1/2 just by connecting them
with the surrounding.

Thirdly, I want to mention that, observing phenomena
at and below the atomic scale, we always observe particles
or clicks and never waves. Remember the double-slit experi-
ment. In this interference experiment of electrons or photons,
the wave-picture appears only after several hundreds or
thousands of particles have been registered on the screen.

In the main part of this article, I describe a Lorentz
covariantmodel which has stable topological excitations with
properties of particles. In a certain sense, it is a generalisation
of the sine-Gordon model to 3 + 1D. Several features of this
model were already described in a few articles [3–8]. In this
article, I will mainly concentrate on topological questions.

2. Definition of the Model

We are using a scalar SO(3)-field in 3 + 1DMinkowski space.
The only degrees of freedom of this model are therefore
three rotational angles, for example, the three Euler angles,
describing the rotations of a spatial Dreibein. Work with
SU(2) is simpler than using SO(3)-matrices, that is, with2 × 2-matrices. Since SU(2) is the double covering group of
SO(3) there is an essential difference between SU(2)- and
SO(3)-fields. Every field configuration of an SO(3)-field is
twice realised by SU(2)-fields. The two realisations differ by
a transformation with the nontrivial center element, by a 2𝜋-
rotation. We have to remember this property using SU(2)-
matrices:

𝑄 (𝑥) = e−i�훼(�푥)
�㨀→�휎 �㨀→�푛 (�푥) = cos𝛼 (𝑥) − i󳨀→𝜎 󳨀→𝑛 (𝑥) sin𝛼 (𝑥) , (1)

at every site 𝑥 in 𝑀4. The symbol 𝑄 we are using reminds
us of quaternions, invented by Rodrigues [9] in the year
1840, to describe active rotations with the three imaginary
quaternionic units i, j, k. In (1), they are represented by
Pauli matrices i fl −i𝜎1, j fl −i𝜎2, k fl −i𝜎3. 󳨀→𝑛 is a
three-component unit vector and 󳨀→𝜎 󳨀→𝑛 fl ∑3

�푖=1 𝜎�푖𝑛�푖 is the
component of the Pauli matrices in direction of 󳨀→𝑛 . Rotations
are unit quaternions 𝑄 = 𝑞0 − i󳨀→𝜎 󳨀→𝑞 with 𝑞20 + 󳨀→𝑞 2 = 1. Their
manifold is isomorphic to S3.

The idea for the definition of the dynamical part of the
Lagrangian is its identification with the square of the area
density on S3 in appropriate units of an action density. We
start defining tangential vectors:

𝜕�휇𝑄 fl −i󳨀→𝜎󳨀→Γ �휇𝑄 with 󳨀→𝜎󳨀→Γ �휇 fl
3∑
�푖=1

𝜎�푖Γ�휇�푖, (2)

(tangential one-forms) to S3. We would like to emphasise
that 󳨀→𝐴�휇 = 2󳨀→Γ �휇 is a trivial connection but 󳨀→Γ �휇 is not. With
the cross-product 󳨀→𝑅�휇] fl

󳨀→Γ �휇 × 󳨀→Γ ] we can get the square

of the area density 󳨀→𝑅�휇]
󳨀→𝑅�휇]

and define the Lagrangian in
appropriate SI-units with 𝛼�푓 fl 𝑒20/4𝜋𝜖0ℏ𝑐:

L fl Ldyn −Hpot fl −𝛼�푓ℏ𝑐4𝜋 (14󳨀→𝑅�휇]
󳨀→𝑅�휇] + Λ (𝑞0))󳨀→𝑅�휇] fl

󳨀→Γ �휇 × 󳨀→Γ ],󳨀→Γ �휇

(2)= i2Sp (󳨀→𝜎𝜕�휇𝑄𝑄†) .
(3)

