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1 Introduction
To solve the control problem with two-point boundary conditions, different computa-
tional algorithms have been developed: those increasing the initial system dimension []
and based on solutions of the corresponding Hamiltonian equations [] as well as the ones
not increasing the initial problem dimensions [, ].

On the example of construction of the program trajectory and control for biped appara-
tus (PA) [], some difficulties are demonstrated in application of algorithms suggested in
[]. These difficulties are mainly related to bad conditionality of the Hamiltonian matrix
of the corresponding linear algebraic equations.

That is why in [] other methods as well as sweep method are suggested for solving the
problem under consideration.

Different situation arises in the optimization problems with multi-point boundary con-
ditions. Namely, in this case the Lagrange multiplier becomes discontinuous at the inter-
nal points, and direct application of methods of two-point boundary value problems to
optimization problems with multi-point boundary conditions is not possible.

In the paper the modified sweep method is used for solving of the optimal control prob-
lem with multi-point boundary conditions. Both the continuous and discrete cases are
considered.

2 Statement of the problem (the continuous case)
Let us assume that some process is described by the equation

ẋ(t) = F(t)x(t) + G(t)U(t) + v(t), t ∈ [, T], ()
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with multi-point boundary conditions

p∑

i=

�ix(ti) = q, ()

where  = t < t < · · · < ti < · · · < tp– < tp = T ; x(t) is n-dimensional phase vector; u(t) is
m-dimensional control vector; v(t) is n-dimensional vector; F(t), G(t) are matrix functions
of n × n and n × m dimensions, correspondingly; �i, i = , p, are matrices of dimension
k × n; q is k-dimensional vector.

We need to find a control u(t) and corresponding trajectory x(t) that minimize the func-
tional

J =



∫ T



[
x′(t)Q(t)x(t) + u′(t)C(t)u(t)

]
dt, ()

where Q(t) = Q′(t) ≥ , C(t) = C′(t) >  are the matrices of dimensions n × n and m × m,
correspondingly.

Then the corresponding Euler-Lagrange equation will be as follows:

ẋ(t) = F(t)x(t) – M(t)λ(t) + v(t),

λ̇(t) = –Q(t)x(t) – F ′(t)λ(t),

λ(t) = λ() = –�′
pγ , ()

λ(ti + ) = λ(ti – ) – �′
pγ , i = , p – ,

λ(tp) = λ(T) = �′
pγ ,

where M(t) = –C–(t)λ′(t)G(t); and λ(t), γ are Lagrange multipliers.
Sweep method
The essence of the proposed method is that Lagrange multiplier λ(t) is represented as

λ(t) = S(t)x(t) + N(t)γ + ω(t), t ∈ [, t], ()

where S(t), N(t) and ω(t) are the unknown functions. Substituting expression () into
equation (), after some operations, we obtain the following system of differential equa-
tions for determining S(t), N(t) and ω(t):

Ṡ(t) = –F ′(t)S(t) – S(t)F(t) + S(t)M(t)S(t) – Q(t),

Ṅ(t) =
[
S(t)M(t) – F ′(t)

]
N(t), ()

ω̇(t) =
[
S(t)M(t) – F ′(t)

]
ω(t) – S(t)v(t).

Considering the condition λ(T) = �′
pγ in (), we obtain

S(t)x(T) + N(T)γ + ω(T) = �′
pγ .
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Since the functions x(t) and Lagrange multiplier γ are arbitrary, we obtain the following
initial conditions at the point t = T :

S(T) = , N(T) = �′
p, ω(T) = .

Now, considering t = t in () and the condition λ(tp) = –�′
 in (), we obtain

λ(t) = S(t)x(t) + N(t)γ + ω(t) = –�′
γ ,

or the following equations to determine the unknown x(t) and γ :

S(t)x(t) +
[
N(t) + �′


]
γ = –ω(t). ()

Then, from the condition λ(ti + ) = λ(ti – ) – �′
iγ in (), as well as from the equalities

λ(ti + ) = S(ti + )x(ti) + N(ti + )γ + ω(ti + ),

λ(ti – ) = S(ti – )x(ti) + N(ti – )γ + ω(ti – ),

we obtain

S(ti + )x(ti) + N(ti + )γ + ω(ti + )

= S(ti – )x(ti) + N(ti – )γ + ω(ti – ) – �′
iγ .

Hence we obtain

S(ti + ) = S(ti – ),

ω(ti + ) = ω(ti – ), ()

N(ti + ) = N(ti – ) – �′
i.

