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Recent developments in prognostic and health management have been targeted at utilizing the observed degradation signals to
estimate residual life distributions. Current degradationmodelsmainly focus on a population of “identical” devices or an individual
device with population information, not a single component in the absence of prior degradation knowledge. However, the fast
development of science and technology provides us with many kinds of new systems, and we just have the real-time monitoring
information to analyze the reliability for them. The fusion algorithm presented herein addresses this challenge by combining the
excellent modeling ability of Bayesian updating method for the multilevel data and the prominent estimation ability of ECM
algorithm for incomplete data. Residual life distributions and posterior distributions are first calculated through the Bayesian
updating method based on random initial a priori distributions.Then the a priori distributions are revised and improved for future
predictions by the ECM algorithm. Once a new signal is observed, we can reuse the fusion algorithm to improve the accuracy of
residual life distributions. The applicability of this fusion algorithm is validated by a set of simulation experiments.

1. Introduction

Modern engineering systems are overwhelmingly complex
because of increasing requirements on their functionalities
and qualities.These systems often have a high standard of sys-
tem reliability because a single failure can lead to catastrophic
consequences with profound impacts, extreme costs, and
potential safety hazards. It will take an exceedingly long time
for a system to fail, so prognostics for systems have become
extremely difficult, even if the actual operating conditions
are severe and rigorous. Therefore, effective methods that
can predict failure progression and evaluate the reliability of
the system have long been sought. When there are sufficient
monitoring data and efficient computational capability, prog-
nostics for components based on observed degradation data
is promising and effective [1–3].

The general path model is a typical method utilizing the
observed degradation signals of these degraded systems. Lu
and Meeker [4] introduced the model to the degradation
literature in 1993, for the first time. In their model, the
fixed-effects parameters affect the populations’ characteristics

and the random-effects parameters describe an individual
unit’s characteristics. Once the parameters are known, the
residual life is deterministic. Therefore, the core work is to
estimate the unknown fixed and random parameters. Lu and
Meeker used a two-stage method to estimate the unknown
parameters. Lu et al. [5] extended the degradation model and
suggested likelihood-based estimation methods. However,
these are not suitable for all types of degradation data. Su et
al. [6] considered random sample sizes and random repeated
measurement times for each product unit. They discussed
the advantages and disadvantages of two-stage least-squares
(LS) estimation, maximum modified likelihood (MML) esti-
mation, and maximum likelihood estimation (MLE). They
showed that the LS estimators are not consistent in the case of
random sample sizes. However,MLE can provide a consistent
estimator and has smaller biases and variances compared to
the LS and MML estimates. In the further study, Weaver et
al. [7] also used MLE to estimate the unknown parameters.
They extended the research and examined effects of sample
size on the estimation precision. Under the mixed-effect path
model,Wu and Shao [8] built the asymptotic properties of the

Hindawi
Journal of Control Science and Engineering
Volume 2017, Article ID 4375690, 11 pages
https://doi.org/10.1155/2017/4375690

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193682541?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1155/2017/4375690


2 Journal of Control Science and Engineering

(weighted) least-squares estimators. They used these proper-
ties to calculate approximate confidence intervals and point
estimates for percentiles of the failure-time distribution.They
used the weighted least-squares estimators to predict the
resistor of metal film and the metal fatigue crack length.

However, the above papers only focus on the estimation
of the unknown parameters about population devices and
need a fair amount of samples in the test. In order to solve
this problem, Robinson and Crowder [9] described a fully
Bayesian approach which allows a small sample size. They
used a variety of simple prior distributions and observed that
this aspect has little effect on the posterior distributions of
these data, showing that the information in the degradation
data dominates. So the Bayesian approach is more suitable
for the parameters estimation of an individual device with
population information compared with two-stage LS estima-
tion and MLE. Gebraeel et al. [10] developed two different
exponential degradation signal models. One model assumes
that the error fluctuations follow an iid random error process;
however, the second model considers that the error terms
follow a Brownian motion process. In their paper, they used
the Bayesian updating methods to combine the distribution
information of the parameters across the population and the
monitored degradation data from the individual device. The
Bayesian updatingmethods can update the stochastic param-
eters of degradation models, every time a new degradation
signal comes. Gebraeel [11] extended the Bayesian updating
procedure by assuming that the stochastic parameters in the
exponential degradation models follow a bivariate normal
distribution. Chakraborty et al. [12] further extended the
updating procedure and investigated the difference of the
life time distributions when the stochastic parameters do
not follow the normal distribution. They also built methods
for calculating Remaining Useful Life when the stochastic
parameters of the exponential model follow more general
distributions. Chen and Tsui [13] adopted a piecewise log-
linear degradation model and assumed the change time
of the two different phases is random. This assumption
explicitly accounts for the characteristics of different degra-
dation phases. When new observations were available, they
updated the a posteriori information of the model stochastic
parameters including regression coefficients and the variance
of the error term by using Bayesian methods. They also
suggested a new method which took the correlations into
consideration, among degradation predictions, to compute
the RUL distribution with better accuracy. Their approach
can be naturally extended to more general degradation
models.

The above Bayesian approaches can be applied to predict-
ing the RUL of an individual device with population informa-
tion. However, the fast development of science and technol-
ogy provides us with kinds of newly made systems, and we
just have the observed monitoring degradation information
to analyze the reliability of them. Traditional ways to predict
system failures often fail because the domain knowledge
and expert experience are limited and historical data is
nonexistent.

Therefore, effective methods that can predict failures of
these newlymade systems in the absence of prior degradation
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Figure 1: Vibration-based degradation signal.

knowledge have long been sought. Considering the excel-
lent modeling ability of Bayesian updating method for the
multilevel data and the prominent estimation ability of ECM
algorithm for incomplete data, the goal of our paper is to
develop a collaboration method between Bayesian updating
method and ECM algorithm to estimate the Remaining
Useful Life (RUL) of the newly made system just with real-
time sensing data. To verify the applicability of this fusion
algorithm, a set of simulation experiments are conducted.

The remainder of this paper is organized as follows. Sec-
tion 2 develops a separate Bayesian updatingmethod and cal-
culates the RUL distributions for the exponential degradation
model with a Brownian error term, under the assumption
that the prior distributions are known. Section 3 explains
the procedure of the fusion process in detail and estimates
the prior information for the Bayesian updating method by
our fusion algorithm. Section 4 illustrates the validity of the
collaborationmethod by a set of simulation experiments.The
paper concludes with some discussions and guidance for the
estimation of RUL of the single component without prior
degradation knowledge in Section 5.