Up to a proportionality factor, the kinetic term Ldyn of this
model agrees with the Skyrme term in the Skyrmemodel [10].
To get stable solitons, Skyrme suggested to use a mass term
for the vector field󳨀→Γ �휇 leading to Skyrmions with short-range
forces which are accepted as approximations for nucleons.We
want to describe particles with long-range Coulombic forces
and have therefore to avoid the Skyrme term. The Hobart-
Derrick theorem [11, 12] allows as additional terms only terms
without derivative, a potential term, which we chose as

Λ (𝑞0) = 𝑞2�푚0 . (4)

Therefore, we have a two-dimensionalmanifold of degenerate
vacua; the equatorial sphere S2equ is defined by 𝑞0 = 0. The
choice of the potential term (4) has two immediate physical
consequences.There are two Goldstone bosons which we can
identify with the two photon degrees of freedom. Further, we
get nontrivial field configurations of finite energy which can
be classified byΠ2(S2equ) = Z, by themap ofS2equ to the sphere
S2∞ at spatial infinity.

3. Stable Solitons of Finite Energy

Inserting the time-independent hedgehog ansatz

𝑞0 = cos𝛼 (𝑟) ,󳨀→𝑞 = 󳨀→𝑛 (r) sin𝛼 (𝑟) ,
󳨀→𝑛 (r) = 󳨀→𝑟𝑟 ,
𝛼 (𝑟) ∈ [0, 𝜋2 ]

(5)

into Lagrangian (3), we get the Euler-Lagrange equation:

𝜕2�휌 cos𝛼 + (1 − cos2𝛼) cos𝛼𝜌2 − 𝑚𝜌2cos2�푚−1𝛼 = 0
with 𝜌 = 𝑟𝑟0 ,

(6)
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Figure 1: Contributions to the radial energy density according to (8)
in units of 𝛼�푓ℏ𝑐/𝑟0.
a nonlinear differential equation, which we can most easily
solve for𝑚 = 3. It has the simple solution

𝛼 (𝑟) = arctan 𝜌,
sin𝛼 (𝑟) = 𝜌√1 + 𝜌2 ,
cos𝛼 (𝑟) = 1√1 + 𝜌2 .

(7)

leading to the radial energy density:

ℎ = 𝛼�푓ℏ𝑐𝑟0 [ 𝜌22 (1 + 𝜌2)2 + 𝜌2(1 + 𝜌2)3 + 𝜌2(1 + 𝜌2)3] . (8)

The radial dependencies of its three contributions are
shown in Figure 1. At large distances the radial energy density
agrees with the Coulombic energy density of a point charge.
As one can clearly see, the singularity at the origin that point-
charges usually are suffering from is removed. The tangential
and the potential energy density have equal shapes and decay
faster.They lead to a deviation from the Coulomb interaction
at distances in the order of 𝑟0 and smaller. The total energy
sums up to 𝐸 = (𝛼�푓ℏ𝑐/𝑟0)(𝜋/4). Comparing this result with
the rest energy of an electron we get a value for the scale 𝑟0 of
2.21 fm.

The hedgehog configuration, defined in (5), is schemat-
ically depicted in the upper diagram of Figure 2. It maps
R3 to half of S3. This half-sphere is indicated in the lower
diagram of Figure 2. By the electric field, the hedgehog is
wired to the surrounding. If the center of the hedgehog
is rotated by 4𝜋, the tangled lines of constant 󳨀→𝑛 -field can
be disentangled without further rotation of the center, and
the original configuration can get restored. This behaviour
reminds us of the rotational property of spin-1/2 particles.

(a)
q0 × 1

q3 × k

q1 × i, q2 × jS2？ＫＯ

Q(r)

(b)

Figure 2: (a) Scheme of the hedgehog configuration (5). The small
blue arrows show the imaginary part 󳨀→𝑞 = 󳨀→𝑛 (r) sin𝛼(𝑟) of the 𝑄-
field in an arbitrary plane through the origin.The longmagenta lines
indicate the electric field lines of a point charge, the lines of constant󳨀→𝑛 -field. (b) Half-sphere covered by the hedgehog configuration.

