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Abstract
In order to get divergence free and curl free wavelets, one introduced the smoothed
pseudo spline by using the convolution method. The smoothed pseudo splines can
be considered as an extension of pseudo splines. In this paper, we first show that the
shifts of a smoothed pseudo spline are linearly independent. The linear
independence of the shifts of a pseudo spline is a necessary and sufficient condition
for the construction of the biorthogonal wavelet system. Based on this result, we
generalize the results of Riesz wavelets and derive biorthogonal wavelets from
smoothed pseudo splines. Furthermore, by applying the unitary extension principle,
we construct tight frame systems associated with smoothed pseudo splines with
desired approximation order.
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1 Introduction
In order to construct tight framelets with desired approximation orders, the first type of
pseudo splines was first introduced in [] and []. These pseudo splines are refinable and
compactly supported. In general, these pseudo splines are neither symmetric nor anti-
symmetric. In order to construct symmetric or antisymmetric tight framelets with re-
quired approximation orders, Dong introduced the second type of pseudo splines in [].
The pseudo splines were shown to be an important family of refinable functions. They can
provide a wide variety of choices of refinable functions; B-splines, the orthogonal refinable
functions and the interpolatory refinable functions are special case of them. Hence, they
have large flexibilities in wavelets and framelets construction.

Regarding the pseudo splines, there have been many developments in the theory and
applications over the past ten years. Their applications in image denoising and image
in-painting are very extensive. The pseudo splines consist of a rich family of compactly
supported refinable functions. Together with the unitary extension principle of [], one
gave a range of choices of wavelet systems to meet various demands of applications. De-
pending on the choice of the parameters, pseudo splines with various orders fill in the
gaps between the B-splines and orthogonal refinable functions for the first type and be-
tween B-splines and interpolatory refinable functions for the second type. For the subdi-
vision schemes, pseudo splines provide various choices that meet different demands for
balancing the approximation power, the length of the support, and the regularity of the

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-017-1439-3
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-017-1439-3&domain=pdf
mailto:zhjie@mail.nwpu.edu.cn


Zhou and Zheng Journal of Inequalities and Applications  (2017) 2017:166 Page 2 of 14

limit functions. For the box splines, Li extended the results of [] and [], investigated
pseudo box splines, and analyzed their properties, including stability and regularity in [].
Dong showed that the shifts of arbitrarily given pseudo splines are linearly independent
in []. Bin and Shen in [] further studied the construction of biorthogonal wavelets from
the pseudo splines and derived a dual refinable function with prescribed regularity. The
dual pseudo splines are a new family of refinable functions, they were introduced by Dyn
and Hormann in [] as limits of subdivision schemes. The important properties of a dual
pseudo spline, such as regularity, stability, and linear independence, were derived in []. Yi
and Song constructed Riesa wavelets and tight framelets from dual pseudo splines in [].
Shen and Li introduced complex pseudo splines that were derived from the first type of
the pseudo splines in [], and they analyzed that shifts of every complex pseudo splines
are linearly independent. Moreover, they constructed complex Riesz wavelets and com-
plex tight framelets. In order to get divergence free and curl free wavelets, Zhuang and
Yang presented smoothed pseudo splines in [] and discussed the regularity and stability
of smoothed pseudo splines.

In this paper, firstly, we show that the shifts of a smoothed pseudo spline are lin-
early independent. Base on this result, we construct a biorthogonal wavelet system from
smoothed pseudo splines and generalize the results of Riesz wavelets in []. Moreover,
by using the unitary extension principle, we get the construction of tight framelets with
desired approximation order based on smoothed pseudo splines.

2 Preliminaries
A function φ ∈ L(R) is refinable if it satisfies the following refinement equation:

φ = 
∑

k∈Z
a(k)φ( · –k), (.)

where a is a finitely supported sequence onZ, called the refinement mask of the refinement
function φ. The Fourier transform of a function f ∈ L(R) is defined by

f̂ (ξ ) =
∫

R

f (x)e–ixξ dx, ξ ∈R,

and it can be naturally extended to L(R) functions. The Fourier series of a sequence a on
Z is defined by

â(ξ ) =
∑

k∈Z
a(k)e–iξk , ξ ∈R.