These equations mean that the functions S(t), ω(t) are continuous and the function N(t)
is discontinuous at the points t = ti.

Now, as in the case of two points, it can be shown that

�px(T) = N ′(t)x(t) + u(t)γ + W (t)

at t ∈ (tp–, tp). Then at t = tp– we obtain

�px(T) = N ′(tp– + )x(tp–) + u(tp– + )γ + W (tp– + ).

Further, putting this into (), we obtain

p–∑

i=

�ix(ti) + �p–x(tp–) + �px(T)

=
p–∑

i=

�ix(ti) + �p–x(tp–) + N ′(tp– + )x(tp–)
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+ n(tp– + ) + W (tp– + )

=
p–∑

i=

�ix(ti) +
[
�p– + N(tp– + )

]
x(tp–) + n(tp– + ) + W (tp– + ) = q.

Hence, we obtain that

p–∑

i=

�ix(ti) + [�p– + N(tp– + )]x(tp–)

+ n(tp– + ) + W (tp– + ) = q, ()

where n(t), W (t) are the solutions of the differential equations

ṅ(t) = N ′(t)M(t)N(t),

Ẇ (t) = N ′(t)
[
M(t)ω(t) – v(t)

] ()

on the interval (tp–, tp) with initial conditions n(tp) = , W (tp) = .
If we denote

�
()
i = �i, i = , p – ,

�
()
p– = �p– + N ′(tp– + ),

q() = q – n(tp– + )v + W (tp– + ),

then we obtain

p–∑

i=

�
()
i x(ti) = q(). ()

Thus, as a result, we obtain condition (), where the point {ti} is smaller by one in com-
parison to the boundary condition (). Continuing this procedure k times, we obtain

p–k∑

i=

�
(k)
i x(ti) = q(k). ()

Then, according to the same procedure as the one used above, we get

�
(k)
p–kx(tp–k) = N ′(t)x(t) + n(t)γ + W (t). ()

Substituting () into (), at t = tp–k– after some elementary transformations, we obtain

p–k–∑

i=

�
(k)
i x(ti) +

[
�

(k)
p–k– + N ′(tp–k– + )

]
x(tp–k–)

= q(k) – n(tp–k– + )γ – W (tp–k– + ), ()

where n(t), W (t) are solutions of equations () with conditions n(tp–k) = , W (tp–k) =  in
the interval tp–k–, tp–k .
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Then denoting

�
(k+)
i = �k

i , i = , p – k – ,

�
(k+)
p–k– = �k

p–k– + N ′(tp–k– + ), ()

q(k+) = q(k) – n(tp–k– + )v – W (tp–k– + ),

we obtain

p–k–∑

i=

�
(k+)
i x(ti) = q(k+).

If we continue this procedure p –  times, we arrive at

�
(p–)
 x(t) + �

(p–)
 x(t) = q(p–). ()

Finally, applying the above methodology again, we obtain

�
(p–)
 x(t) = N ′(t + )x(t) + n(t + )γ + W (t + ). ()

Here n(t) and W (t) are solutions of equations () with conditions n(t) = , W (t) =  in
the interval (t, t). Hence, we find that

[
�

(p–)
 + N ′(t + )

]
x(t) + n(t + )γ = q(p–) – W (t + ). ()

Now, considering the recurrence relation (), from () we have the equation below to
determine x(t) and γ

[
� + N ′(t + )

]
x(t) +

p–∑

i=

n(ti + )γ = q –
p–∑

i=

W (ti + ). ()

Thus, to determine the initial value x(t) and Lagrange multipliers γ , we obtain the sys-
tem of algebraic equations (), (), which can be written in the following matrix form:

[
S(t) N(t + ) + �′



� + N ′(t + )
∑p–

i= n(ti + )

][
x(t)
γ

]
=

[
–ω(t)

q –
∑p–

i= W (ti + )

]
. ()

As can be seen, the main matrix of system () is symmetrical.
Solving the system of linear algebraic equations (), we find x = x() and γ . The control

u(t) is determined by the expression

u(t) = C–(t)G′(t)
(
S(t)x(t) + N(t)γ + ω(t)

)
, ()

and x(t) is a solution of the Cauchy problem

ẋ(t) =
(
F(x) + M(t)S(t)

)
x(t) + M(t)N(t)γ + M(t)ω(t) + v(t), ()

with initial conditions x() = x.
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It should be noted that the coefficients for x(t), u(t) determined from (), () coin-
cide with the coefficients of the corresponding optimal stabilization problem. This fact
significantly simplifies solution of the general optimal control problem (construction of
the program trajectories and control, optimal stabilization).