4. Topological Quantum Numbers

We can find a further relation to spin in the number of
coverings of S3, the topological charge Q which we define in
spherical coordinates 𝑟, 𝜗, 𝜑 by

Q fl
12𝜋2 ∫∞

0
d𝑟 ∫�휋

0
d𝜗∫2�휋

0
d𝜑󳨀→Γ �푟 (󳨀→Γ �휗 × 󳨀→Γ �휑) . (9)

The configuration of (5) and Figure 2 results in Q =1/2. Continuous modifications of the soliton field do not
change Q and the homotopy class of the configuration. The
homotopy class can be changed by parity transformationsΠ�푛 : 󳨀→𝑛 󳨃→ −󳨀→𝑛 in the internal space and by transformations
with the nontrivial center element 𝑧 = −1. The four types
of solitons which we get by these transformations are shown
in Table 1. 𝑄-values with 𝑞0 ≥ 0 are indicated by full blue
arrows and with 𝑞0 ≤ 0 by dashed green arrows. Besides
the topological charge, the four configurations differ in the
direction of the rotational axis of the 𝑄-field at infinity
which we will relate in (16)–(18) with the electric charge 𝑄el.
This field at large distances from the center determines the
interaction with other solitons, attraction, or repulsion. The
pairs of configurations with the same electric charge differ
in the value ±1/2 of the topological charge, in the chirality.
We can combine pairs of solitons with Q = ±1/2 either to
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Table 1: Soliton types differ by transformations with Π�푛 and 𝑧. The signs of 󳨀→𝑛 and 𝑞0 and the topological quantum numbers 𝑄el and Q are
quoted. The configurations are spherically symmetric.

Transf. 1 𝑧 Π�푛 𝑧Π�푛󳨀→𝑛 󳨀→𝑟 /𝑟 −󳨀→𝑟 /𝑟 −󳨀→𝑟 /𝑟 󳨀→𝑟 /𝑟𝑞0 ≥0 ≤0 ≥0 ≤0𝑄el −1 1 1 −1
Q 1/2 1/2 −1/2 −1/2
Diagram

Figure 3: Dipole configuration with 𝑆 = 1. The small blue arrows
show the imaginary part 󳨀→𝑞 = 󳨀→𝑛 (r) sin𝛼(𝑟) of the 𝑄-field in an
arbitrary plane through the centers of both solitons. Full arrows
correspond to 𝑞0 ≤ 0 and dashed arrows to 𝑞0 ≤ 0.
Q = 0 or to Q = ±1. Since SU(2) is the spin group and due to
the above described properties of the soliton configurations
under 4𝜋 rotations we dare to identify the absolute value of
the topological charge with the spin quantum number:𝑠 = |Q| . (10)

We would like to remember that, within SO(3), the two
configurations which differ in the sign of Q are identical.

Traversing the center of a soliton we follow a rotation
of the local Dreibeins by ±2𝜋. This may answer a question,
posed byTsung-DaoLee in a talk given inVienna in the 1980s:
“why does the mass break chiral symmetry?”

Besides its group theoretical properties, spin is a contri-
bution to the total angular momentum. We will investigate
these angular momentum properties in a dipole configu-
ration. Since a dipole is uncharged, the field at infinity is
independent of the direction, it approaches, for example,
lim�푟→∞𝑄(r) = −i𝜎3. The symmetry of the vacuum is broken.
We can combine the first configuration in Table 1 with the
second to total spin 𝑆 = 1 or with the third to 𝑆 = 0. The
energy for 𝑆 = 0 is slightly lower than that for 𝑆 = 1, the
configuration shown in Figure 3. During a rotation of the
dipole, the vacuum has to remain unchanged; a rigid rotation
is not possible. If the dipole axis is rotated, for example, by

Figure 4: Configuration of Figure 3, after rotation by 𝜋/4.
𝜋/4, as shown in Figure 4, the centers of the solitons have
to rotate by the same angle. These rotations contribute to the
total angular momentum.

