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Abstract

Motivation: Correctly modeling population structure is important for understanding recent evolution and for
association studies in humans. While pre-existing knowledge of population history can be used to specify expected
levels of subdivision, objective metrics to detect population structure are important and may even be preferable for
identifying groups in some situations. One such metric for genomic scale data is implemented in the cross-validation
procedure of the program ADMIXTURE, but it has not been evaluated on recently diverged and potentially cryptic
levels of population structure. Here, I develop a new method, AdmixKJump, and test both metrics under this scenario.

Findings: I show that AdmixKJump is more sensitive to recent population divisions compared to the cross-validation
metric using both realistic simulations, as well as 1000 Genomes Project European genomic data. With two
populations of 50 individuals each, AdmixKJump is able to detect two populations with 100% accuracy that split at
least 10KYA, whereas cross-validation obtains this 100% level at 14KYA. I also show that AdmixKJump is more accurate
with fewer samples per population. Furthermore, in contrast to the cross-validation approach, AdmixKJump is able to
detect the population split between the Finnish and Tuscan populations of the 1000 Genomes Project.

Conclusion: AdmixKJump has more power to detect the number of populations in a cohort of samples with smaller
sample sizes and shorter divergence times.

Availability: A java implementation can be found at https://sites.google.com/site/igsevolgenomicslab/home/
downloads
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Introduction
Correctly identifying population structure is important
both to understand population history and to mitigate
potential confounding signals in association analyzes in
molecular epidemiology [1]. Recent population divisions
can be statistically difficult to recognize as there has
not been substantial time for the groups to differentiate.
Objective methods to identify recent population divisions
are needed. STRUCTURE [2] was the first to do this, but
its Bayesian framework is not computationally efficient
with whole genome sequence data. ADMIXTURE [3] has
implemented a cross-validation approach to select the
correct number of K (i.e. clusters or putative populations)
[4], but how this statistic performs on recent population
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divisions with realistic simulations has yet to be evalu-
ated. Also, alternative approaches may be better suited
to recent demographic events. In this paper, I present an
implementation and adaptation of the “jump method" of
Sugar and James [5] for the problem of identifying popu-
lations in genomic sequence data and termed this method
the AdmixKJump approach and compare its performance
with the cross-validation approach.

Method
To better facilitate ease of use and comparison with
ADMIXTURE, I have implemented AdmixKJump in java
with input files that can be taken directly from ADMIX-
TURE’s output. Parameters can be estimated from dif-
ferent sources (e.g. STRUCTURE or ADMIXTURE) and
then used here to identify the number of clusters.
The method makes use of an information-theoretical

approach where the distortions for any given K (dK ) can
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be calculated using the mean squared error between the
genotypes and those predicted by the admixture model:

d̂Ki = 1
M

×
M∑
l=1

([
2

K∑
k=1

p̂lk × q̂ki

]
− gil

)2

(1)

where for individual i we sum across all M markers
(typically single nucleotide variants) indexed by l, and K
clusters indexed by k. g represents the genotypes in the
form 0, 1, or 2; p̂ represents the estimated allele frequency
for a specific cluster; and q̂ represents the modeled pro-
portion of each individual to each cluster and is usually
interpreted as the ancestry percentage [2,3]. d̂K is calcu-
lated as the average of d̂Ki for all N individuals. Note,
Sugar and James [5] originally formulate the dK value with
the Mahalanobis distance, but simplified it to the mean
squared error because of the complexity of calculating the
covariance matrix. I have made the same simplification in
this implementation.
The jump statistic (JK ) is a measure to identify the

“elbow” in the monotonically decreasing values of d̂K as
the value of K increases. As per Sugar and James [5], it is
calculated using a transformation value Y as:

JK = d̂−Y
K − d̂−Y

K−1 (2)

and the estimated number of clusters (K∗) is selected by:

K∗ = argmax
K

Jk (3)

The transformation value shifts the focus to a particu-
lar part of the d̂K distortion curve, e.g. smaller values bias
towards a lower K∗. To mitigate the subjectivity of select-
ing Y , I modified the selection of K∗ by estimating the
lowest possible value of Y that would select for a given K
(Y ∗[ k]). K∗ is then selected by taking the largest value of
K where Y ∗[K + 1]−Y ∗[K]> 0, or in other words the
largest K where some value of Y supports its selection.
This is the metric I evaluate in simulation and with real
data.