2. Bayesian Updating Method and Residual
Life Distribution

In order to develop our collaboration method, we first
introduce the Bayesian updating method and its estimation
result of the Remaining Useful Life in this section. We will
adopt the exponential degradation signalmodel developed by
Gebraeel et al. [10, 11], Kaiser and Gebraeel [14], and Elwany
and Gebraeel [15] and assume that the error fluctuation of the
degradation model follows a Brownian motion process. As
our objective is to compute theRULof a single systemwithout
prior distribution knowledge, we believe that the adopted
exponential degradation model and the error fluctuation are
adequate for the given degradation path in Figure 1. For a
further discussion of model selection and evaluation, see Li
et al. [16].

Under the above assumption, we could use the Bayesian
updating procedure to compute the unknown random
parameters of the exponential degradation model. Once
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we have got the calculated posterior distributions of these
random parameters in the exponential degradation model,
we can derive the residual life distribution of the component.
However, in our paper we only have the real-timemonitoring
degradation signal for the newly made component, and prior
distributions are nonexistent. In order to utilize the Bayesian
updating procedure, we first assume we have got the accurate
and informative a priori information.Themethod of estimat-
ing these prior distributions will be illustrated and detailed
in Section 3.

2.1. The Degradation Signal Model. First, we review the
general definition of the Brownian motion process.

Definition 1. AstandardBrownianmotion process,𝑊(𝑡), 𝑡 ≥0, possesses the following properties:
1. If 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑛, then 𝑊(𝑡0),𝑊(𝑡1) − 𝑊(𝑡0), . . . ,𝑊(𝑡𝑛) − 𝑊(𝑡𝑛−1) are mutually independent.
2. If 𝑠, 𝑡 ≥ 0, then𝑃 (𝑊 (𝑠 + 𝑡) − 𝑊 (𝑠) ∈ 𝐴) = ∫

𝐴
(2𝜋𝑡)−1/2 𝑒−𝑥2/2𝑡𝑑𝑥. (1)

3. With probability one 𝑡 → 𝑊(𝑡) is continuous.
The first part of the definition describes the fact that

the process 𝑊(𝑡) has independent increments. The second
part means that the increment 𝑊(𝑠 + 𝑡) − 𝑊(𝑠) follows a
normal distribution with mean zero and variance 𝑡. The third
part describes the fact that 𝑊(𝑡), 𝑡 ≥ 0, almost certainly
has continuous paths. For an in-depth discussion about the
Brownianmotion process and its properties, see Durrett [17].

Then, we let 𝑋(𝑡) denote the real-time monitoring signal
as a continuous stochastic process, with respect to time 𝑡. We
define the functional form of𝑋(𝑡) as𝑋(𝑡) = 𝜑 + 𝜃 exp(𝛽𝑡 + 𝜀 (𝑡) − 𝜎2𝑡2 )

= 𝜑 + 𝜃 exp (𝛽𝑡) exp(𝜀 (𝑡) − 𝜎2𝑡2 ) , (2)

where 𝜑 is the fixed intercept and represents the initial
degradation, and 𝛽 is a normal random variable such that
the mean of 𝛽 is 𝜇1 and the variance of 𝛽 is 𝜎21 . 𝜃 is a
lognormal random variable with mean 𝜇0 and variance 𝜎20 ,
and 𝜀(𝑡) = 𝜎𝑊(𝑡) is a Brownian motion with mean zero and
variance 𝜎2𝑡. Under the assumption that 𝜃, 𝛽, and 𝜀(𝑡) are
mutually independent, it is obvious to obtain that𝐸[exp(𝜀(𝑡)−(𝜎2𝑡/2))] = 1, and thus 𝐸(𝑆(𝑡) | 𝜃, 𝛽) = 𝜑 + 𝜃 exp(𝛽𝑡).

Furthermore, we find that it is easy to calculate with the
logarithmic degradation data.Thus, we define 𝑆(𝑡) as follows:𝑆 (𝑡) = ln (𝑋 (𝑡) − 𝜑) = ln 𝜃 + 𝛽𝑡 + 𝜀 (𝑡) − 𝜎2𝑡2 . (3)

By defining 𝜃 = ln 𝜃, 𝛽 = 𝛽 − 𝜎2/2, we can further simplify𝑆(𝑡) as follows: 𝑆 (𝑡) = 𝜃 + 𝛽𝑡 + 𝜀 (𝑡) . (4)

2.2. Bayesian Updating Process of Stochastic Parameters. We
let 𝑆𝑘 = 𝑆(𝑡𝑘) − 𝑆(𝑡𝑘−1), 𝑘 = 2, 3, . . . denote the difference
value of the monitored logged degradation signal at times 𝑡𝑘
and 𝑡𝑘−1, with 𝑆1 = 𝑆(𝑡1).

Then, suppose we have obtained the logged difference
value 𝑆1:𝑘 = {𝑆1, 𝑆2, . . . , 𝑆𝑘} at times 𝑡1, . . . , 𝑡𝑘. And the error
increments, 𝜀(𝑡𝑖) − 𝜀(𝑡𝑖−1), 𝑖 = 2, . . . , 𝑘, are independent
normal random variables. If the stochastic parameters, 𝜃
and 𝛽, are given, we can define the conditional joint density
function of 𝑆1:𝑘 as

𝑝 (𝑆1:𝑘 | 𝜃, 𝛽) = ( 1√2𝜋𝜎2)𝑘
⋅ exp( −(𝑆1 − 𝜃 − 𝛽𝑡1)22𝜎2𝑡1− 𝑘∑

𝑖=2

((𝑆𝑖 − 𝛽 (𝑡𝑖 − 𝑡𝑖−1))22𝜎2 (𝑡𝑖 − 𝑡𝑖−1) )). (5)

Generally, however, 𝜃 and 𝛽 will be unknown. Based on
the former assumption, we suppose we have got accurate and
informative priors. And we let 𝜋0(𝜃) and 𝜋1(𝛽) denote the
prior distributions on 𝜃 and 𝛽, respectively, where 𝜋0(𝜃) =𝑁(𝜇0, 𝜎20) and𝜋1(𝛽) = 𝑁(𝜇1, 𝜎21), 𝜇1 = 𝜇1−𝜎2/2.Then, given
the logged difference data, 𝑆1:𝑘, obtained at times 𝑡1, . . . , 𝑡𝑘,
the posterior joint distribution of (𝜃, 𝛽) can be expressed as
follows.