Dipole configurations are not stable due to the attractive
interaction between the charges.Their time evolution follows
the general equations of motion [3]:

𝜕�휇 [󳨀→Γ ] × 󳨀→𝑅�휇]] + 󳨀→𝑞 dΛ
d𝑞0 = 0 (11)

derived from the Lagrangian (3). The energy-momentum
tensor

Θ�휇
] = −𝛼�푓ℏ𝑐4𝜋 {(󳨀→Γ ] × 󳨀→Γ �휎) (󳨀→Γ �휇 × 󳨀→Γ �휎)} −L (𝑥) 𝛿�휇] (12)

turns out to be symmetric.There is no special symmetrisation
necessary as inMaxwell’s elecrodynamics [13]. Since there are
no external forces, the force density is vanishing:

𝑓] = 𝜕�휇Θ�휇
] = 0. (13)

To determine a static potential one has to fix the positions
of the centers at a chosen distance 𝑑. For distances 𝑑 ≫ 𝑟0
the Coulombic behaviour is nicely reproduced, as can be
seen in the diploma theses [14–16]. For distances 𝑑 ⪅ 𝑟0 the
interaction strength increases.
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5. Electrodynamic Limit

One gets a pure Coulombic behaviour in the limit 𝑟0 → 0
where one arrives at theWu and Yang description [17] of dual
Dirac monopoles by two degrees of freedom which we can
choose as a normalised three-dimensional vector field 󳨀→𝑛 . In
this limit, we get 𝑄 (𝑥) = −i󳨀→𝜎 󳨀→𝑛 (𝑥) ,󳨀→Γ �휇 (𝑥) (2)= 󳨀→𝑛 (𝑥) × 𝜕�휇󳨀→𝑛 (𝑥) ,󳨀→𝑅�휇] (𝑥) (3)= 𝜕�휇󳨀→𝑛 (𝑥) × 𝜕]󳨀→𝑛 (𝑥) .

(14)

This is a description where the singularity of the Dirac string
is removed, but the singularity of the Coulomb field is still
present. The Lagrangian (3) reduces to (The same degrees of
freedom but a different Lagrangian is used in the Fadeev-
Niemi = Skyrme-Fadeev = Baby-Skyrme model [18–20]. The
same Lagrangian was used in [21].)

LED = − 14𝜇0 ∗𝐹�휇] (𝑥) ∗𝐹�휇] (𝑥) (15)

with the dual field strength tensor
∗𝐹�휇] (𝑥) = − 𝑒04𝜋𝜀0𝑐󳨀→𝑅�휇]

󳨀→𝑛
= − 𝑒04𝜋𝜀0𝑐󳨀→𝑛 (𝑥) [𝜕�휇󳨀→𝑛 (𝑥) × 𝜕]󳨀→𝑛 (𝑥)] . (16)

In this limit hedgehogs are characterised by point-like
singularities in space and closed world-lines of line-like
singularities in space-time:

𝑗�휇 = −𝑒0𝑐 �푁∑
�푖=1

∫ d𝜏�푖 d𝑋�휇 (𝜏�푖)
d𝜏�푖 𝛿4 (𝑥 − 𝑋 (𝜏�푖)) = (𝑐𝜌, j) . (17)

Charges and fields are related by the inhomogeneousMaxwell
equations:12𝜇0 ∮

�휕�푉
d𝑥�휇d𝑥]∗𝐹�휇] = 16 ∫

�푉
d𝑥�휇d𝑥]d𝑥�휌𝜖�휇]�휌�휎𝑗�휎. (18)

Already here we see an essential difference to Maxwell’s
theory. Charges are quantized; there are no other charges
possible than integer multiples of the elementary charge 𝑒0.
We get two further differences from the equations of motion:𝜕�휇󳨀→𝑛𝑔�휇 = 0. (19)

They allow for nonvanishing magnetic currents:

𝑔�휇 = 𝑐𝜕]⋆𝑓]�휇 ⇐⇒ {{{
𝜌mag = ∇B,
g = −∇ × E − 𝜕�푡B. (20)

The solutions of the homogeneous Maxwell equations fulfil
the equations of motion (19). But there are further solutions
possible which fulfil the relations:

