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Variable selection is fundamental to high-dimensional statistical modeling. Many variable selection techniques may be
implemented by penalized least squares using various penalty functions. In this paper, an arctangent type penalty which very closely
resembles 𝑙

0
penalty is proposed; we call it Atan penalty.The Atan-penalized least squares procedure is shown to consistently select

the correct model and is asymptotically normal, provided the number of variables grows slower than the number of observations.
TheAtan procedure is efficiently implemented using an iteratively reweighted Lasso algorithm. Simulation results and data example
show that the Atan procedure with BIC-type criterion performs very well in a variety of settings.

1. Introduction

High-dimensional data arise frequently in modern applica-
tions in biology, economics, chemometrics, neuroscience,
and other scientific fields. To facilitate the analysis, it is often
reasonable and useful to assume that only a small number
of covariates are relevant for modeling the response variable.
Under this sparsity assumption, a widely used approach for
analyzing high-dimensional data is regularized or penalized
regression. This approach estimates the unknown regression
coefficients by solving the following penalized regression
problem:

min
𝛽∈R𝑝

{

{

{

1

2𝑛

y − X𝛽
2
+

𝑝

∑

𝑗=1

𝑝
𝜆
(

𝛽
𝑗


)
}

}

}

, (1)

where X = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇 is 𝑛 × 𝑝 design matrix, y =

(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
)
𝑇 is an 𝑛-dimensional response vector, 𝛽 =

(𝛽
1
, . . . , 𝛽

𝑝
)
𝑇 is the vector of unknown regression coefficients,

‖ ⋅ ‖ denotes 𝐿
2
norm (Euclidean norm), and 𝑝

𝜆
(⋅) is a penalty

function which depends on a tuning parameter 𝜆 > 0.

In the above regularization framework, various penalty
functions are used to perform variable selection by putting
relatively large penalties on small coefficients, such as the best
subset selection, 𝑙

1
penalized regression or Lasso [1], Bridge

regression [2], SCAD [3], MCP [4], SICA [5], SELO [6],
Dantzig selector [7], and Bayesian variable selection method
[8].Themainstreammethods are the Lasso, Dantzig selector,
and the folded concave penalization [9] such as the SCADand
MCP.The best subset selection, namely, 𝑙

0
penalty, along with

the traditional model selection criteria such as AIC, BIC, and
RIC [10–12] is attractive for variable selection since it directly
penalizes the number of nonzero coefficients. However, one
drawback of 𝑙

0
penalized least squares (PLS) procedure is

instability of the resulting estimators [13]. This results from
the fact that 𝑙

0
penalty is not continuous at 0. Another perhaps

more significant drawback of 𝑙
0
penalty is that implementing

𝑙
0
PLS procedures is NP-hard and may involve an exhaustive

search over all possible models. Thus, implementing these
procedures is computationally infeasible when the number
of potential predictors is even moderately large, let along the
high-dimensional data.

The Lasso penalized regression is computationally attrac-
tive and enjoys great performance in prediction. However,
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Lasso may not consistently select the correct model and
is not necessarily asymptotically normal [14, 15]; a strong
irrepresentable condition is necessary for the Lasso to be
selection consistent [15, 16]. The folded concave penaliza-
tion, unlike the Lasso, does not require the irrepresentable
condition to achieve the variable selection consistency and
can correct the intrinsic estimation bias of the Lasso. Fan
and Li [3] first systematically studied nonconvex penalized
likelihood for fixed finite dimension 𝑝. They recommended
the SCAD penalty which enjoys the oracle property (a
variable selection and estimation procedure is said to have
the oracle property if it selects the true model 𝐴, with
probability tending to one, and if the estimated coefficients
are asymptotically normal, with the same asymptotic variance
as the least squares estimator based on the true model) for
variable selection. Fan and Peng [17] extended these results
by allowing 𝑝 to grow with 𝑛 at the rate 𝑝 = 𝑜(𝑛