Theorem 2. Given the obtained logged degradation signal,𝑆1:𝑘, the conditional posterior joint distribution of (𝜃, 𝛽) is𝜃, 𝛽 | 𝑆1:𝑘 ∼ 𝑁(𝜇𝜃 ,𝑘, 𝜎2𝜃 ,𝑘, 𝜇𝛽 ,𝑘, 𝜎2𝛽 ,𝑘, 𝜌𝑘), where𝜇𝜃 ,𝑘= (𝑆1𝜎20 + 𝜇0𝜎2𝑡1) (𝜎21𝑡𝑘 + 𝜎2) − 𝜎20𝑡1 (𝜎21 ∑𝑘𝑖=1 𝑆𝑖 + 𝜇1𝜎2)(𝜎20 + 𝜎2𝑡1) (𝜎21𝑡𝑘 + 𝜎2) − 𝜎20𝜎21𝑡1 ,𝜇𝛽 ,𝑘= (𝜎21 ∑𝑘𝑖=1 𝑆𝑖 + 𝜇1𝜎2) (𝜎2𝑡1 + 𝜎20) − 𝜎21 (𝑆1𝜎20 + 𝜇0𝜎2𝑡1)(𝜎20 + 𝜎2𝑡1) (𝜎21𝑡𝑘 + 𝜎2) − 𝜎20𝜎21𝑡1 ,
𝜎2𝜃 ,𝑘 = 𝜎2𝜎20𝑡1 (𝜎21𝑡𝑘 + 𝜎2)(𝜎20 + 𝜎2𝑡1) (𝜎21𝑡𝑘 + 𝜎2) − 𝜎20𝜎21𝑡1 ,𝜎2𝛽 ,𝑘 = 𝜎2𝜎21 (𝜎20 + 𝜎2𝑡1)(𝜎20 + 𝜎2𝑡1) (𝜎21𝑡𝑘 + 𝜎2) − 𝜎20𝜎21𝑡1 ,𝜌𝑘 = −𝜎0𝜎1√𝑡1√(𝜎20 + 𝜎2𝑡1) (𝜎21𝑡𝑘 + 𝜎2) .

(6)

Proof. Given the prior distributions of 𝜃 and 𝛽, 𝜋0(𝜃) =𝑁(𝜇0, 𝜎20) and 𝜋1(𝛽) = 𝑁(𝜇1, 𝜎21), we can express the
conditional posterior joint distribution of (𝜃, 𝛽), 𝑝(𝜃, 𝛽 |𝑆1:𝑘), as follows:
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∝ 12𝜋𝜎

𝜃 ,𝑘
𝜎
𝛽 ,𝑘

√1 − 𝜌2
𝑘

⋅ exp
[[[[[[[[[[[[[[
− 12 (1 − 𝜌2

𝑘
)

⋅ (((((((
(

(𝜃 − 𝜇𝜃 ,𝑘)2𝜎2
𝜃 ,𝑘−2𝜌𝑘 (𝜃 − 𝜇𝜃 ,𝑘) (𝛽 − 𝜇𝛽 ,𝑘)𝜎
𝜃 ,𝑘

𝜎
𝛽 ,𝑘+(𝛽 − 𝜇𝛽 ,𝑘)2𝜎2

𝛽 ,𝑘

)))))))
)

]]]]]]]]]]]]]]
.

(7)

As our focus is on the fusion algorithm, for a further
detailed calculation of the posterior distribution of (𝜃, 𝛽),
see Gebraeel et al. [10].

2.3. Estimation of the Residual Life Distribution. Every time
a new degradation signal comes, we can compute a new
posterior distribution of (𝜃, 𝛽). As the objective of our paper
is to estimate the distribution of the RUL of the monitored
system, we suppose that the system’s failure occurs when the
observed degradation signal reaches the failure threshold, 𝑤,
and thus we need to estimate the time until the degradation
signal reaches 𝑤. In our paper, we assume that the threshold
value is a constant value.

The objective of prognostics is to compute the distribu-
tion of the failure time until the degradation signal reaches
the threshold 𝑤. To achieve this goal, we first calculate the
posterior distribution of (𝜃, 𝛽). Then, we let the random
variable 𝑆(𝑡 + 𝑡𝑘) denote the logged degradation signal value
obtained at time 𝑡 + 𝑡𝑘, 𝑡 > 0, given 𝑆1:𝑘 obtained at times𝑡1, . . . , 𝑡𝑘. Under the above assumption, the distribution of𝑆(𝑡 + 𝑡𝑘) given 𝑆1:𝑘 can be expressed as follows.

Theorem 3. Given the observed difference value of the logged
degradation data, 𝑆1:𝑘, the distribution of 𝑆(𝑡 + 𝑡𝑘) is 𝑆(𝑡 + 𝑡𝑘) |𝑆1:𝑘 ∼ 𝑁(𝜇(𝑡 + 𝑡𝑘), �̃�2(𝑡 + 𝑡𝑘)), where𝜇 (𝑡 + 𝑡𝑘) ≜ 𝑘∑

𝑖=1

𝑆𝑖 + 𝜇𝛽𝑡 = 𝑆 (𝑡𝑘) + 𝜇𝛽 ,𝑘𝑡,�̃�2 (𝑡 + 𝑡𝑘) ≜ 𝜎2𝛽 ,𝑘𝑡2 + 𝜎2𝑡. (8)

Proof. First, note that 𝑆(𝑡) = 𝜃+𝛽𝑡+𝜀(𝑡) and we can express𝑆(𝑡 + 𝑡𝑘) = 𝑆(𝑡𝑘) + 𝛽𝑡 + 𝜀(𝑡 + 𝑡𝑘)–𝜀(𝑡𝑘), where 𝑆(𝑡𝑘) = ∑𝑘𝑖=1 𝑆𝑖.
Therefore, given 𝑆1:𝑘, 𝑆(𝑡 + 𝑡𝑘) follows a normal distribution
with mean 𝜇(𝑡 + 𝑡𝑘) = 𝑆(𝑡𝑘) + 𝐸[𝛽]𝑡 = 𝑆(𝑡𝑘) + 𝜇𝛽 ,𝑘𝑡 and

variance �̃�2(𝑡 + 𝑡𝑘) = 𝑡2𝑉[𝛽] + 𝑉[𝜀(𝑡 + 𝑡𝑘) − 𝜀(𝑡𝑘)] = 𝜎2𝛽 ,𝑘𝑡2 +𝜎2𝑡.
Then, we let 𝑇 denote the RUL of the monitored system,

and we know that 𝑇 meets 𝑆(𝑇 + 𝑡𝑘) = ln𝑤. Given 𝑆1:𝑘,
the conditional cumulative distribution function (CDF) of 𝑇,𝐹𝑇|𝑆1:𝑘(𝑡) = 𝑝{𝑇 ≤ 𝑡 | 𝑆1:𝑘}, can be expressed as𝑃 (𝑇 ≤ 𝑡 | 𝑆1:𝑘) = 1 − 𝑃 (𝑆 (𝑡 + 𝑡𝑘) ≤ ln𝑤 | 𝑆1:𝑘)

= 1 − 𝑃(𝑍 < ln𝑤 − 𝜇 (𝑡 + 𝑡𝑘)√�̃�2 (𝑡 + 𝑡𝑘) )
= 𝑃(𝑍 ≥ ln𝑤 − 𝜇 (𝑡 + 𝑡𝑘)√�̃�2 (𝑡 + 𝑡𝑘) )
= Φ (𝑔 (𝑡)) ,

(9)

where 𝑍 represents a standard normal variable,Φ(∙) denotes
the CDF of the standard normal variable, and 𝑔(𝑡) = (𝜇(𝑡 +𝑡𝑘) − ln𝑤)/√�̃�2(𝑡 + 𝑡𝑘).