3 Statement of the problem (the discrete case)
Let the considered process in t ∈ [, T] be described by the equation

x(i + ) = ψ(i)x(i) + �(i)u(i), i = , p – , ()

with multi-point boundary conditions

l∑

j=

�jx(ij) = q, i = , il = p,  < ij < p, j = , l – . ()

It is required to find a control u(i) and corresponding trajectory E(i) that minimize the
functional

J =



p∑

i=

[
x′(i)Q(i)x(i) + u′(i)C(i)u(i)

]
, ()

where  = t < t < · · · < ti < · · · < tp– < tp = T , ψ(i), �(i) are the matrices of n × n and
n × m dimensions, correspondingly, E(i) is n-dimensional vector, u(i) is m-dimensional
vector, �j (i = , il = p,  < ij < p, j = , l – ) are the matrices of dimension k × n, q is
k-dimensional constant vector.

Constructing the extended functional for problem ()-(), we find the corresponding
Euler-Lagrange equation

x(i + ) = ψ(i)x(i) – M(i)λ(i + ), i = , p – ,

λ(i) = Q(i)x(i) + ψ ′(i)λ(i + ),

λ() = –�′
γ , ()

λ(ij + ) = λ(ij – ) – �′
jγ , j = , l – ,

λ(p) = �′
lγ .

Here M(i) = �(i)C–(i)�′(i), n-dimensional vector function λ(i) and k-dimensional con-
stant γ are Lagrange multipliers. We search the unknown discrete function λ(i) from for-
mula () by the following equations:

λ(i) = S(i)x(i) + N(i)γ + ω(i), i = , p, ()

S(i), N(i) and ω(i) are discrete unknown functions, which are required to be found. If we
put expression () into equation (), after some transformations, we obtain the following
system of equations:
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S(i) = ψ ′(i)S(i + )
[
E – M(i)S(i + )

]–
ψ(i) + Q(i),

N(i) = ψ ′(i)
[
E – M(i)S(i + )

]–N(i + ), ()

ω(i) = ϕ′(i)
[
E – M(i)S(i + )

]–
ω(i + ).

For system () we obtain the initial conditions

S(p) = , N(p) = �′
l, ω(p) =  ()

at point i = p.
Taking i = i in formula (), we obtain

λ(i) = S(i)x(i) + N(i)γ + ω(i).

Considering the corresponding condition in system (), we obtain

S(i)x(i) + N(i)γ + ω(i) = –�′
γ ,

and hence for the unknown variables x(i), γ the equation

S(i)x(i) +
[
N(i)γ + �′


]
γ = –ω(i) ()

is obtained. For the unique finding of x(i) and γ , it is necessary to add one more equation
to equation (). To obtain this equation, we use the method given in [].

If we consider the condition

λ(ij + ) = λ(ij – ) – �′
jγ , j = , l – 

in the expression

λ(ij + ) = S(ij + )x(ij) + N(ij + )γ + ω(ij + ),

λ(ij – ) = S(ij – )x(ij) + N(ij – )γ + ω(ij – ),

we obtain

S(ij + )x(ij) + N(ij + )γ + ω(ij + ) = S(ij – )x(ij) + N(ij – )γ + ω(ij – ) – �′
jγ .

From this we get

S(ij + ) = S(ij – ),

N(ij + ) = ω(ij – ), ()

N(ij + ) = N(ij – ) – �′
j.

Then, according to [], we obtain

�lx(p) = N ′(i)x(i) + n(i)γ + W (i), il– < i < p, ()
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where, for il– < i < p, the unknown discrete functions n(i), W (i) are defined as solutions
of the following system:

n(i) = n(i + ) – N ′(i + )
[
E + M(i)S(i + )

]–M(i)N(i + ),

W (i) = W (i + ) – N ′(i + )
[
E + M(i)S(i + )

]–M(i)ω(i + ).
()

Solutions of this equation satisfying the condition il– < i < il are found for all i and must
satisfy the initial conditions

n(il) = n(p) = ,

W (il) = W (p) = .
()

If we put i = il– +  in formula (), then we have

�lx(p) = N ′(il– + )x(il–) + n(il– + )γ + W (il– + ).

Then putting this expression into (), we obtain

l–∑

j=

�jx(ij) + �l–x(il–) + �lx(il)

=
l–∑

j=

�jx(ij) + �l–(xil– ) + N ′(il– + )x(il–) + n(il– + )γ + W (il– + )

=
l–∑

j=

�jx(ij) +
[
�l– + N ′(il– + )

]
x(il–) + n(il– + )γ + W (il– + ) = q.