1/5
) or 𝑝 =

𝑜(𝑛
1/3

). Lv and Fan [5] introduced the weak oracle property,
which means that the estimator enjoys the same sparsity
as the oracle estimator with asymptotic probability one
and has consistency, and established regularity conditions
under which the PLS estimator given by folded concave
penalties has a nonasymptotic weak oracle property when
dimensionality𝑝 can grow nonpolynomially with sample size
𝑛. Theoretical properties enjoyed by SELO [6] estimators
allow the number of predictors 𝑝 to tend to infinity, along
with the number of observations 𝑛, provided 𝑝/𝑛 → 0. For
high-dimensional nonconvex penalized regression with 𝑝 >

𝑛, Kim et al. [18] proved that the oracle estimator itself is a
local minimum of SCAD penalized least squares regression
under very relaxed conditions; Zhang [4] proposedMCP and
devised a novel PLUS algorithm which when used together
can achieve the oracle property under certain regularity
conditions. Recently, Fan et al. [9] have shown that the
folded concave penalization methods enjoy the strong oracle
property for high-dimensional sparse estimation. Important
insight has also been gained through the recent work on
theoretical analysis of the global solution [19–21].

The practical performance of PLS procedures depends
heavily on the choice of a tuning parameter. The theoret-
ically optimal tuning parameter does not have an explicit
representation and depends on unknown factors such as the
variance of the unobserved randomnoise. Cross-validation is
commonly adopted in practice to select the tuning parameter
but is observed to often result in overfitting. In the case of
fixed 𝑝, Wang et al. [22] proposed that one selects tuning
parameter by minimizing the generalized BIC tuning param-
eter selector. Wang et al. [23] extended those results to the
setting of a diverging number of parameters. Recently, Dicker
et al. [6] proposed a BIC-like tuning parameter selector.Wang
et al. [21] extended the work of [24, 25] for BIC on high-
dimensional least squares regression; they proposed a high-
dimensional BIC for a nonconvex penalized solution path.

In this paper, we propose an arctangent type (Atan)
penalty function which very closely approximates 𝑙

0
penalty.

Because the Atan penalty is continuous, the Atan estimator
may be more stable than the estimators obtained through 𝑙

0

penalizedmethods.TheAtan penalty is a smooth function on
[0,∞) and we use an iteratively reweighted Lasso algorithm.

We formally establish the model selection oracle property
enjoyed by the Atan estimator. In particular, the asymptotic
normality of the Atan is formally established. Our asymptotic
framework allows the number of predictors, 𝑝 → ∞, along
with the number of observations 𝑛, provided 𝑝/𝑛 → 0. Fur-
thermore, a BIC-like tuning parameter selection procedure is
implemented for Atan.

This paper is organized in the following way. In Section 2,
we introduce PLS estimators and give a brief overview of
existing nonconvex penalty terms, and the Atan penalty is
then presented. Then, we discuss some of its theoretical
properties in Section 3. In Section 4, we describe a simple and
efficient algorithm for obtaining Atan estimator. Simulation
studies and an application of the proposed methodology are
presented in Section 5. Conclusions are given in Section 6.
The proofs are relegated to the Appendix.

2. The Atan-Penalized Least Squares Method

2.1. Linear Model and Penalized Least Squares. Suppose that
{(𝑦
𝑖
, 𝑥
𝑖
)}
𝑛

𝑖=1
is a random sample from the linear regression

model
y = X𝛽∗ + 𝜀, (2)

where X = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇 is 𝑛 × 𝑝 design matrix, y =

(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
)
𝑇 is an 𝑛-dimensional response vector, and 𝜀

are the iid random errors with mean 0 and variance 𝜎
2
𝑛-

dimensional noise vector.
When discussing variable selection, it is convenient to

have concise notation. Denote the columns of X by x
1
, . . .,

x
𝑝

∈ 𝑅
𝑛 and the rows of X by 𝑥

1
, . . . , 𝑥

𝑛
∈ 𝑅
𝑝. Let 𝐴 =

{𝑗; 𝛽
∗

𝑗
̸= 0} be the true model and suppose that 𝑝

0
is the

size of the true model. That is, suppose that |𝐴| = 𝑝
0
,

where |𝐴| denotes the cardinality of 𝐴. In addition, for 𝑆 ⊆

{1, 2, . . . , 𝑝}, let 𝛽
𝑆
= (𝛽
𝑗
)
𝑗∈𝑆

be the |𝑆|-dimensional subvector
of𝛽 containing entries indexed by 𝑆 and letX

𝑆
be 𝑛×|𝑆|matrix

obtained from X by extracting columns corresponding to 𝑆.
Given 𝑝 × 𝑝 matrix 𝐶 and subsets 𝑆