Bg (19)= 0,
𝑐2B𝜌mag

(19)= g × E, (21)

equivalent to the equations of motion (19). The presence of
unquantized closed magnetic currents may be a discrepancy
to experiments. But we could explain it with the observation,
mentioned in the introduction, that in the experiment we
only detect particles and never waves. We can speculate that
such currents contribute to the recently intensively discussed
dark matter. Further, we read from these equations that there
are no solutions possible where E and B are parallel. This
seems obviously also in contradiction to experiments, where
it is rather simple to produce static parallel electric and
magnetic fields. In this case it is more difficult to find an
excuse. It could be that E and B are locally perpendicular and
they appear to be parallel only in the average over space or
time. This is the price to pay for restricting charges to integer
multiples to the elementary charge and the fields to the two
degrees of freedom of the 󳨀→𝑛 -field.
6. Coulomb and Lorentz Forces

By the artificial splitting (16) of a single field𝑄(𝑥) in particles
and their fields we reduce Θ�휇

] to the symmetric energy-
momentum tensor,

𝑇�휇
] (𝑥) (12)= − 1𝜇0 ⋆𝐹]�휎 (𝑥) ⋆𝐹�휇�휎 (𝑥) −LED (𝑥) 𝛿�휇] , (22)

and split the force density in two contributions

𝑓] = 𝜕�휇Θ�휇
] = 𝑓�휇

charges + 𝜕]𝑇�휇
]
(13)= 0, (23)

showing clearly the presence of Coulomb and Lorentz forces:

𝑓0
charges = 1𝑐 jE,
fcharges = 𝜌E + j × B. (24)

Here we would like to underline that the magnetic currents g
do not contribute to electromagnetic forces.

7. U(1) Gauge Invariance

AU(1) gauge invariance appears as a rotational invariance by𝜔(𝑥) around the 󳨀→𝑛 -axis. By a rotation in colour space with

Ω (𝑥) = ei�휃(�푥)
�㨀→�푒 𝜙(�푥)

�㨀→
�퐿 ei�휔(�푥)

�㨀→�푛
�㨀→
�퐿 . (25)

We can rotate the 󳨀→𝑛 -field in 3-direction:

󳨀→𝑛 = (sin 𝜃 cos𝜙
sin 𝜃 sin𝜙
cos 𝜃 ) 󳨀→ 󳨀→𝑛 �耠

fl Ω󳨀→𝑛 = (001) = 󳨀→𝑒 3. (26)

Under this transformation the vector field 󳨀→𝐿 󳨀→Γ �휇 transforms

to 󳨀→𝐿 󳨀→Γ �耠

�휇 = Ω(Γ�휇 − i𝜕�휇)Ω† with

󳨀→Γ �耠

�휇 = [(1 − cos 𝜃) 𝜕�휇𝜙 + 𝜕�휇𝜔]󳨀→𝑒 3. (27)
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The curvature 󳨀→𝑅�휇] gets rotor form and turns out to be
invariant against the rotations with 𝜔(𝑥):󳨀→𝑅�휇] = 𝜕�휇󳨀→Γ �耠

] − 𝜕]󳨀→Γ �耠

�휇

= [−𝜕�휇 cos 𝜃𝜕]𝜙 + 𝜕] cos 𝜃𝜕�휇𝜙]󳨀→𝑒 3. (28)

The far field of a hedgehog soliton is the electric field strength
of a classical electron and the vector field of a dual Dirac
monopole: 󳨀→𝐸 �耠

�푟 = 𝑒04𝜋𝜀0
󳨀→𝑒 3𝑟2 ,

󳨀→Γ �휑 (𝜗)𝑟 sin 𝜗 = 1 − cos 𝜗𝑟 sin 𝜗 󳨀→𝑒 3
(29)

with a Dirac string along the 3-direction.