Denote

�
()
j = �j, j = , l – ,

�
()
l– = �l– + N ′(il– + ),

q() = q – n(il– + )γ W (il+ + ),

then we obtain

l–∑

j=

�
()
j x(ij) = q(). ()

Thus, as a result of the operations, we obtain condition () instead of the boundary
condition (), where there is one less point {ii} than in the boundary condition ().
Continuing this procedure k times, one can get

l–k∑

j=

�
(k)
j x(ij) = q(k). ()
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Then, according to the used below procedure, instead of () we have

�
(k)
l–kx(il–k) = N ′(i)x(i) + n(i)γ + W (i), il–k– < i < il–k .

Here n(i) and W (i) are solutions of equations () satisfying the condition n(il–k) = ,
W (il–k) = .

Then denoting again

�
(k+)
j = �

(k)
j , j = , l – k – ,

�
(k+)
l–k– = �

(k)
l–k– + N ′(il–k– + ), ()

q(k+) = q(k) – n(il–k– + )γ – W (il–k– + ),

we obtain

l–k–∑

j=

�
(k+)
j x(ij) = q(k+).

Continuing this procedure l –  times, we obtain

�
(l–)
 x(i) + �

(l–)
 x(i) = q(l–). ()

Finally, applying the above procedure once more, we obtain the expression

�
(l–)
 x(i) = N ′(i)x(i) + n(i)γ + W (i), i < i < i, ()

where n(i) and W (i) are solutions of equations () satisfying the condition n(i) = ,
W (i) = . Putting i = i in () and taking into account (), we obtain

�
(l–)
 x(i) = N ′(i)x(i) + n(i)γ + W (i) = q(l+)

or

[
N ′(i) + �

(l–)


]
x(i) + n(i)γ = q(l–) – W (i). ()

Further, considering the recurrence relation () in (), we obtain the equation to deter-
mine x(i) and γ

[
N ′(i) + �

]
x(i) +

l–∑

l=

n(ip–k–)γ = q –
l–∑

j=

W (il–k) ()

or

[
N ′(i) + �

(l–)


]
x(i) + n(i)γ = q(l–) – W (i). ()
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If in () we take into account the recurrence relations (), then we obtain

[
N ′(i) + �

]
x(i) +

l–∑

l=

n(ip–k–)γ = q –
l–∑

j=

W (il–k). ()

Thus, to determine the initial value x(i) and Lagrange multipliers γ , we obtain the system
of algebraic equations (), (), which can be written in the following matrix form:

[
S(i)N(i + ) + �′



N ′(i) + �
∑l–

i= n(il–k)

][
x(i)
γ

]
=

[
–ω(i)

q –
∑l–

i= W (il–k)

]
.

4 The numerical algorithm
For the development of numerical algorithm for the sweep method, we consider the opti-
mal control problem with three-point boundary conditions [, ]:

ẋ(t) = F(t)x(t) + G(t)u(t) + v(t), t ∈ [, T], ()

with multipoint boundary conditions

�x() + �x(τ ) + �x(T) = q, τ ∈ (, T), ()

where it is required to minimize the functional

J =



∫ T



[
x′(t)Q(t)x(t) + u′(t)C(t)u(t)

]
dt. ()

Then, as in the case of multipoint boundary conditions, to determine x() the following
system of linear algebraic equations is obtained:

[
S() N() + �

N ′() + � n() + n(τ + )

][
x()
γ

]
=

[
–ω()

q – W () – W (τ + )

]
, ()

where S(t), N(t) and ω(t) are unknown functions. These functions satisfy the following
differential equations:

Ṡ(t) = –F ′(t)S(t) – S(t)F(t) + S(t)M(t)S(t) – Q(t),

Ṅ(t) =
[
S(t)M(t) – F ′(t)

]
N(t), ()

ω̇(t) =
[
S(t)M(t) – F ′(t)

]
ω(t) – S(t)v(t),

with initial conditions at the point t = T

S(T) = , N(T) = �′
, ω(T) = , N(τ + ) = N(τ – ) – �′

. ()

Here M(t) = G(t)C–(t)G′(t), and n(t), W (t) are determined by the following differential
equations:

ṅ(t) = N ′(t)M(t)N(t),

Ẇ (t) = N ′(t)
[
M(t)W (t) – v(t)

] ()
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with initial conditions n(T) = , W (T) =  in the interval τ +  < t < T , and with initial
conditions n(τ – ) = , W (τ – ) =  in the interval  < t < τ – .