1
, 𝑆
2
⊆ {1, 2, . . . , 𝑝}, let

𝐶
𝑆1 ,𝑆2

be |𝑆
1
| × |𝑆
2
| submatrix of 𝐶 with rows determined by

𝑆
1
and columns determined by 𝑆

2
.

Various penalty functions have been used in the variable
selection literature for linear regression model. Commonly
used penalty functions include 𝑙

𝑞
, 0 ≤ 𝑞 ≤ 2, the nonnegative

garrotte [26], elastic-net [27, 28], SCAD [3], and MCP [4].
In particular, 𝑙

1
penalized least squares procedure is called

the Lasso. However, Lasso estimates may be biased and
inconsistent for model selection [3, 15]. This implies that the
Lasso does not have the oracle property. The adaptive Lasso
is a weighted version of Lasso which has the oracle property
[15]. Slightly abusing notation is that the adaptive Lasso
penalty is defined by 𝑝

𝜆
(𝛽) = 𝜆𝜔

𝑗
|𝛽|, where 𝜔

𝑗
is a data-

dependent weight.
Fan and Li [3] proposed a continuously differentiable

penalty function called the SCADpenalty, which is defined by

𝑝


𝜆
(
𝛽
) = 𝜆{𝐼 (

𝛽
 ≤ 𝜆) +

(𝑎𝜆 −
𝛽
)+

(𝑎 − 1) 𝜆
𝐼 (
𝛽
 > 𝜆)} ,

for some 𝑎 > 2.

(3)
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Figure 1: (a) Plots of the penalties (including 𝑙
0
, Lasso, SCAD, MCP, and Atan). (b) Plots of the Atan penalties with different 𝛾.

Authors of [3] suggested using 𝑎 = 3.7 from a Bayesian
perspective.Theminimum concave penalty [4] translates the
flat part of the derivative of the SCAD into the origin and is
given by

𝑝


𝜆
(
𝛽
) =

(𝑎𝜆 −
𝛽
)+

𝑎
, (4)

which minimizes the maximum of the concavity. Zhang [4]
proved that theMCP procedure may select the correct model
with probability tending to 1 and that MCP estimator has
good properties in terms of 𝑙

𝑝
-loss, provided 𝜆 and 𝑎 satisfy

certain conditions. Zhang’s results in fact allow for 𝑝 ≫ 𝑛.

2.2. Atan Penalty. In this section we first propose a novel
nonconvex penalty that we call Atan penalty. We then study
its applications in sparse modeling.

The Atan penalty is defined by

𝑝
𝜆,𝛾

(
𝛽
) = 𝜆 (𝛾 +

2

𝜋
) arctan(

𝛽


𝛾
) , (5)

for 𝜆 ≥ 0 and 𝛾 > 0. It is clear that this penalty is concave
in |𝛽|. Moreover, we can establish its relationship with 𝑙

0

and 𝑙
1
penalties. In particular, we have the following proposi-

tions.

Proposition 1. Let 𝑝
𝜆,𝛾
(|𝛽|) be given in (5); then

(𝑎) lim
𝛾→∞

𝑝
𝜆,𝛾

(
𝛽
) = 𝜆

𝛽
 ,

(𝑏) lim
𝛾→0

𝑝
𝜆,𝛾

(
𝛽
) =

{

{

{

𝜆, 𝑖𝑓
𝛽
 ̸= 0,

0, 𝑖𝑓
𝛽
 = 0.