In terms of the Fourier transform, the refinement equation in (.) can be rewritten as

φ̂(ξ ) = â
(

ξ



)
φ̂

(
ξ



)
, ξ ∈R.

We call â a refinement mask for convenience. It may also be given in terms of its sym-
bol ã(z) =

∑
k∈Z a(k)zk , z ∈ C \ {}, which relates to the corresponding Fourier series by

â(ξ ) = ã(e–iξ ), ξ ∈ R. Pseudo splines are defined in terms of their refinement masks. The
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refinement mask of the first type of pseudo splines with order (m, l) is given by

∣∣â(ξ )
∣∣ =

∣∣â(m,l)(ξ )
∣∣ = cosm

(
ξ



) l∑

j=

(
m + l

j

)
sinj

(
ξ



)
cos(l–j)

(
ξ



)
, (.)

and the refinement mask of the second type of pseudo splines with order (m, l) is given by

â(ξ ) = â(m,l)(ξ ) = cosm
(

ξ



) l∑

j=

(
m + l

j

)
sinj

(
ξ



)
cos(l–j)

(
ξ



)
, (.)

where  ≤ l ≤ m – .
According to the Fejér-Riesz lemma (see, e.g., [] and []), we have that the mask of

the first type of pseudo splines is obtained by taking the square root of the mask of the
second type of pseudo splines, i.e., â(ξ ) = |â(ξ )|.

The corresponding pseudo splines can be defined in terms of their Fourier transforms
as

kφ̂(m,l)(ξ ) =
∞∏

j=
kâ(m,l)

(
–jξ

)
, k = , ,

with kφ̂(m,l)() = .
The smoothed pseudo splines were introduced in [] in order to smoothen the pseudo

splines by using the convolution method. The smoothed pseudo splines are defined in
terms of their refinement masks. One can take the smoothed pseudo spline

φn,m,l = φm,l ∗ χ[– 
 , 

 ] ∗ · · · ∗ χ[– 
 , 

 ]︸ ︷︷ ︸
n–m

,

where χ[– 
 , 

 ] denotes the characteristic function of interval [– 
 , 

 ], and n ≥ m. The re-
finement mask of a smoothed pseudo spline of type I with order (n, m, l) is given by

∣∣ân,m,l(ξ )
∣∣ = cosn

(
ξ



) l∑

j=

(
m + l

j

)
sinj

(
ξ



)
cos(l–j)

(
ξ



)
. (.)

The refinement mask of a smoothed pseudo spline of type II with order (r, m, l) is given by

âr,m,l(ξ ) = cosr
(

ξ



) l∑

j=

(
m + l

j

)
sinj

(
ξ



)
cos(l–j)

(
ξ



)
, (.)

where r ≥ m. The smoothed pseudo splines can be considered as an extension of the
pseudo splines. When r = m, they are the pseudo splines.

The smoothed dual pseudo splines are also an extension of the dual pseudo splines.
Similar to the definition of (.), we can get the smoothed dual pseudo splines. Their re-
finement mask is given by

b̂n,m,l(ξ ) = ei ξ
 cosn+

(
ξ



) l∑

j=

(
m + l + /

j

)
sinj

(
ξ



)
cos(l–j)

(
ξ



)
.
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Furthermore, we assume n ∈ R in (.), then the smoothed dual pseudo splines are gen-
eralized to the fractional splines in []. If we define the translated form of the type II
by T φ̂r,m,l(ξ ) = e–ir ξ

 φ̂r,m,l(ξ ), we can get the differential relation Tφ′
r+,m,l(x) = Tφr,m,l(x) –

Tφr,m,l(x – ), which plays an important role in the construction of divergence free wavelets
and curl free wavelets in the analysis of incompressible turbulent flows. For more details
on the construction of divergence free and curl free wavelets, see [] and [].