8. Hopf Number

In Figure 2(a), we realised that the field lines of a point charge
are lines of constant 󳨀→𝑛 -field. We find also this relation for
the dipole fields in Figures 3 and 4. Since in our model the
vacuum has broken symmetry the field at infinity, “∞” is
independent of the direction. Thus we get the isomorphism
R3 ∪ ∞ ∼ S3. Due to the topological relation 𝜋3(S2) = Z

there is an additional quantum number for the 󳨀→𝑛 -field, the
Hopf number, or Gauß linking number V of fibresF defined
by 󳨀→𝑛F = const and thus by certain values 𝜃F and 𝜙F. This
linking number is especially interesting in regions where we
can neglect the influence of charges, in regions of pure 󳨀→𝑛 -
field, where the Lagrangian reduces toLED of (16). According
to the Hobart-Derrick theorem [11, 12] such configurations
are unstable, if they move with a velocity slower than the
speed of light 𝑐. Movingwith 𝑐 they have an action constant in
time and can be used to describe electromagnetic waves. For
simplicity we choose the 𝑧-axis in the direction of motion;
then it is sufficient to describe these configurations in R3

given by the coordinates 𝑥, 𝑦, and 𝜁 = 𝑧 − 𝑐𝑡. The linking
number V is a topological invariant. Its natural physical
equivalent is the number of photons 𝑛�훾 in this configuration.
As an example of such a configuration in R3 with V = 1 we
defined in the diploma thesis [22] a field by an area preserving
map ofS2 to a circle rotating with 𝜑 around the line 𝜌 = 𝜌0 =3, 𝜁 = 0, defined in cylindrical coordinates 𝜌, 𝜑, 𝜁 by

cos 𝜃 = {{{{{
(𝜌 − 𝜌0)2 + 𝜁22 − 1 ≤ 11 else

𝜙 = 𝜑 + arctan 𝜁𝜌 − 𝜌0 .
(30)

For a given 󳨀→𝑛 -field one can get the linking number in R3 by
the famous formula of Carl Friedrich Gauß:

V = 14𝜋 ∮
C1

∮
C2

r1 − r2󵄨󵄨󵄨󵄨r1 − r2
󵄨󵄨󵄨󵄨3 ⋅ (dr1 × dr2) , (31)

(a)

(b)

Figure 5: Stereographic view with parallel eyes at a fibre neighbour-
hood. (a) Fibre F on a torus in R3. Dreibeins of red tangential
vectors and blue and cyan tangential vectors are drawn at three
positions. (b) Gauß map CF of F with red radial vector 󳨀→𝑒 �耠

F(𝑠)
and blue and cyan tangential vectors at the corresponding three
positions.

by a double integral. We get from the observation of the
neighbourhood of a single fibre F another determination
of V, by a single integral. We parametrize the position
along the fibre with some parameter 𝑠. We determine the
tangential vector eF(𝑠) to the fibre and a unit vector to some
neighbouring fibre, for example, defined by the perpendicular
component e�휃(𝑠) fl (∇ cos 𝜃F/|∇ cos 𝜃F|)|⊥ of the gradient∇ cos 𝜃F(𝑠). We get a local Dreibein with e⊥(𝑠) fl eF(𝑠) ×
e�휃(𝑠). Then we determine the rotational velocity along the
fibre by

d𝜔
d𝑠 fl e⊥ ⋅ ∇�푠e�휃 = eF (e�휃 × ∇�푠e�휃) . (32)

It turns out that the integrated rotational angle 𝜔 depends on
the radius𝑅 = √(𝜌 − 𝜌0)2 + 𝜁2 of the torus surrounded by the
fibre

𝜔 (𝑅) fl ∮
F

d𝜔
d𝑠 d𝑠 ̸= 2𝜋𝑛, 𝑛 ∈ N (33)

and is not an integer. Its dependence on 𝑅 is depicted in
Figure 6.This is understandable from the Gaußmap eF(𝑠) 󳨃→
e�耠F(𝑠) and e�휃(𝑠) 󳨃→ e�耠�휃(𝑠) to the S2