(6)

The propositions show that the limits of Atan at 0 and∞ are 𝑙
0

penalty and 𝑙
1
penalty, respectively.The first-order derivative of

𝑝
𝜆,𝛾
(|𝛽|) with respect to |𝛽| is

𝑝


𝜆,𝛾
(
𝛽
) = 𝜆

𝛾 (𝛾 + 2/𝜋)

𝛾2 + 𝛽2
. (7)

The Atan penalty function (𝛾 = 0.005) is plotted in Figure 1(a),
along with the SCAD, Lasso, MCP, and 𝑙

0
penalty. Figure 1(b)

depicts the Atan with different 𝛾.

3. Theoretical Properties

In this section we study the theoretical properties of the Atan
estimator proposed in Section 2 in the situation where the
number of parameters 𝑝 tends to ∞ with increasing sample
size 𝑛. We discuss some conditions of the penalty and loss
functions in Section 3.1. Our main results are presented in
Section 3.2.

3.1. Regularity Conditions. We need to place the following
conditions on the penalty functions:

(A) 𝑛 → ∞ and 𝑝𝜎
2
/𝑛 → 0.

(B) 𝜌√𝑛/(𝑝𝜎2) → ∞, where 𝜌 = min
𝑗∈𝐴

|𝛽
∗

𝑗
|.

(C) 𝜆 = 𝑂(1), 𝜆√𝑛/(𝑝𝜎2) → ∞, and 𝛾 = 𝑂(𝑝
1/2

𝜎
3
𝑛
−3/2

).
(D) There exist constants 𝐶

1
, 𝐶
2

∈ R such that 𝐶
1

<

𝜆min((1/𝑛)X𝑇X) < 𝜆max((1/𝑛)X𝑇X) < 𝐶
2
, where

𝜆min((1/𝑛)X𝑇X) and 𝜆max((1/𝑛)X𝑇X) are the smallest
and largest eigenvalues of (1/𝑛)X𝑇X, respectively.

(E) lim
𝑛→∞

𝑛
−1max

1≤𝑖≤𝑛
∑
𝑝

𝑗=1
𝑥
2

𝑖𝑗
= 0.

(F) 𝐸(|𝜀
𝑖
/𝜎|
2+𝛿

) < 𝑀 for some 𝛿 and𝑀 < ∞.
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Since 𝑝 may vary with 𝑛, it is implicit that 𝛽∗ may vary
with 𝑛. Additionally, we allow model 𝐴 and the distribution
of 𝜀 (in particular, 𝜎2) to change with 𝑛. Condition (A) limits
how𝑝 and 𝜎2may growwith 𝑛.This condition is substantially
weaker than that required in [17], which requires 𝑝5/𝑛 → 0,
and slightly weaker than that required in [28], which requires
log(𝑝)/ log(𝑛) → ] ∈ [0, 1) and the same as that required
in [6]. As mentioned in Section 1, other authors have studied
PLS methods in settings where 𝑝 > 𝑛; that is, their growth
condition on 𝑝 is weaker than condition (A) [18]. Condition
(B) gives a lower bound on the size of the smallest nonzero
entry of 𝛽∗. Notice that the smallest nonzero entry of 𝛽∗
is allowed to vanish asymptotically, provided it does not do
so faster than √𝑝𝜎2/𝑛. Similar conditions are found in [17].
Condition (C) restricts the rates of tuning parameters 𝜆 and
𝛾. Note that condition (C) does not constrain the minimum
size of 𝛾. Indeed, no such constraint is required for our
asymptotic results about the Atan estimator. Since the Atan
penalty approaches 𝑙

0
penalty as 𝛾 → 0, this suggests that

the Atan and 𝑙
0
penalized least squares estimator have similar

asymptotic properties. On the other hand, in practice, we
have found that one should not take 𝛾 too small, in order to
preserve stability of the Atan estimator. Condition (D) is an
identifiability condition. Conditions (E) and (F) are used to
prove asymptotic normality ofAtan estimators and are related
to the Lindeberg condition, of the Lindeberg-Feller central
limit theorem. Conditions (A)–(F) imply that Atan has the
oracle property andmay correctly identifymodel𝐴 as we will
see inTheorem 4.