We now define the following functions:

Pm,l(y) =
l∑

j=

(
m + l

j

)
yj( – y)l–j,

Rm,l(y) = ( – y)mPm,l(y),

Rr,m,l(y) = ( – y)
r
 Pm,l(y),

denoting y = sin( ξ

 ), r, m, l are nonnegative integers and r ≥ m. Then we can find that

Rm,l

(
sin

(
ξ



))
= âm,l

(
ξ



)
, Rr,m,l

(
sin

(
ξ



))
= âr,m,l(ξ ).

We now give the following three lemmas to prove the key results of this paper.

Lemma . ([]) For nonnegative integers m and l with l ≤ m – , let Rm,l and Pm,l be the
polynomials defined above. Then

() Pm,l(y) =
∑l

j=
(m–+j

j
)
yj;

() R′
m,l(y) = –(m + l)

(m+l–
l

)
yl( – y)m–;

() R′
r,m,l(y) = –( r

 – m)( – y) r
 –m–Rm,l(y) + ( – y) r

 –mR′
m,l(y).

Lemma . ([]) For nonnegative integers m, r and l.
() Define Q(y) = Rr,m,l(y) + Rr,m,l( – y), then

min
y∈[,]

Q(y) = Q
(




)
= – r

 –l
l∑

j=

(
m + l

j

)
.

() Define S(y) = R
r,m,l(y) + R

r,m,l( – y), then

min
y∈[,]

S(y) = S
(




)
= –r–l

( l∑

j=

(
m + l

j

))

.

Lemma . ([]) For given nonnegative integers m, r and l with m ≥ ,  ≤ l ≤ m – , we
have

l
(

m + l
l

) 
 ≤

l∑

j=

(
m + l

j

)
.

3 Linear independence of smoothed pseudo splines
The section is devoted to analyzing linear independence of the shifts of smoothed pseudo
splines, which is a necessary and sufficient condition for the existence of the biorthogonal
wavelets. It ensures the existence of the biorthogonal dual refinable function with arbitrar-
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ily prescribed regularity. This is stronger than the statement that the shifts of a smoothed
pseudo spline form a Riesz system, see [].

We said that the shifts of a compactly supported function are linearly independent if and
only if

∑

j∈Z
a(j)φ(· – j) =  �⇒ a = ,

for all sequences a ∈ l{Z}, φ ∈ L(R).
We get the following lemma about the linear independence of the shifts of a compactly

supported function.

Lemma . [] Let φ ∈ L(R) be a compactly supported refinable function with finitely
supported refinement mask a. The shifts of φ are linearly independent if and only if:

() φ is stable;
() the symbol ã does not have any symmetric zeros on C \ {}.

We are now ready to discuss the linear independence of the shifts of the smoothed
pseudo splines. According to Lemma ., in order to show the linear independence of
the shifts of the smoothed pseudo splines, we need to verify that (i) the smoothed pseudo
splines are stable, (ii) the symbol of an arbitrary smoothed pseudo spline does not have
any symmetric zeros on C \ {}. The stability of the smoothed pseudo splines was shown
in [], we only need to verify condition (ii). We have the following theorem.

Theorem . The shifts of any smoothed pseudo splines of type II are linearly independent.

Proof The refinement mask of a smoothed pseudo spline of type II with order (r, m, l) is
given by (.), i.e.,

âr,m,l(ξ ) = cosr
(

ξ



) l∑

j=

(
m + l

j

)
sinj

(
ξ



)
cos(l–j)

(
ξ



)
.

Using cos( ξ

 ) = (+e–iξ )

e–iξ , sin( ξ

 ) = –(–e–iξ )

e–iξ in Eq. (.), we can get

â(r,m,l)(ξ ) =
( + e–iξ )r

(e–iξ ) r


l∑

j=

(
m + l

j

)(
–( – e–iξ )

e–iξ

)j( ( + e–iξ )

e–iξ

)l–j

.