We compute the residual life distribution of the system
at time 𝑡𝑘, under the condition that the observed degradation
signal does not reach the threshold𝑤; that is,∑𝑘𝑖=1 𝑆𝑖 = 𝑆(𝑡𝑘) <
ln𝑤. Thus, we get

lim
𝑡→0

𝑔 (𝑡) = lim
𝑡→0

∑𝑘𝑖=1 𝑆𝑖 + 𝜇𝛽 ,𝑘𝑡 − ln𝑤√𝜎2
𝛽 ,𝑘

𝑡2 + 𝜎2𝑡 = −∞. (10)

Therefore, we get lim𝑡→0𝐹𝑇|𝑆1:𝑘(𝑡) = 0, which means that
the domain of the RUL, 𝑇, is (0,∞). We can express the
conditional probability distribution function (PDF) of 𝑇,
given 𝑆1:𝑘, as 𝑓𝑇|𝑆1:𝑘 ,𝑇≥0 (𝑡) = 𝜙 (𝑔 (𝑡)) 𝑔 (𝑡) , (11)

where 𝜙(⋅) denotes the PDF of the standard normal variable.
Given the conditional PDF of 𝑇, we can write the

expectation of RUL, at time 𝑡𝑘, as𝐸𝑇|𝑆1:𝑘 ,𝑇≥0 (𝑡) = ∫∞
0

𝑓𝑇|𝑆1:𝑘 ,𝑇≥0 (𝑡) 𝑑𝑡. (12)

In order to simplify the integral of expectation of RUL,
we use the failure equation 𝑆(𝑇 + 𝑡𝑘) = ln𝑤 to compute the
RUL, at time 𝑡𝑘, approximately. And according toTheorem 3,
given the difference value of logged degradation signal, 𝑆1:𝑘,
the distribution of 𝑆(𝑡 + 𝑡𝑘) follows 𝑆(𝑡 + 𝑡𝑘) | 𝑆1:𝑘 ∼ 𝑁(𝜇(𝑡 +𝑡𝑘), �̃�2(𝑡 + 𝑡𝑘)), and the mean of this distribution, 𝜇(𝑡 + 𝑡𝑘),
closely approximates 𝑆(𝑡 + 𝑡𝑘). Thus, we can write 𝜇(𝑇 + 𝑡𝑘) =
ln𝑤 and express the RUL, at time 𝑡𝑘, as

RUL𝑘 = ln𝑤 − 𝑆 (𝑡𝑘)𝜇𝛽 ,𝑘 , (13)

where RUL𝑘 is closely approximated to the expectation of
RUL.
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In other literature, the prior distribution parameters, 𝜎2,𝜇0, 𝜎20 , 𝜇1, 𝜎21 , are computed from historical monitoring data
or derived from domain knowledge and expert experience.
However, in this section we only have the real-time condition
degradation information and do not know the accurate prior
distribution parameters. What is more, the priors are fixed
in the whole Bayesian updating procedure in the previous
articles, and if the prior distribution parameters are inaccu-
rate, the posterior distribution for these unknown parameters
would have great errors. So our paper will solve these
problems in the next section.

3. Estimating the Prior Information by
Fusion Algorithm

In Section 2, we have estimated the RUL of the single com-
ponent by Bayesian updating procedure under the assump-
tion that a priori distributions were known. However, we
only have real-time observations and the prior distributions
needed in Bayesian updating process are nonexistent. So
our paper will develop a collaboration algorithm between
Bayesian updating and ECM algorithm to estimate these a
priori parameters.

3.1. The ECM Algorithm. We let Θ = [𝜎2, 𝜇0, 𝜎20 , 𝜇1, 𝜎21]
denote the unknown prior distribution parameters. Given
the difference value of logged degradation signal 𝑆1:𝑘, we can
express the log-likelihood function of 𝑆1:𝑘 as𝑙𝑘 (Θ) = ln [𝑝 (𝑆1:𝑘 | Θ)] = 𝑘∑

𝑗=2

ln [𝑝 (𝑆𝑗 | 𝑆1:𝑗−1,Θ)] , (14)

where 𝑝(𝑆1:𝑘 | Θ) is the joint PDF of 𝑆1:𝑘. Thus, we can write
the MLE ofΘ at time 𝑡𝑘 as

Θ̂ = argmax
Θ

𝑙𝑘 (Θ) , (15)

where Θ̂ is the variable value of Θ corresponding to maxi-
mum of 𝑙𝑘(Θ). Our goal is to estimate an appropriate prior
distribution parameter Θ̂. However, in formula (4) 𝜃 and 𝛽
are stochastic and unobserved, so the calculation of formula
(15) is hard to complete.

In order to avoid the above problem, we propose a col-
laboration algorithm between Bayesian updating and ECM
algorithm and use the fusion algorithm to estimate prior
distributions based on degradation signals. We let Θ𝑘 =[𝜎2𝑘 , 𝜇0,𝑘, 𝜇1,𝑘, 𝜎20,𝑘, 𝜎21,𝑘] denote the estimated parameters
based on degradation signals, 𝑆1:𝑘, and Θ̂(𝑖)𝑘 = [�̂�2(𝑖)

𝑘
, 𝜇(𝑖)
0,𝑘

,𝜇(𝑖)
1,𝑘

, �̂�2(𝑖)
0,𝑘

, �̂�2(𝑖)
1,𝑘

] denote the estimated variable value of Θ𝑘
of the 𝑖th iteration result in the ECM algorithm. We treat𝜃 and 𝛽 as the hidden variables, because 𝜃 and 𝛽 are
stochastic and unobserved in the whole degradation process.
Our objective is to calculate the variable value of Θ𝑘, so the𝐸-step of ECM algorithm can be written as𝑙 (Θ𝑘 | Θ̂(𝑖)𝑘 ) = 𝐸

𝜃 ,𝛽|𝑆1:𝑘 ,Θ̂
(𝑖)

𝑘

{ln𝑝 (𝑆1:𝑘, 𝜃, 𝛽 | Θ𝑘)} , (16)

where 𝐸
𝜃 ,𝛽|𝑆1:𝑘 ,Θ̂

(𝑖)

𝑘

is the conditional expectation of hidden

variables, 𝜃 and 𝛽, given Θ̂𝑖𝑘 and 𝑆1:𝑘.
Next we express the CM-step of ECM algorithm as

Θ̂
(𝑖+1/𝑆)