3.2. Oracle Properties. Let

𝑄
𝑛
(𝛽) =

1

2𝑛

y − X𝛽
2
+

𝑝

∑

𝑗=1

𝑝
𝜆,𝛾

(

𝛽
𝑗


) (8)

be the objective function, and 𝑝
𝜆,𝛾
(|𝛽
𝑗
|) is the Atan penalty

function.

Theorem 2. Suppose that conditions (A)–(D) hold; then, for
every 𝑟 ∈ (0, 1), there exists a constant 𝐶

0
> 0 such that

lim inf 𝑃
𝑛→∞

[

[

arg min
𝛽

𝑄
𝑛
(𝛽)

⊆
{

{

{

𝛽 ∈ 𝑅
𝑝
;
𝛽 − 𝛽

∗ ≤ 𝐶√
𝑝𝜎
2

𝑛

}

}

}

]

]

> 1 − 𝑟,

(9)

whenever𝐶 ≥ 𝐶
0
. Consequently, there exists a sequence of local

minimizers of𝑄
𝑛
(𝛽) and �̂�, such that ‖�̂�−𝛽∗‖ = 𝑂

𝑃
(√𝑝𝜎2/𝑛).

Lemma 3. Assume that (A)–(D) hold, and fix 𝐶 > 0; then

lim
𝑛→∞

𝑃
[
[

[

argmin
‖𝛽−𝛽
∗
‖≤𝐶√𝑝𝜎

2
/𝑛

𝑄
𝑛
(𝛽) ⊆ {𝛽 ∈ 𝑅

𝑝
; 𝛽
𝐴
𝑐 = 0}

]
]

]

= 1,

(10)

where𝐴𝑐 = {1, . . . , 𝑝} \ 𝐴 is the complement of𝐴 in {1, . . . , 𝑝}.

Theorem 4 (oracle properties). Suppose that (A)–(F) hold;
then there exists a sequence of√𝑛/𝑝𝜎2-consistent localminima
of Atan, �̂�, such that

(i) lim
𝑛→∞

𝑃({𝑗; �̂�
𝑗

̸= 0} = 𝐴) = 1,

(ii) √𝑛𝐵
𝑛
(𝑛
−1
𝑋
𝑇

𝐴
𝑋
𝐴
/𝜎
2
)
1/2

(�̂�
𝐴
− 𝛽
∗

𝐴
) → 𝑁(0, 𝐺),

in distribution, where 𝐵
𝑛
is any arbitrary 𝑞 × |𝐴| matrix such

that 𝐵
𝑛
𝐵
𝑇

𝑛
→ 𝐺, and 𝐺 is 𝑞 × 𝑞 nonegative symmetric matrix.

4. Implementation

4.1. Iteratively Reweighted Lasso Algorithm. The computation
for the Atan-penalized method is much more involved,
because the resulting optimization problem is usually non-
convex and hasmultiple local minimizers. Several algorithms
have been developed for computing the folded concave penal-
ized estimators, such as the local quadratic approximation
(LQA) algorithm and the local linear approximation (LLA)
algorithm [3, 29]. Both LQA and LLA are related to the
majorization-minorization (MM) principle [30]. Recently,
coordinate descent algorithm was applied to solve the folded
concave penalized least squares [31, 32]. Reference [4] devised
a PLUS algorithm for solving the PLS using the MCP. Zhang
[33] analyzed the capped-𝑙

1
penalty for solving the PLS.

In this section, we present an iteratively reweighted Lasso
(IRL) algorithm to solve the followingminimization problem:

min
𝛽∈R𝑝

{

{

{

1

2𝑛

y − X𝛽
2
+ 𝜆

𝑝

∑

𝑗=1

(𝛾 +
2

𝜋
) arctan(


𝛽
𝑗



𝛾
)
}

}

}

. (11)

We show that the solution of the penalty least squares prob-
lem can be transformed into that of a series of convex
weighted Lasso estimators, to which the existing Lasso algo-
rithms can be efficiently applied.