G unit sphere; see Figure 5.
e�耠F(𝑠), plotted from the origin of S2

G by 󳨀→𝑒 �耠F(𝑠) = 󳨀→𝑒 F(𝑠),
draws a curve CF on S2

G (With bold symbols e we indicate
the vectors and with 󳨀→𝑒 the set of its coordinates.). e�耠�휃(𝑠) and
e�耠⊥(𝑠) are defined as vectors in the tangential space at eF(𝑠)
by the coordinate equalities 󳨀→𝑒 �耠�휃(𝑠) = 󳨀→𝑒 �휃(𝑠) and 󳨀→𝑒 �耠⊥(𝑠) =󳨀→𝑒 ⊥(𝑠). Their parallel transport alongCF is nontrivial, except
for CF that is a great circle. Deviations from a great circle
lead to an additional contribution of the curved geometry on
S2

G to the rotational angle. Indicating the position on S2G in
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Figure 6: Contributions 𝜔(𝑅) and Δ𝜔(𝑅) to the determination of
the rotational angle of the fibre neighbourhood.

Figure 7: Configurations with higher linking numbers arranged
with the shape of a torus or in spiral form.

spherical coordinates 󳨀→𝑒 �耠F = (sin𝛼 cos𝛽, sin𝛼 sin𝛽, cos𝛼),
we can derive, for the corresponding spherical coordinate
bases e�훼 and e�훽, the affine U(1) connection:

𝐶�훼 = 0,
𝐶�훽 = cos𝛼

sin𝛼 ,
󳨀→𝐶 = 𝐶�훼

󳨀→𝑒 �훼 + 𝐶�훽
󳨀→𝑒 �훽

(34)

which is trivial for meridians and the equator of S2
G. The

additional contribution reads

Δ𝜔 (𝑅) fl ∮ d𝑠d󳨀→𝑒 �耠F
d𝑠 ⋅ 󳨀→𝐶. (35)

The sum of both contributions gives then the expected value:

𝜔 (𝑅) + Δ𝜔 (𝑅) = 2𝜋V. (36)

Both contributions of our example are shown in Figure 6; they
give V = −1.

With the conjecture that the photon number of a con-
figuration is given by the Gauß linking number V of fibres,
configurations with higher linking numbers V correspond
to states with several photons. In such configurations, see
Figure 7; the linked fibres are spiraling several times. The
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32S1/2
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Figure 8: In a strong magnetic field the Na-D-line splits into three
spectral lines with Δ𝑀�퐿 = 0, ±1 and Δ𝑀�푆 = 0.

x
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x
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Figure 9: Different projections of rotations around a circle produce
different polarisations.

spiral in the right diagram of Figure 7 reminds us of circular
polarised waves.

It may be helpful to have a look at experiments. The Na-
D-line in a strong magnetic field splits into three lines, the
Lorentz triple (see Figure 8), according to Δ𝑀�퐿 = 0, ±1.
It is interesting to observe the three spectral lines parallel
and perpendicular to the magnetic field, as depicted in
Figure 10. The lines with Δ𝑀�퐿 = 0, the “𝜋-components,”
are linearly polarised with an azimuth dependency of the
intensity 𝐼(𝜗) = sin2 𝜗. The Δ𝑀�퐿 = ±1-lines, the “𝜎-
components,” are circularly polarised with 𝐼(𝜗) = (1/2)(1 +
cos2 𝜗). If the circular polarised lines are observed in the
direction perpendicular to the B-field they appear linearly
polarised. This reminds us of different projections of circular
motion, of a spiral in the comoving 𝑥, 𝑦, 𝑧 − 𝑐𝑡 frame; see
Figure 9.

Here a problem may appear. Rotations of a spiral do not
change their chirality. After a rotation by 𝜋 a right-handed
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Figure 10: Scheme of observation of the Na-D-line in a strong magnetic field.

spiral remains right-handed as one can easily check with a
right-handed thread of a screw. It is well-known that right
polarised light can be easily transformed to linear polarised
and to left polarised light by quarter-wave plates.These plates
have perpendicular fast and slow axes.