𝑘 = argmax
Θ

𝑙 (Θ𝑘 | Θ̂(𝑖)𝑘= [�̂�2(𝑖)𝑘 , 𝜇(𝑖)0,𝑘, 𝜇(𝑖)1,𝑘 , �̂�2(𝑖)0,𝑘 , �̂�2(𝑖)1,𝑘 ]) ,
Θ̂
(𝑖+2/𝑆)

𝑘 = argmax
Θ

𝑙 (Θ𝑘 | Θ̂(𝑖+1/𝑆)𝑘= [�̂�2(𝑖+1)𝑘 , 𝜇(𝑖)0,𝑘, 𝜇(𝑖)1,𝑘 , �̂�2(𝑖)0,𝑘 , �̂�2(𝑖)1,𝑘 ]) ,
Θ̂
(𝑖+3/𝑆)

𝑘 = argmax
Θ

𝑙 (Θ𝑘 | Θ̂(𝑖+2/𝑆)𝑘= [�̂�2(𝑖+1)𝑘 , 𝜇(𝑖+1)0,𝑘 , 𝜇(𝑖)1,𝑘 , �̂�2(𝑖)0,𝑘 , �̂�2(𝑖)1,𝑘 ]) ,
Θ̂
(𝑖+4/𝑆)

𝑘 = argmax
Θ

𝑙 (Θ𝑘 | Θ̂(𝑖+3/𝑆)𝑘= [�̂�2(𝑖+1)𝑘 , 𝜇(𝑖+1)0,𝑘 , 𝜇(𝑖+1)1,𝑘 , �̂�2(𝑖)0,𝑘 , �̂�2(𝑖)1,𝑘 ])...
Θ̂
(𝑖+1)

𝑘 = argmax
Θ

𝑙 (Θ𝑘 | Θ̂(𝑖+(𝑆−1)/𝑆)𝑘= [�̂�2(𝑖+1)𝑘 , 𝜇(𝑖+1)0,𝑘 , 𝜇(𝑖+1)1,𝑘 , �̂�2(𝑖+1)0,𝑘 , �̂�2(𝑖)1,𝑘 ]) ,

(17)

where 𝑆 (𝑆 = 5) is the dimension of vector Θ, and Θ̂(𝑖+1)𝑘
is the maximum value of Θ based on Θ̂(𝑖+(𝑆−1)/𝑆)𝑘 from the
derivative equation 𝜕𝑙(Θ𝑘 | Θ̂(𝑖+(𝑆−1)/𝑆)𝑘 )/𝜕�̂�2(𝑖)

1,𝑘
= 0. As our

focus is on the algorithm fusion process, for the theory of
ECM algorithm and its convergence analysis, see Meng and
Rubin [18], Van et al. [19], and Liu and Rubin [20].

3.2. The Collaboration between Bayesian Updating and ECM
Algorithm. After we have reviewed the ECM algorithm, we
begin our fusion process. Figure 2 shows the procedure of the
fusion process.

First, we use random initial a priori distributions to start
the fusion algorithm, when we collect the degradation signal𝑆(𝑡1) at time 𝑡1. Then, we get the posterior distribution of(𝜃, 𝛽), 𝑝(𝜃, 𝛽 | 𝑆1:𝑘), and a residual life distribution by
Bayesian updating method. Of course, the results are inac-
curate.

Then, we use the posterior distribution of (𝜃, 𝛽), 𝑝(𝜃,𝛽 | 𝑆1:𝑘), to substitute the distribution, given Θ̂(𝑖)𝑘 , of hidden
variables in the 𝐸-step. So, the 𝐸-step of the ECM algorithm
can be rewritten as𝑙 (Θ𝑘 | 𝑝 (𝜃, 𝛽 | 𝑆1:𝑘))= 𝐸𝜃 ,𝛽|𝑝(𝜃 ,𝛽|𝑆1:𝑘) {ln𝑝 (𝑆1:𝑘, 𝜃, 𝛽 | Θ𝑘)} . (18)

Because of the different 𝐸-step, we get a rewritten CM-step
which is different from the one in the ECM algorithm. In



6 Journal of Control Science and Engineering

Random initial 
prior distribution

Prior distribution

Bayesian updating

Posterior
distribution

E-stepCM-step

RUL

t = t1

 ∼ (0, 
2
0 )

 ~ (
1, 

2
1 )

(t) ~ (0, t · 2)

t = tk+1
k = [2

k , 0,k, 

1,k, 

2
0,k, 

2
1,k]

p(,  | 1:k)

k = ；ＬＡＧ；Ｒ l(k | p(,  | S1:k))
(i+1)
k

= ；ＬＡＧ；Ｒ l(k | 
(i+(S−1)/S)
k

)

E , |p( , |S1: )
{lnp(S1:k, ,  | k)}

E
 , |S1: ,

()


{lnp(S1:k, ,  | k)}

k = 1, 2, . . .





 







S

Figure 2: The collaboration algorithm between Bayesian updating and ECM algorithm.

order to get a more accurate estimated value, Θ̂𝑘, in ECM
algorithm we need multiple iterations. However, we can get
the optimal solution of Θ𝑘 only through 𝑆 (𝑆 = 5) steps
calculation, in our fusion algorithm. This will be proved in
Theorem 4. In our fusion algorithm the rewritten CM-step
can be expressed as

Θ̂
(1/5)

𝑘 = argmax
Θ

𝑙 (Θ𝑘 | 𝑝 (𝜃, 𝛽 | 𝑆1:𝑘)= [𝜎2𝑘 , 𝜇0,𝑘, 𝜇1,𝑘, 𝜎20,𝑘, 𝜎21,𝑘]) ,
Θ̂
(2/5)

𝑘 = argmax
Θ

𝑙 (Θ𝑘 | 𝑝 (𝜃, 𝛽 | 𝑆1:𝑘)(1/5)= [�̂�2𝑘 , 𝜇0,𝑘, 𝜇1,𝑘, 𝜎20,𝑘, 𝜎21,𝑘]) ,
Θ̂
(3/5)

𝑘 = argmax
Θ

𝑙 (Θ𝑘 | 𝑝 (𝜃, 𝛽 | 𝑆1:𝑘)(2/5)= [�̂�2𝑘 , 𝜇0,𝑘, 𝜇1,𝑘, 𝜎20,𝑘, 𝜎21,𝑘]) ,
Θ̂
(4/5)

𝑘 = argmax
Θ

𝑙 (Θ𝑘 | 𝑝 (𝜃, 𝛽 | 𝑆1:𝑘)(3/5)= [�̂�2𝑘 , 𝜇0,𝑘, 𝜇1,𝑘, 𝜎20,𝑘, 𝜎21,𝑘]) ,
Θ̂𝑘 = argmax

Θ

𝑙 (Θ𝑘 | 𝑝 (𝜃, 𝛽 | 𝑆1:𝑘)(4/5)= [�̂�2𝑘 , 𝜇0,𝑘, 𝜇1,𝑘, �̂�20,𝑘, 𝜎21,𝑘]) .