Substituting z = e–iξ , the symbol of the smoothed pseudo splines of type II can be written
as

ã(z) =
( + z)r

(z) r


l∑

j=

(
m + l

j

)(
–( – z)

z

)j( ( + z)

z

)l–j

=
( + z)r

(z) r
 +l

l∑

j=

(
m + l

j

)(
–( – z))j( + z)(l–j)

=
( + z)r+l

(z) r
 +l

l∑

j=

(
m + l

j

)(
–( – z)

( + z)

)j

.
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Obviously, z = – is a zero of ã(z), when z = , ã() = . Hence, ã(z) having no symmetric
zeros on C \ {} is equivalent to the polynomial

p(z) =
l∑

j=

(
m + l

j

)(
–( – z)

( + z)

)j

having no symmetric zeros on C \ {, , –}.
Consider

h(x) =
l∑

j=

hjxj,

with hj =
(m+l

j
)
, x ∈ C. Since coefficients hj of the polynomial p(z) form a strictly positive

and increasing sequences, using Proposition . of [], we can have that all zeros of any
polynomial h(x) =

∑l
j= hjxj are contained in the open unit disk D := {x ∈ C : |x| < }. Sup-

pose p(z) has symmetric zeros z and –z. Then they must both be in D, therefore,

|x||x| < .

Since

|x| =
∣∣∣∣ –

( – z)

( + z)

∣∣∣∣ =


| – (+z)

(–z) |
=


|x| ,

we conclude that |x||x| = , which contradicts |x||x| < . It follows that p(z) has no
symmetric zeros on C\{, , –}. Hence, ã(z) has no symmetric zeros on C\{}. Together
with the stability of smoothed pseudo splines, we conclude the proof. �

4 The construction of biorthogonal wavelet
In this section, based on the results of Section , we focus on the construction of biorthog-
onal wavelets from the smoothed pseudo splines. The biorthogonal wavelets are a general
form of Riesz wavelets. Firstly, we begin with some basics. For a given ψ ∈ L(R), define
the wavelet system

X(ψ) :=
{
ψn,k = n/ψ

(
n · –k

)
: n, k ∈ Z

}
.

If, for some C >  and for every f ∈ L(R), we have

∑

g∈X(ψ)

∣∣〈f , g〉∣∣ ≤ C‖f ‖
L(R),

then we call system X(ψ) a Bessel system. A Bessel system X(ψ) is a Riesz basis for L(R)
if there exists C >  such that

C
∥∥{cn,k}

∥∥
l(Z) ≤

∥∥∥∥
∑

(n,k)∈Z

cn,kψn,k

∥∥∥∥
L(R)
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for all {cn,k} ∈ l(Z), and the span of {ψn,k ∈ Z} is dense in L(R). We call the function ψ a
Riesz wavelet. If X(ψ) forms a Riesz basis for L(R), X(ψ) is also called the Riesz wavelet
system.

Let a refinable function φ ∈ L(R) be a compactly supported orthonormal refinable func-
tion satisfying the following refinement equation:

φ = 
∑

k∈Z
akφ( · –k),

one can easily obtain a wavelet function ψ by

ψ = 
∑

k∈Z
(–)k–a( – k)φ( · –k). (.)

It is well known that ψ generates an orthonormal wavelet basis for L(R). We are in-
terested in knowing whether the function ψ defined in (.) is a Riesz wavelet when the
refinable function φ is chosen to be different refinable functions. When the refinable func-
tion φ is a B-spline, Han showed in [] that the wavelet defined in (.) is a Riesz wavelet.
When the refinable function φ is chosen to be a pseudo spline, Dong in [] gave the same
results. If the refinable function φ is a smoothed pseudo spline, Zhuang obtained the fol-
lowing results.

Theorem . ([]) Let kφ, k = , , be the smoothed pseudo splines of types I and types II
with order (r, n, m, l). The refinement masks ka are given in (.) and (.). Define

kψ̂(ξ ) = e–iξ
kâ(ξ + π )kφ̂(ξ ), k = , .