This looks as a counterargument for the interpretation
of the Hopf number as photon number. But it may also be
an unknown feature of polarised light? Looking carefully at
polarisation filters, one realises that filters exist for linear
polarised light only! Right and left circular polarised light
is detected by transforming it with quarter-wave plates, by
interaction with matter, to linear polarisation.

9. Conclusion

The model described in this article is based on a field of
SO(3)-matrices in 3 + 1D Minkowski space-time. Therefore,
themodel has 3 degrees of freedomonly, corresponding to the
3 Euler angles.These rotationalmatrices can be interpreted as
describing the field of orientations of spatial Dreibeins at the
points of space-time. In this sense, this simple model needs
only the degrees of freedom of space and time to describe the
various phenomena discussed in this article. To formulate the
algebra of this model we are using the simpler representation
of rotations by SU(2)-matrices. As a consequence of this
treatment we have to take into account the fact that for every
SO(3)-configuration there exist two SU(2)-configurations
representing the same field. Vector fields (potentials) and
tensor fields (field strength) are derived from the basic soliton
field 𝑄(𝑥).

The Lagrangian (3) of the model contains two terms. The
kinetic term is proportional to the square of the curvature󳨀→𝑅�휇] or to the dual field strength. Such a term is well-known
from electrodynamics and QCD.The potential term reminds
us of the Higgs potential and the cosmological constant.
According to the Hobart-Derrick theorem a quarter of the
mass of solitons would contribute with its average to the
cosmological constant. The transition from 𝑄 = 1 and Λ =1/𝑟40 to Λ = 0 releases an energy density of 𝛼�푓ℏ𝑐/(4𝜋𝑟40) =4.8 keV/fm3 = 7.7 ⋅ 1029 J/m3 and could have contributed
to inflation. Further, the potential term allows for a two-
dimensional degeneracy of the vacuum states.

In this model, there appear particle-like excitations as
topological solitons. Their mass is field energy only. The
field configurations are characterised by three topological

quantum numbers which could find a physical realisation as
electric charge, spin quantum number, and photon number.
The topological structure does not allow two solitons to
occupy the same space. This could be the topological origin
of the Pauli principle. Charges appear as integer multiples
of an elementary charge. No fractional charges are possible
for stable excitations. Charges are characterised by regions
where the spatial Dreibein rotates by 2𝜋. Such regions
interact via Coulomb and Lorentz forces. The electric force
follows the 1/𝑟2 behaviour at large distances and increases for
high momentum transfers. The distinction between charges
and their fields is unnecessary. Such a distinction can be
introduced as an approximation and simplifies the compar-
ison with our physical experience. Eigenangular momentum
(spin) appears as a consequence of orbitalmotion.Thedegen-
erate vacuum allows for two types of massless excitations,
which could be related to the two polarisations of photons.
U(1) gauge invariance emerges in the electrodynamic limit
as rotational invariance of the above-mentioned Dreibein
around the 󳨀→𝑛 -axis.

Despite the small number of degrees of freedom there
are further nonquantized disturbances possible. Magnetic
currents as violations of the homogeneousMaxwell equations
propagate with the speed of light and contribute to force
fields only via their field strengths. Further we find waves
in the rotational angle 𝜔 = 2𝛼 with energy contributions
from the potential term in theHamiltonian.The cosmological
discoveries of recent years allow attributing these two types of
disturbances to dark energy and dark matter contributions.

The investigations seem to support the conjecture that
the particles we find in experiments are topological soli-
tons characterised by topological quantum numbers. They
produce only spots on films and clicks in detectors. Waves
seem to escape and are not directly detected. Waves could
disturb the paths of particles and could contribute to a
subquantum medium leading to quantum mechanics. In
analogy to Couder’s silicon oil drop experiments [23–26], the
interference of waves created by the particle themselves with
the vacuum waves could serve as a guiding wave field for
particles.

If this model reproduced some features of nature, the two
types of long-range forces which we find, gravitational and
Coulomb forces, would be described in a geometricalmanner
with the degrees of freedom of space-time only. This would
give a hint that particle physics could be closely related to
gravitation.
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