(19)

In this five-step calculation of formula (19), we can get the
optimal estimations 𝜎2𝑘 = �̂�2𝑘 , 𝜇0,𝑘 = 𝜇0,𝑘, 𝜇1,𝑘 = 𝜇1,𝑘, 𝜎20,𝑘 =�̂�20,𝑘, 𝜎21,𝑘 = �̂�21,𝑘, respectively.The results of the rewritten CM-
step are the a priori distributions of the next Bayesian updat-
ing procedure. Each time we collect a new degradation signal𝑆(𝑡𝑘) at time 𝑡𝑘, we can recalculate the a priori distributions
and the residual life distribution.

3.3. Estimation of Prior Information. After we have finished
the fusion process, we begin to calculate the optimal variable
value of Θ𝑘 by our fusion algorithm. The log-likelihood
function of complete data can be expressed as

ln𝑝 (𝑆1:𝑘, 𝜃, 𝛽 | Θ𝑘)= ln𝑝 (𝑆1:𝑘 | 𝜃, 𝛽,Θ𝑘) + ln𝑝 (𝜃, 𝛽 | Θ𝑘)= −𝑘 + 22 ln 2𝜋 − 𝑘2 ln𝜎2𝑘 − (𝑆1 − 𝜃 − 𝛽𝑡1)22𝜎2
𝑘
𝑡1− 𝑘∑

𝑖=2

(𝑆𝑖 − 𝛽 (𝑡𝑖 − 𝑡𝑖−1))22𝜎2
𝑘
(𝑡𝑖 − 𝑡𝑖−1) − 12 ln𝜎20,𝑘 − 12 ln𝜎21,𝑘

− (𝜃 − 𝜇0,𝑘)22𝜎2
0,𝑘

− (𝛽 − 𝜇1,𝑘)22𝜎2
1,𝑘

.
(20)

According to formulas (18) and (19), we can compute the
rewritten 𝐸-step as follows:

𝑙 (Θ𝑘 | 𝑝 (𝜃, 𝛽 | 𝑆1:𝑘)) = 𝐸𝜃 ,𝛽|𝑝(𝜃 ,𝛽|𝑆1:𝑘) {ln𝑝 (𝑆1:𝑘, 𝜃, 𝛽 | Θ𝑘)}= −𝑘 + 22 ln 2𝜋 − 𝑘2 ln𝜎2𝑘
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− 𝑆21 − 2𝑆1 (𝜇𝜃 ,𝑘 + 𝜇𝛽 ,𝑘𝑡1) + 𝜇2𝜃 ,𝑘 + 𝜎2𝜃 ,𝑘 + 2𝑡1 (𝜌𝑘𝜎𝜃 ,𝑘𝜎𝛽 ,𝑘 + 𝜇𝜃 ,𝑘𝜇𝛽 ,𝑘) + 𝑡21 (𝜇2𝛽 ,𝑘 + 𝜎2𝛽 ,𝑘)2𝜎2
𝑘
𝑡1

− 𝑘∑
𝑖=2

𝑆2𝑖 − 2𝑆𝑖𝜇𝛽 ,𝑘 (𝑡𝑖 − 𝑡𝑖−1) + (𝜇2𝛽 ,𝑘 + 𝜎2𝛽 ,𝑘) (𝑡𝑖 − 𝑡𝑖−1)22𝜎2
𝑘
(𝑡𝑖 − 𝑡𝑖−1) − 12 ln𝜎20,𝑘 − 12 ln𝜎21,𝑘

− 𝜇2𝜃 ,𝑘 + 𝜎2𝜃 ,𝑘 − 2𝜇𝜃 ,𝑘𝜇0,𝑘 + 𝜇20,𝑘2𝜎2
0,𝑘

− 𝜇2𝛽 ,𝑘 + 𝜎2𝛽 ,𝑘 − 2𝜇𝛽 ,𝑘𝜇1,𝑘 + 𝜇21,𝑘2𝜎2
1,𝑘

.
(21)

Then, based on the rewritten CM-step, we can get the optimal�̂�2𝑘 , 𝜇0,𝑘, 𝜇1,𝑘, �̂�20,𝑘, �̂�21,𝑘 by the following steps, respectively. Step 1. By calculating 𝜕𝑙(Θ𝑘 | 𝑝(𝜃, 𝛽 | 𝑆1:𝑘)/𝜕𝜎2𝑘 = 0, we can
get the optimal

�̂�2𝑘 = 1𝑘 [[[[[[[
𝑆21 − 2𝑆1 (𝜇𝜃 ,𝑘 + 𝜇𝛽 ,𝑘𝑡1) + 𝜇2𝜃 ,𝑘 + 𝜎2𝜃 ,𝑘 + 2𝑡1 (𝜌𝑘𝜎𝜃 ,𝑘𝜎𝛽 ,𝑘 + 𝜇𝜃 ,𝑘𝜇𝛽 ,𝑘) + 𝑡21 (𝜇2𝛽 ,𝑘 + 𝜎2𝛽 ,𝑘)𝑡1+ 𝑘∑

𝑖=2

𝑆2𝑖 − 2𝑆𝑖𝜇𝛽 ,𝑘 (𝑡𝑖 − 𝑡𝑖−1) + (𝜇2𝛽 ,𝑘 + 𝜎2𝛽 ,𝑘) (𝑡𝑖 − 𝑡𝑖−1)2(𝑡𝑖 − 𝑡𝑖−1)
]]]]]]] . (22)

Step 2. By calculating 𝜕𝑙(Θ𝑘 | 𝑝(𝜃, 𝛽 | 𝑆1:𝑘)(1/5)/𝜕𝜇0,𝑘 = 0,
we can get the optimal 𝜇0,𝑘 = 𝜇𝜃 ,𝑘.
Step 3. By calculating 𝜕𝑙(Θ𝑘 | 𝑝(𝜃, 𝛽 | 𝑆1:𝑘)(2/5)/𝜕𝜇1,𝑘 = 0,
we can get the optimal 𝜇1,𝑘 = 𝜇𝛽 ,𝑘.
Step 4. By calculating 𝜕𝑙(Θ𝑘 | 𝑝(𝜃, 𝛽 | 𝑆1:𝑘)(3/5)/𝜕𝜎20,𝑘 = 0,
we can get the optimal �̂�20,𝑘 = 𝜎2𝜃 ,𝑘.

Step 5. By calculating 𝜕𝑙(Θ𝑘 | 𝑝(𝜃, 𝛽 | 𝑆1:𝑘)(4/5)/𝜕𝜎21,𝑘 = 0,
we can get the optimal �̂�21,𝑘 = 𝜎2𝛽 ,𝑘.