Then X(ψ) is a Riesz basis for L(R).

Now, we give the main results in this section. We start with a lemma and a corollary.

Lemma . ([]) Let a and b be two sequences on Z satisfying the following two condi-
tions:

(i)

∣∣â(ξ )
∣∣ =

(
 + e–iξ



)m

Â(ξ ); b̂(ξ ) =
(

 – eiξ



)m̃

B̂(ξ ),

where m and m̃ are positive integers, A and B are sequences on Z with polynomial
decay satisfying Â() =  and B̂(π ) = .

(ii) Let

ˆ̃a(ξ ) =
(

 + e–iξ



)m̃ ˆ̃A(ξ ), ˆ̃b(ξ ) =
â(ξ + π )

d̂(ξ )
,

where ˆ̃A(ξ ) = B̂(ξ+π )
d̂(ξ )

, d̂(ξ ) = â(ξ )b̂(ξ + π ) – â(ξ + π )b̂(ξ ) = , for all ξ ∈R.
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Define

φ̂(ξ ) =
∞∑

j=

â
(
–jξ

)
, ˆ̃

φ(ξ ) =
∞∑

j=

ˆ̃a(
–jξ

)
,

ψ̂(ξ ) = b̂
(

ξ



)
φ̂

(
ξ



)
, ˆ̃

ψ(ξ ) = ˆ̃b
(

ξ



)
ˆ̃
φ

(
ξ



)
.

Assume that

lim sup
n→∞

‖An‖/n
l(Z) < m– 

 , lim sup
n→∞

‖Ãn‖/n
l(Z) < m̃– 

 ,

where

Ân(ξ ) = Â
(
n–ξ

) · · · Â(ξ )Â(ξ ), ˆ̃An(ξ ) = ˆ̃A(
n–ξ

) · · · ˆ̃A(ξ ) ˆ̃A(ξ ). (.)

Then all the functions φ, φ̃, ψ , ψ̃ belonging to L(R) satisfy

〈
φ, φ̃(· – k)

〉
=

〈
ψ , ψ̃(· – k)

〉
= δ(k),

〈
φ, ψ̃(· – k)

〉
=

〈
ψ , φ̃(· – k)

〉
= , k ∈ Z.

With this, Han gave the following corollary as a direct result of Lemma ..

Corollary . ([]) Let the sequences a and b be given in Lemma ., and the sequences ã,
b̃, A, Ã and the functions φ, φ̃, ψ , ψ̃ belonging to L(R) be defined as in Lemma .. Define

ρA = inf
n∈N

‖Ân‖/n
L∞(R), ρÃ = inf

n∈N
‖ ˆ̃An‖/n

L∞(R),

where An and Ãn are defined in (.). Then, for any ε > , there exists a positive constant
M such that

max
(∣∣φ̂(ξ )

∣∣,
∣∣ψ̂(ξ )

∣∣) ≤ M( + |ξ |)–m+ε+log ρA , ∀ξ ∈R,

max
(∣∣ ˆ̃

φ(ξ )
∣∣,

∣∣ ˆ̃
ψ(ξ )

∣∣) ≤ M( + |ξ |)–m̃+ε+log ρÃ , ∀ξ ∈R.

Consequently, if ρA < m– 
 and ρÃ < m̃– 

 , then (X(ψ), X(ψ̃)) forms a pair of biorthogonal
wavelet bases in L(R). In particular, X(ψ) is a Riesz basis of L(R).

With Lemma . and Corollary ., we prove the following result on the biorthogonal
wavelets infinite masks from smoothed pseudo splines.