Now, taking a first-order Taylor-series approximation of
the Atan penalty about the current value 𝛽

𝑗
= 𝛽
∗

𝑗
, we obtain

the overapproximation of (11):

min
𝛽∈R𝑝

{

{

{

1

2𝑛

y − X𝛽
2
+ 𝜆

𝑝

∑

𝑗=1

𝛾 (𝛾 + 2/𝜋)

𝛾2 + 𝛽∗2
𝑗


𝛽
𝑗



}

}

}

. (12)

Note that the linear approximation in (12) is analogous to one
proposed in Zou and Li [29] and they argued strongly in favor
of a one-step approximation. Instead, we offer the following
algorithm for Atan-penalized least squares. Assume all the
covariates have been standardized to havemean zero and unit
variance.Without loss of generality, the span of regularization
parameters is 𝜆min = 𝜆

0
< ⋅ ⋅ ⋅ < 𝜆

𝐿
= 𝜆max, for 𝑙 = 0, . . . , 𝐿

[34]. Here, we summarize the details of IRL algorithm as in
Algorithm 1, where the active set is defined as 𝐴 = {𝑗 | 𝛽

𝑗
̸=

0, 𝑗 = 1, 2, . . . , 𝑝}.
In the situation with 𝑛 > 𝑝, we set 𝜆min = 0. However,

when 𝑛 < 𝑝, one attains the saturated model long before the
regularization parameter reaches zero. In this case, we suggest
𝜆min = 10

−4
𝜆max [34], and we used 𝜏 = 10

−4. In practice, we
have found that if the columns of X are standardized so that
‖x
𝑗
‖
2
= 𝑛, for 𝑗 = 1, . . . , 𝑝, then taking 𝛾 = 0.005 works well.
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(1) Start with 𝜆max = max
1≤𝑗≤𝑝

|X𝑇𝑦|/𝑛. Set 𝑙 = 𝐿 and 𝛽
(𝑙)
= 0.

Outer loop:
(2) Set 𝑘 = 0 and �̃�

(0)

= 𝛽
(𝑙)
;

(3) Increment 𝑘 = 𝑘 + 1 and �̃�
(𝑘+1)

= �̃�
(𝑘)

;
(4) Update the weights: �̃�

𝑗
= 𝛾(𝛾 + 2/𝜋)/(𝛾

2
+ (�̃�
(𝑘)

𝑗
)
2
), 𝑗 = 1, . . . , 𝑝;

Inner loop:
Solve the Karush-Kuhn-Tucker (KKT) conditions for fixed �̃�

𝑗
:

𝑥
𝑇

𝑗
(𝑦 − X𝛽) − 𝜆

𝑙
�̃�
𝑗
sgn(𝛽

𝑗
) = 0, if 𝑗 ∈ 𝐴,

|𝑥
𝑇

𝑗
(𝑦 − X𝛽)| < 𝜆

𝑙
�̃�
𝑗
, if 𝑗 ∉ 𝐴,

(5) Goto Step (3);

(6) Repeat Steps (3)–(5) until ‖�̃�
(𝑘+1)

− �̃�
(𝑘)

‖

2

< 𝜏.
The estimate 𝛽

(𝑙)
is the limit point of the outer loop, �̃�

∞

;
(7) Decrement 𝑙 = 𝑙 − 1 and 𝜆

𝑙
= 𝜆
𝑙−1
. Return to (2) using 𝛽

(𝑙)
as a warm start.

Algorithm 1: Iteratively reweighted Lasso (IRL) algorithm.

Remark 5. Algorithm 1 is very much like MM algorithms.
Hunter and Li [30] were the first to advocate MM algorithms
for variable selection when 𝑛 > 𝑝. However, we should notice
that Algorithm 1 differs from the algorithm described in [30].
The use of MM algorithms in [30] is to justify a quadratic
overapproximation to penalty functions with singularities at
the origin. In the inner loop of Algorithm 1, we avoid such
approximation by solving the KKT conditions precisely and
efficiently [35]. Our use of MM algorithms in Algorithm 1 is
to justify the local linear approximation toAtan penalty in the
outer loop.