According to the above five steps, Θ̂𝑘 = [�̂�2𝑘 , 𝜇0,𝑘, 𝜇1,𝑘, �̂�20,𝑘,�̂�21,𝑘] can be expressed as

�̂�2𝑘 = 1𝑘 [[[[[[[
𝑆21 − 2𝑆1 (𝜇𝜃 ,𝑘 + 𝜇𝛽 ,𝑘𝑡1) + 𝜇2𝜃 ,𝑘 + 𝜎2𝜃 ,𝑘 + 2𝑡1 (𝜌𝑘𝜎𝜃 ,𝑘𝜎𝛽 ,𝑘 + 𝜇𝜃 ,𝑘𝜇𝛽 ,𝑘) + 𝑡21 (𝜇2𝛽 ,𝑘 + 𝜎2𝛽 ,𝑘)𝑡1+ 𝑘∑

𝑖=2

𝑆2𝑖 − 2𝑆𝑖𝜇𝛽 ,𝑘 (𝑡𝑖 − 𝑡𝑖−1) + (𝜇2𝛽 ,𝑘 + 𝜎2𝛽 ,𝑘) (𝑡𝑖 − 𝑡𝑖−1)2(𝑡𝑖 − 𝑡𝑖−1)
]]]]]]] ,

𝜇0,𝑘 = 𝜇𝜃 ,𝑘,�̂�20,𝑘 = 𝜎2𝜃 ,𝑘,𝜇1,𝑘 = 𝜇𝛽 ,𝑘,�̂�21,𝑘 = 𝜎2𝛽 ,𝑘.

(23)

We get the optimal �̂�2𝑘 , 𝜇0,𝑘, 𝜇1,𝑘, �̂�20,𝑘, �̂�21,𝑘 in each step,
respectively. However, it does not mean that Θ̂𝑘 = [�̂�2𝑘 , 𝜇0,𝑘, 𝜇1,𝑘, �̂�20,𝑘, �̂�21,𝑘] is the only maximum point of 𝜕𝑙(Θ𝑘 |𝑝(𝜃, 𝛽 | 𝑆1:𝑘)/𝜕Θ𝑘 = 0. So, we need a further discussion.
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Theorem 4. According to the result of formula (23), the
estimated Θ̂𝑘 is the only maximum point of 𝜕𝑙(Θ𝑘 | 𝑝(𝜃, 𝛽 |𝑆1:𝑘)/𝜕Θ𝑘 = 0.
Proof. First, from formula (21) we can get Θ̂𝑘 which is the
only solution of 𝜕𝑙(Θ𝑘 | 𝑝(𝜃, 𝛽 | 𝑆1:𝑘)/𝜕Θ𝑘 = 0. Next, we

prove that Θ̂𝑘 is corresponding to maximum 𝑙(Θ𝑘 | 𝑝(𝜃, 𝛽 |𝑆1:𝑘). We can perform the second derivative of log-likelihood
function on vectorΘ𝑘 as

𝜕2𝑙 (Θ𝑘 | 𝑝 (𝜃, 𝛽 | 𝑆1:𝑘))𝜕Θ𝑘𝜕Θ𝑇𝑘 =
[[[[[[[[[[[[[[[[[[

𝑘2𝜎4
𝑘

− 𝜏𝜎6
𝑘

0 0 0 00 − 1𝜎2
0,𝑘

0 𝜇0,𝑘 − 𝜇𝜃 ,𝑘𝜎4
0,𝑘

00 0 − 1𝜎2
1,𝑘

0 𝜇1,𝑘 − 𝜇𝛽 ,𝑘𝜎4
1,𝑘0 𝜇0,𝑘 − 𝜇𝜃 ,𝑘𝜎4

0,𝑘

0 12𝜎4
0,𝑘

− 𝜓1𝜎6
0,𝑘

00 0 𝜇1,𝑘 − 𝜇𝛽 ,𝑘𝜎4
1,𝑘

0 12𝜎4
1,𝑘

− 𝜓2𝜎6
1,𝑘

]]]]]]]]]]]]]]]]]]
, (24)

where

𝜏 = 𝑆21 − 2𝑆1 (𝜇𝜃 ,𝑘 + 𝜇𝛽 ,𝑘𝑡1) + 𝜇2𝜃 ,𝑘 + 𝜎2𝜃 ,𝑘 + 2𝑡1 (𝜌𝑘𝜎𝜃 ,𝑘𝜎𝛽 ,𝑘 + 𝜇𝜃 ,𝑘𝜇𝛽 ,𝑘) + 𝑡21 (𝜇2𝛽 ,𝑘 + 𝜎2𝛽 ,𝑘)𝑡1+ 𝑘∑
𝑖=2

𝑆2𝑖 − 2𝑆𝑖𝜇𝛽 ,𝑘 (𝑡𝑖 − 𝑡𝑖−1) + (𝜇2𝛽 ,𝑘 + 𝜎2𝛽 ,𝑘) (𝑡𝑖 − 𝑡𝑖−1)2(𝑡𝑖 − 𝑡𝑖−1) ,𝜓1 = 𝜇2𝜃 ,𝑘 + 𝜎2𝜃 ,𝑘 − 2𝜇𝜃 ,𝑘𝜇0,𝑘 + 𝜇20,𝑘,𝜓2 = 𝜇2𝛽 ,𝑘 + 𝜎2𝛽 ,𝑘 − 2𝜇𝛽 ,𝑘𝜇1,𝑘 + 𝜇21,𝑘.
(25)

Then we use the estimated variable value Θ̂𝑘 = [�̂�2𝑘 , 𝜇0,𝑘, 𝜇1,𝑘,�̂�20,𝑘, �̂�21,𝑘] in (23), and we can find the order principal minor
of the matrix in (24) as follows:Δ 1Θ𝑘=Θ̂𝑘 < 0,Δ 2Θ𝑘=Θ̂𝑘 > 0,Δ 3Θ𝑘=Θ̂𝑘 < 0,Δ 4Θ𝑘=Θ̂𝑘 > 0,Δ 5Θ𝑘=Θ̂𝑘 < 0.

(26)

Thus, we can conclude that (24) is a negative-definite matrix
when Θ𝑘 = Θ̂𝑘, which means that Θ̂𝑘 = [�̂�2𝑘 , 𝜇0,𝑘, 𝜇1,𝑘, �̂�20,𝑘,�̂�21,𝑘] is the only maximum point.