Theorem . Let kφ, k = , , be the smoothed pseudo splines of types I and types II with
order (r, n, m, l), the refinement masks kâ are given in (.) and (.). Let b be a sequence
on Z, if â, b̂ can be factorized into the form

∣∣â(ξ )
∣∣ =

(
 + e–iξ



)m

Â(ξ ); b̂(ξ ) =
(

 – eiξ



)m̃

B̂(ξ ).
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Assume

ˆ̃a(ξ ) =
(

 + e–iξ



)m̃ ˆ̃A(ξ ), ˆ̃b(ξ ) =
â(ξ + π )

d̂(ξ )
,

where ˆ̃A(ξ ) = B̂(ξ+π )
d̂(ξ )

, d̂(ξ ) = â(ξ )b̂(ξ + π ) – â(ξ + π )b̂(ξ ).
Define

φ̂(ξ ) =
∞∑

j=

â
(
–jξ

)
, ˆ̃

φ(ξ ) =
∞∑

j=

ˆ̃a(
–jξ

)
,

ψ̂(ξ ) = b̂
(

ξ



)
φ̂

(
ξ



)
, ˆ̃

ψ(ξ ) = ˆ̃b
(

ξ



)
ˆ̃
φ

(
ξ



)
.

If we have

lim sup
n→∞

‖An‖/n
l(Z) < m– 

 , lim sup
n→∞

‖Ãn‖/n
l(Z) < m̃– 

 ,

where

Ân(ξ ) = Â
(
n–ξ

) · · · Â(ξ )Â(ξ ), ˆ̃An(ξ ) = ˆ̃A(
n–ξ

) · · · ˆ̃A(ξ ) ˆ̃A(ξ ),

then

〈
φ, φ̃(· – k)

〉
=

〈
ψ , ψ̃(· – k)

〉
= δ(k),

〈
φ, ψ̃(· – k)

〉
=

〈
ψ , φ̃(· – k)

〉
= , k ∈ Z.

Proof We first note that

∣∣ân,m,l(ξ )
∣∣ +

∣∣ân,m,l(ξ + π )
∣∣ = Rn,m,l(y) + Rn,m,l( – y) = ;

∣∣âr,m,l(ξ )
∣∣ +

∣∣âr,m,l(ξ + π )
∣∣ = R

r,m,l(y) + R
r,m,l( – y) = ,

d̂(ξ ) = â(ξ )b̂(ξ + π ) – â(ξ + π )b̂(ξ )

= e–i(ξ+π )(∣∣â(ξ )
∣∣ +

∣∣â(ξ + π )
∣∣) = , ξ ∈ [–π ,π ].

According to Theorem ., when kφ, k = , , are the smoothed pseudo splines, kψ̂(ξ ) =
e–iξ

kâ(ξ + π )kφ̂(ξ ) is a Riesz wavelet, X(ψ) is a Riesz basis for L(R). We have

∣∣ân,m,l(ξ )
∣∣ = ân,m,l(ξ ) =

(
 + e–iξ



)n

Â(ξ ),

b̂(ξ ) = e–iξ
kâ(ξ + π ) = e–iξ

(
 + eiξ



)n

Â(ξ + π ).

So,

B̂(ξ ) = e–iξ Â(ξ + π ),
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where Â(ξ ) =
∑l

j=
(m+l

j
)

sinj( ξ

 ) cos(l–j)( ξ

 ). Next, we check whether ρA < m– 
 and

ρÃ < m̃– 
 hold. By the proof of Theorem ., we get

ρA = inf‖Ân‖/n
L∞(R) ≤ ∥∥Ân(ξ )

∥∥
L∞(R) ≤ n– 

 .

Denote y = sin( ξ

 ), we have


ˆ̃A(ξ ) =

B̂(ξ + π )

d̂(ξ )
= Â(ξ )

Rn,m,l(y) + Rn,m,l( – y)
.

So

ρ
Ã = inf‖

ˆ̃An‖/n
L∞(R) ≤ sup

y∈[,]

∣∣∣∣
Â(ξ )

Rn,m,l(y) + Rn,m,l( – y)

∣∣∣∣

= sup
y∈[,]

∣∣∣∣
(Pm,l(y))/

Rn,m,l(y) + Rn,m,l( – y)

∣∣∣∣

≤
(m+l

l
)/

miny∈[,](Rn,m,l(y) + Rn,m,l( – y))

=
n+l–(m+l

l
)/

∑l
j=

(m+l
j

) .