Solving the system of linear algebraic equations (), we find x = x() and γ . Then the
control u(t) is determined as follows:

u(t) = C–(t)G′(t)
(
S(t)x(t) + N(t)γ + ω(t)

)
, ()

and x(t) as a solution of the Cauchy problem

ẋ(t) =
[
F(t) + M(t)S(t)

]
x(t) + M(t)N(t)γ + M(t)ω(t) + v(t) ()

with initial condition x() = x.
Considering the above formulae, the following algorithm may be offered for solving

problem ()-():
() F(x), G(t), v(t), �, �, �, q, Q(t), C(t) are formed.
() The functions S(t), N(t) and ω(t) are determined by solving problems ()-().
() The solutions of equation () - the functions n(t) and W (t) - are determined.
() x = x() and γ are determined by solving the system of linear algebraic equations

().
() u(t) is determined by formula ().
() The solution x(t) is obtained from equation ().
This algorithm implies that to determine x(t) one should solve the Riccati equation and

the system of differential equations. To demonstrate the performance of this algorithm,
we use Runge-Kutta method.

First of all we reduce the initial condition at the point t = T to the initial condition at the
point t = . We illustrate this transformation by the example of the first equation in ().
Let

Ṡ(t) = –F ′(t)S(t) – S(t)F(t) + S(t)M(t)S(t) – Q(t), ()

S(t) = S.

Introducing τ = t – t and denoting S(t) = S(t – τ ) = S̄(τ ), from () we obtain

˙̄S(τ ) = –F ′S̄(τ ) – S̄(τ )F + S̄(τ )MS(τ ) – Q,

S̄() = S,  ≤ τ ≤ t.

In analogous way we can transform the other equations of () and ().
We consider the case when Q(t) =  and v(t) = . From equations () we obtain S(t) ≡ ,

ω(t) ≡ , the functions N̄(t), n̄(t) and W̄ (t) being solutions of the differential equations

˙̄N(t) = –F ′(t)N̄(t),

˙̄n(t) = N̄ ′(t)M(t)N̄(t), ()

˙̄W (t) = N̄ ′(t)
[
M(t)W̄ (t)

]



Mutallimov et al. Advances in Difference Equations  (2015) 2015:233 Page 12 of 13

with initial conditions N̄() = �′
, n̄() = , W̄ () =  for the interval  < t < τ –  and

n̄(τ +) = , W̄ (τ +) =  for the interval τ + < t < T . Note that at τ = T
 the last condition

() implies

N̄(τ – ) = N̄(τ + ) – �′
. ()

The system of differential equations () is more convenient for application of Runge-
Kutta method:

N̄(ti+) = N(ti) +
h


(k + k + k + k),

k = –F ′N̄(ti),

k = –F ′
(

N̄(ti) + k · h


)
,

k = –F ′
(

N̄(ti) + k · h


)
,

k = –F ′(N̄(ti) + k · h
)
, h =

ti+ – ti

h
.

Note that condition () somehow complicates the application of Runge-Kutta method
in solving equation (). To overcome the difficulties that occurred, we divide the inter-
val [, T] into n equal parts so that the point t = τ would coincide with one of the nodal
points ti. Then, considering the initial condition N̄() = �′

, we find the solution on the
interval (, τ + ), and using this solution as the initial conditions we obtain the next so-
lution on the entire interval (, T). To find the functions n̄(t) and W̄ (t), we also apply
Runge-Kutta method, but in this case on each interval (, τ ) and (τ , T) the corresponding
differential equations are solved independently.

For n̄(t), considering the notation R(i) = N ′(i)MN(i), we obtain

k = N ′(ti)MW̄ (i),

k = R(i)
(

E + k · h


)
.

Further, for W̄ (t), we denote R(i) = N ′(i)MN(i) to find

k = N ′(ti)MW̄ (i),

k = P(i)
(

E + k · h


)
,

k = P(i)
(

E + k · h


)
,

k = P(i)(E + hk),

W̄ (i + ) = W̄ (i) +
h


(k + k + k + k).

Thus, using Runge-Kutta method for n̄, W̄ , we obtain the corresponding solution. By solv-
ing the system of linear algebraic equations () we find the initial condition x() and
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Lagrange multiplier γ . At S(t) ≡  the value of x(ti) is determined from the system of
differential equations (), () by Runge-Kutta method.

5 Conclusion
In this paper, we explore sweep algorithm for solving optimal control problem with multi-
point boundary conditions. Numerical examples demonstrate the performance of the pro-
posed algorithm. The results can be applied to other examples [–].
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