This fusion procedure between Bayesian updating and
ECM algorithm can be performed each time a new degra-
dation signal is observed. That is to say, each time the

degradation signal 𝑆(𝑡𝑘) is observed, we can recalculate Θ̂𝑘 =[�̂�2𝑘 , 𝜇0,𝑘, 𝜇1,𝑘, �̂�20,𝑘, �̂�21,𝑘] and obtain new estimates of residual
life for the newly made system. What is more, the initial
values of priors in the Bayesian updating for the first time
are unrestricted, and once we get a new Θ̂𝑘, it would be used
in the next Bayesian updating as the priors. In Section 4, we
will use simulation method to further evaluate the perfor-
mance of our collaboration algorithm and illustrate that the
unrestricted initial values of priors have little influence on the
estimated vector Θ̂𝑘 = [�̂�2𝑘 , 𝜇0,𝑘, 𝜇1,𝑘, �̂�20,𝑘, �̂�21,𝑘].
4. Simulation and Analysis

In this section, we will adopt the simulation method to fur-
ther evaluate the performance of our collaboration algorithm.
First, in order to represent a degradation process, we create a
set of simulation data based on the exponential degradation
model in Section 2. In the simulation, we assume that 𝜑 = 0,𝜃 ∼ 𝑁(0.02, 2 × 10−6), 𝛽 ∼ 𝑁(0.01, 1 × 10−6), 𝜀(𝑡) ∼ 𝑁(0, 𝑡 ⋅4×10−4). In order to observe enough degradation signals and
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The simulated degradation signal
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Figure 3: Simulation of degradation path.

Table 1: Different initial prior distributions.

Data 𝜃 𝛽 𝜀(𝑡)
(1) 𝑁(0.1, 2 × 10−4) 𝑁(0.05, 1 × 10−4) 𝑁(0, 𝑡 ⋅ 4 × 10−3)
(2) 𝑁(0.2, 2 × 10−4) 𝑁(0.1, 1 × 10−4) 𝑁(0, 𝑡 ⋅ 4 × 10−3)
(3) 𝑁(0.3, 2 × 10−4) 𝑁(0.15, 1 × 10−4) 𝑁(0, 𝑡 ⋅ 4 × 10−3)
obvious degradation trend, we let the threshold 𝑤 = 60 and
the sampling interval (𝑡𝑖 − 𝑡𝑖−1) = 10, 𝑖 = 2, 3, 4, . . .. Figure 3
shows the trajectory of the simulated degradation signal. We
obtain 41 degradation samples, and the degradation reaches
the standard threshold, 𝑤 = 60, at time 𝑡 = 403.5.

We know that 𝜃 ∼ 𝑁(𝜇0, 𝜎20) and 𝛽 ∼ 𝑁(𝜇1 − 𝜎2/2, 𝜎21),
and 𝜇0 and 𝜇1 − 𝜎2/2 dominate the degradation and RUL.
We will use the estimated results of them to prove that
these unrestricted initial priors have little influence on the
estimated accuracy of the RUL. The different initial prior
distributions are as shown in Table 1.

On the other hand, in order to prove that our collabo-
ration algorithm can get a more accurate RUL than other
separate Bayesian updating methods, we will compare our
fusion algorithm with the method in Gebraeel et al. [10]. by
using the 2nd set of initial priors inTable 1. Figure 4 represents
the estimated results of 𝜇0. Figure 5 represents the estimated
results of 𝜇1 − 𝜎2/2.

From Figures 4 and 5, we know that the collaboration
algorithm can estimate the mean of 𝜃 and 𝛽 accurately
even with inaccurate prior information. Although we have
used a variety of inaccurate prior distributions, it can still be
observed that this aspect has little effect on the estimation
of the means of 𝜃 and 𝛽, showing that the degradation
measurements dominate and the collaboration algorithm is
effective. We can know that the estimated means of 𝜃 and 𝛽
gradually approximate to the simulated value, 0.02 and 0.01,
at time about 50, in spite of different initial priors.

The value estimated based on separate Bayesian method
The value estimated based on the 1st set of priors
The value estimated based on the 2nd set of priors
The value estimated based on the 3rd set of priors
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Figure 4: Estimated results of 𝜇0.
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Figure 5: Estimated results of 𝜇1 − 𝜎2/2.
What is more, our collaboration algorithm can get more

accurate estimations compared with the separate Bayesian
updating by using the 2nd set of initial priors in Table 1.

Given the estimated prior distributions we calculate the
point estimations of RUL of the newly made component.
Figure 6 shows the point estimations of RUL by our algorithm
and separate Bayesian updating method.
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Figure 6: Point estimations of RUL by collaboration algorithm and
separate Bayesian Updating method.

From Figure 6, we can know that our collaboration algo-
rithm can get a more accurate RUL comparing with the sep-
arate Bayesian method. And inaccurate a priori distributions
have little effect on the estimation of the RUL. Furthermore,
the point estimations of RUL by our collaboration algorithm
can also reflect the fluctuation of degradation caused by
Brownianmotion error, and this can be known fromFigure 3.

5. Conclusion

In this paper, we presented a collaboration algorithm that
contains the characteristic of Bayesian updating and ECM
algorithm. The difficulties of the fusion process mainly
consist of two parts; the first is building the connection
between ECMalgorithm and Bayesian updating. It is not easy
to find another substitute for the 𝑖th iteration distribution
in the rewritten E-step, and the posterior distribution of
the Bayesian updating is an optimal one. The second is
proving the optimal estimating result about the prior infor-
mation. We can get a maximum estimating result, Θ̂𝑘 =[�̂�2𝑘 , 𝜇0,𝑘, 𝜇1,𝑘, �̂�20,𝑘, �̂�21,𝑘], by the rewrittenCM-step.However, it
does notmean that the estimating result is the onlymaximum
point of 𝜕𝑙(Θ𝑘 | 𝑝(𝜃, 𝛽 | 𝑆1:𝑘)/𝜕Θ𝑘 = 0. In this paper, we use
the second derivative of log-likelihood function on vectorΘ𝑘
and the order principal minor of the matrix in (24) to prove
it.

Our fusion algorithm can predict failures of newly made
systems in the absence of prior degradation knowledge.
Although our fusion algorithm started with random initial
a priori distributions, the simulation experiments show that
the inaccurate a priori distributions have little effect on
the estimation of the RUL, and our fusion algorithm can

get a better prediction than the separate Bayesian method.
Nevertheless, there are still some issues that needed further
investigation for the estimation of the RUL on the single
component without prior degradation knowledge.

First, we assume that the exponential degradation signal
model and the error fluctuation are adequate for the given
degradation path. Actually, we can not guarantee which
model is the best one by visual judgment. So we also need
to focus on model selection and evaluate the goodness-of-fit
of various degradation path models.

Second, we assume that the stochastic parameters of
the exponential degradation model are normally distributed.
However, the stochastic parameters may follow a Gamma
distribution or other distributions. Therefore, we also should
investigate the performance of our collaboration algorithm
when the underlying normal distribution assumptions are
not satisfied.

Third, our work started the RUL calculation in the
degradation processes assuming that the exact point-in-time
of the initial degradation is known. However, the functioning
systemwould be stable within a period of time, and the point-
in-time for the initial degradation is unknown and stochastic.
By considering the distribution of the initial degradation
point, we may be able to predict the RUL right after its
installment.
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