Applying Lemma ., we have ρ
Ã = inf‖

ˆ̃An‖/n
L∞(R) ≤ n– 

 . Similarly, we also obtain ρ
Ã =

inf‖
ˆ̃Ar‖/r

L∞(R) ≤ r– 
 . This completes the proof. �

5 The construction of tight framelets
In this section, we give a construction of tight framelets and discuss the approximation
order of tight framelets from smoothed pseudo splines by using the unitary extension
principle of []. The construction here is based on the unitary extension principle, we
make use of the pseudo splines of type II to obtain a tight frame. Before proceeding further,
let us recall some basic definitions.

A system X(
) with 
 = {ψ , . . . ,ψL} is a frame for L(R) if there exist positive constants
C and C such that

C‖f ‖ ≤
L∑

l=

∑

n∈Z

∑

k∈Z

∣∣〈f ,ψ l
n,k

〉∣∣ ≤ C‖f ‖, ∀f ∈ L(R),

where 〈f , g〉 =
∫
R

f (t)g(t) dt, ‖f ‖ = 〈f , f 〉.
Let 
 = {ψ , . . . ,ψL} and 
̃ = {ψ̃ , . . . , ψ̃L} be two sets of functions in L(R) if each of

X(
) and X(
̃) is a Bessel system in L(R) satisfying

〈f , g〉 =
L∑

l=

∑

n∈Z

∑

k∈Z

〈
f , ψ̃ l

n,k
〉〈
ψ l

n,k , g
〉
, ∀f , g ∈ L(R). (.)

We say that (X(
), X(
̃)) is a pair of bi-frames L(R).
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If (.) holds with ψ̃ l = ψ l for all l = , , . . . , L, then X(
) is a tight wavelet frame in
L(R). If (X(
), X(
̃)) satisfies 〈ψ l

n,k ,ψ l′
n′ ,k′ 〉 = δ(l – l′)δ(n – n′)δ(k – k′), n, n′, k, k′ ∈ Z, for all

l, l′ = , , . . . , L, then (X(
), X(
̃)) forms a pair of biorthogonal wavelet bases in L(R).
For X(
), define the truncated operator as

Hn : f →
∑

ψi∈
 ,k∈Z,j<n

〈f ,ψj,k〉ψj,k , i = , , . . . , L.

We say that the operator Hn provides approximation order m if for all f in the Sobolev
space W m

 (R)

‖f – Hnf ‖ = O
(
–nm

)
.

Recall that a function φ satisfies the Strang-Fix (SF) condition of order m if

φ̂() = , φ̂(j)(πk) = , j = , , . . . , m – , k ∈ Z \ {}.

If the refinable function φ satisfies the Strang-Fix (SF) condition of order m and the cor-
responding mask â satisfies  – |â| = O(| · |m ) at the origin, then m = min{m, m}.

Let â be the refinement mask of φ ∈ L(R) with â() = , and the corresponding wavelet
masks b̂j, j = , , . . . , L. If â, b̂j are trigonometric polynomials that satisfy

∣∣â(ξ )
∣∣ +

L∑

j=

∣∣b̂j(ξ )
∣∣ = , â(ξ )â(ξ + π ) +

L∑

j=

b̂j(ξ )b̂j(ξ + π ) = , (.)

for all ξ ∈ [–π ,π ], and 
 = (ψ ,ψ, . . . ,ψL) ⊂ L(R) are given by

ψ̂ j(ξ ) = b̂j(ξ )φ̂(ξ ), j = , , . . . , L,

then the unitary extension principle asserts that X(
) is a tight frame for L(R).

Theorem . Let φ be a smoothed pseudo spline of type II with order (r, m, l) and â be
its refinement mask. Suppose

T :=  –
∣∣â(ξ )

∣∣ –
∣∣â(ξ + π )

∣∣, γ :=
√

T


,

where γ is obtained via the Fejér-Riesz lemma. Define

b̂(ξ ) = e–iξ
â(ξ + π ), b̂(ξ ) = γ (ξ ) + e–iξ γ (–ξ ), b̂(ξ ) = e–iξ γ (–ξ ) – γ (ξ ).