Testing
An important parameter space for thesemethods is recent
population splits such as within continent population divi-
sions. Accordingly, I test how each method fares in identi-
fying the correct number of clusters as a function of time.
I use a coalescent simulation framework based on realistic
parameters from the Exome Sequencing Project [6,7] to
generate whole genome sequences (i.e. 3,000 megabases)
with two populations. I used these parameters with the
coalescent simulator MSMS [8] to generate the data. The
perl script that runs these parameters and imputes them

Figure 1 Split time vs metric accuracy. The x-axis is a split time parameter added to the Human demographic model indicating the point when
two populations start diverging. The y-axis has two labels, the first, Ancestry Accuracy, indicates how accurate the model parameters correctly
cluster the two populations, where 50% accuracy is a random assignment. The second y-axis label indicates the % accuracy of AdmixKJump or
cross-validation to correctly identify K∗ = 2 or two clusters. I am reporting population sample sizes of 10 (blue), 30 (red), and 50 (purple).
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Table 1 European 1000 genomes project pairwise
comparison for FST and K∗

Pair FST K∗

CEU-FIN 0.006 1

CEU-GBR 0.002 1

CEU-TSI 0.003 1

FIN-GBR 0.005 1

FIN-TSI 0.009 2

GBR-TSI 0.004 1

AdmixKJump shows two clusters for one of the pairwise comparisons (FIN-TSI)
whereas cross-validation does not. This is consistent with the increased
divergence of this pair compared to the others, which here is measured by FST .

to MSMS can be found in the program distribution. One
extra parameter is added which allows me to vary the split
time between two populations. This value ranged from 0
to 50K with 50 replicates for every 2K years. Sample size
per population was also set to 10, 30, and 50 (20 and 40
not shown, but are consistent). The generated data was
subsequently filtered with linkage-disequilibrium pruning
and the removal of all singletons as is typical in admixture
analysis [2,3]. I evaluated the accuracy of AdmixKJump
and cross-validation by the number of times it correctly
identified K∗ = 2.
I then apply both metrics to pairwise European popula-

tions of the 1000 Genomes Project [9]. I filter individuals,
sequenced using SOLiD technology which add additional
structure to the data from technical artifacts (see Figure S4
of [9] for evidence of this effect). I also excluded the
Spanish population, as after filtering, only six samples
remained. I then LD pruned the remaining data. This
resulted in over 600K single nucleotide variants for 347
samples from 4 populations.

Results and discussion
In simulation, I find that population structure signals
evaporate after the exponential expansion in human pop-
ulation size at about 5 thousand years ago (KYA). One
potential explanation for this lack of signal is the reduced
effect of genetic drift due to increased population size.
With a sample size (N) of 50 for each of two populations,
AdmixKJump reaches 100% accuracy at 10KYA, whereas
the cross-validation metric obtains 100% power at about
14KYA. The data generated with the test demographic
model produce data with an average FST of 0.009 for
10KYA and 0.015 for 14KYA.
I also find that the new measure has more power with

smaller sample sizes, for instance N = 30 is 100% at
12KYA for AdmixKJump (see Figure 1).
With the 1000 Genomes populations, the cross-

validation approach identifies K∗ = 1 for all pairs.
The AdmixKJump algorithm finds similar results for all

comparisons except the Finnish/Tuscan pair, where it
finds K∗ = 2, consistent with the known population bot-
tleneck of the Finnish population [10], the greatest geo-
graphic separation within these populations, and larger
FST values (see Table 1). Thus, for closely related popula-
tions AdmixKJump is more sensitive.

Conclusions
I have developed a new and powerful approach to clas-
sify population structure. I evaluated the current stan-
dard metric for large scale data sets, cross-validation,
and found both in simulations and 1000 Genomes data
that AdmixKJump is more powerful in recently diverged
populations and with smaller sample sizes.
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