Remark 6. LLA to SCAD penalty were also proposed by Zou
and Li [29]. Algorithm 1 differs from that proposed in [29] in
that it constructs the entire coefficient path, even when 𝑝 >

𝑛, whereas the procedure in [29] computes the coefficient
estimates for fixed regularization parameter 𝜆 starting with a
root-𝑛 consistent estimator of true coefficient 𝛽∗ at the initial
step. Moreover, even with the same initial estimate, the limit
point from Algorithm 1 will differ from [29] after one itera-
tion.

Remark 7. In the more general case where 𝑝 > 𝑛, we used
coordinate-wise optimization to compute the entire regu-
larized coefficient path via Algorithm 1. Our experience is
that coordinate-wise optimization works well in practice and
converges very quickly.

4.2. Regularity Parameter Selection. Tuning parameter selec-
tion is an important issue in most PLS procedures. There are
relatively few studies on the choice of penalty parameters.
Traditional model selection criteria, such as AIC [10] and
BIC [11], suffer from a number of limitations. Their major
drawback arises because parameter estimation and model
selection are two different processes, which can result in
instability [13] and complicated stochastic properties. To
overcome the deficiency of traditional methods, Fan and Li
[3] proposed the SCADmethod, which estimates parameters

while simultaneously selecting important variables. They
selected tuning parameter by minimizing GCV [1, 3, 26].

However, it is well known that GCV and AIC-based
methods are not consistent for model selection in the sense
that as 𝑛 → ∞, they may select irrelevant predictors with
nonvanishing probability [22, 36]. On the other hand, BIC-
based tuning parameter selection roughly corresponds to
maximizing the posterior probability of selecting the true
model in an appropriate Bayesian formulation and has been
shown to be consistent for model selection in several settings
[22, 37, 38]. The BIC tuning parameter selector is defined by

BIC = log(

y − X�̂�

2

𝑛
) + D̂F

log (𝑛)
𝑛

, (13)

where D̂F is the estimate of the degrees of freedom given by

D̂F = tr {X (X𝑇 + 𝑛Σ
𝜆
)
𝑇

X𝑇} , (14)

andΣ
𝜆
= diag{𝑝

𝜆
(|�̂�
1
|)/|�̂�
1
|, . . . , 𝑝



𝜆
(|�̂�
𝑝
|)/|�̂�
𝑝
|}.The diagonal

elements of Σ
𝜆
are coefficients of quadratic terms in the local

quadratic approximation to SCAD penalty function 𝑝
𝜆
(⋅) [3].

Dicker et al. [6] proposed BIC-like procedures imple-
mented by minimizing

BIC
0
= log(


y − X�̂�

2

𝑛 − �̂�
0

) +
log (𝑛)

𝑛
�̂�
0
. (15)

To estimate the residual variance, they use �̂�2 = (𝑛−�̂�
0
)
−1
‖y−

X�̂�‖2. This differs from other estimates of the residual
variance used in PLSmethods, where the denominator 𝑛−�̂�

0

is replaced by 𝑛 [22]; here, 𝑛−�̂�
0
is used to account for degrees

of freedom lost to estimation.
More works on the high-dimensional BIC for the least

squares regression to tuning parameter selection for noncon-
vex penalized regression can be seen in [24, 25, 39]. Here we
used BIC statistic as (15).
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4.3. A Standard Error Formula. The standard errors for the
estimated parameters can be obtained directly because we
are estimating parameters and selecting variables at the same
time. Let �̂� = �̂�(𝜆, 𝛾) be a local minimizer of Atan. Following
[3, 17], standard errors of �̂�may be estimated by using quad-
ratic approximations to Atan. Indeed, the approximation

𝑝
𝜆,𝑎

(

𝛽
𝑗


) ≈ 𝑝
𝜆,𝛾

(

𝛽
𝑗0


)

+
1

2

𝛽
𝑗0



𝑝


𝜆,𝛾
(

𝛽
𝑗0


) (𝛽
2

𝑗
− 𝛽
2

𝑗0
) ,

for 𝛽
𝑗
≈ 𝛽
𝑗0
.