Let 
 = {ψ ,ψ,ψ}, where ψ̂ j(ξ ) = b̂j(ξ )φ̂(ξ ), j = , , . Then X(
) is a tight frame for
L(R). Furthermore, the corresponding truncated operatorH provides approximation order
l + .

Proof The proof of tight frame is analogous to that of Construction . in []. We only give
the proof of the approximation order. Firstly, we compute the order of zeros of  – |â| at
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the origin. Because Rr,m,l(sin( ξ

 )) = âr,m,l(ξ ), we have

 – |â| =  – R
r,m,l

(
sin

(
ξ



))
.

Taking the first derivative of  – |â| =  – R
r,m,l(sin( ξ

 )) with respect to ξ , applying ()
and () of Lemma ., we can obtain

 – R
r,m,l

(
sin

(
ξ



))′

= –Rr,m,l

(
sin

(
ξ



))
R′

r,m,l

(
sin

(
ξ



))(
sin

(
ξ



))′

= 
(

r


– m
)(

cos

(
ξ



))r–m–

Rm,l

(
sin

(
ξ



))
Rr,m,l

(
sin

(
ξ



))
sin

(
ξ



)

+ (m + l)
(

m + l – 
l

)
Rr,m,l

(
sin

(
ξ



))
sinl+

(
ξ



)
cosr–

(
ξ



)
.

Since Rm,l(sin( ξ

 )), Rr,m,l(sin( ξ

 )), cos( ξ

 ) is equal to  when ξ = , and sinl+( ξ

 ) has zero
of order l +  at ξ = , we conclude that

 – |â| =  – R
r,m,l

(
sin

(
ξ



))
= O|ξ |l+.

Since φ satisfies the Strang-Fix condition of order r, the corresponding truncated op-
erator Hn provides the approximation order min{r, l + } = l + , for  ≤ l ≤ m – ,
r ≥ m. �

6 Example
In this section, we give an example to illustrate our main result.

Example We choose â to be the mask of the smoothed pseudo splines of type II with
order (, , ), i.e.,

â(ξ ) = cos
(

ξ



)(
 +  sin

(
ξ



))
.

We define

b̂(ξ ) = e–iξ â(ξ + π ) = e–iξ sin
(

ξ



)(
 +  cos

(
ξ



))

is a mask of the corresponding wavelet ψ . Then, by Theorem ., X(ψ) forms a Riesz basis
for L(R). The wavelet ψ has six vanishing moments. See Figure  for the graphs of the
functions φ,, and ψ .

According to Theorem ., if the refinement masks satisfy the factorized condition of
Theorem ., the corresponding masks of biorthogonal wavelets with infinite masks from
smoothed pseudo splines will be obtained. By verifying the condition of the biorthogonal
wavelets in Theorem ., we can get that the corresponding biorthogonal wavelets ψ have
six vanishing moments from a given smoothed pseudo spline φ,,.
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Figure 1 Graphs of the scaling function and the corresponding wavelet.

7 Conclusion
In this paper, we constructed biorthogonal wavelets and tight framelets from a given
smoothed pseudo spline. By analyzing the relevant knowledge of pseudo splines and
wavelets, we found that the shifts of the smoothed pseudo splines are linearly indepen-
dent. Based on the linear independence of the shifts of pseudo splines, we derived the
construction of biorthogonal wavelets. By using the unitary extension principle, we con-
structed tight framelets with desired approximation order from a given smoothed pseudo
spline.

It is interesting to note that in both theory and application, the family of wavelets and
framelets studied exhibits good mathematical properties. In the future, we will consider
how to achieve the construction of the compactly supported biorthogonal symmetric or
anti-symmetric multi-wavelets and framelets with a dilation factor other than .
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