(16)

suggests that Atan may be replaced by the quadratic mini-
mization problem

min
{

{

{

1

𝑛

y − X𝛽
2
+

𝑝

∑

𝑗=1

𝑝


𝜆,𝑎
(

𝛽
𝑗0


)


𝛽
𝑗0



𝛽
2

𝑗

}

}

}

, (17)

at least for the purposes of obtaining standard errors. Using
this expression, we obtain a sandwich formula for the esti-
mated standard error of �̂�

�̂�
, where �̂� = {𝑗; �̂�

𝑗
̸= 0}. Consider

ĉov (�̂�
�̂�
) = �̂�
2
{X𝑇
�̂�
X
�̂�
+ 𝑛Δ
�̂�,�̂�

(�̂�)}
−1

⋅ X𝑇
�̂�
X
�̂�
{X𝑇
�̂�
X
�̂�
+ 𝑛Δ
�̂�,�̂�

(�̂�)}
−1

,

(18)

where Δ(𝛽) = diag{𝑝
𝜆,𝑎
(|𝛽
1
|)/|𝛽
1
|, . . . , 𝑝



𝜆,𝑎
(|𝛽
𝑝
|)/|𝛽
𝑝
|}, �̂�2 =

𝑛
−1
‖y − X�̂�‖2, and �̂�

0
= |�̂�| is the number of elements in |�̂�|.

Under the conditions of Theorem 4,

𝐵
𝑛
𝑋
𝑇

�̂�
𝑋
�̂�
ĉov (�̂�

�̂�
) 𝐵
𝑇

𝑛

𝜎2
→ 𝐺. (19)

This is a consistency result for ĉov(�̂�
�̂�
).

5. Numerical Studies

5.1. Simulation Studies. We now investigate the sparsity
recovery and estimation properties of the proposed estimator
via numerical simulations. We compare the following esti-
mators: the Lasso estimator (implemented using R package
glmnet [40]); the adaptive Lasso estimator (denoted by
Alasso [15]), the SCAD estimator from the CD algorithm
without calibration [31]; the MCP estimator from the CD
algorithm with 𝑎 = 1.5 [31]; the Dantzig selector [7]; and
Bayesian variable select method [8]. For the proposed Atan
estimator, we take 𝛾 = 0.005 and BIC statistic (15) is used
to select the tuning parameter 𝜆. In the following, we report
simulation results from four examples.

Example 8. In this example, simulation data are generated
from the linear regression model:

𝑦 = x𝑇𝛽∗ + 𝜎𝜀, (20)

where 𝛽∗ = (3, 1.5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0)
𝑇, 𝜀 ∼ 𝑁(0, 1), and

x is multivariate normal distribution with zero mean and

covariance between the 𝑖th and 𝑗th elements being 𝜌|𝑖−𝑗| with
𝜌 = 0.5. In our simulation, sample size 𝑛 is set to be 100 and
200, 𝜎 = 2. For each case, we repeated the simulation 200
times.

For linear model, model error for �̂� = x𝑇�̂� is ME(�̂�) =

(�̂� − 𝛽)
𝑇
𝐸(xx𝑇)(�̂� − 𝛽). Simulation results are summarized

in Table 1, in which MRME stands for median of ratios of
ME of a selected model to that of the unpenalized minimum
square estimate under the full model. Both the columns of
“C” and “IC” are measures of model complexity. Column “C”
shows the average number of nonzero coefficients correctly
estimated to be nonzero, and column “IC” presents the
average number of zero coefficients incorrectly estimated to
be nonzero. In the column labeled “underfit,” we present
the proportion of excluding any nonzero coefficients in 200
replications. Likewise, we report the probability of selecting
the exact subset model and the probability of including all
three significant variables and some noise variables in the
columns “correct-fit” and “overfit,” respectively.

As can be seen from Table 1, all variable selection proce-
dures dramatically reduce model error. Atan has the smallest
model error among all competitors, followed by Alasso,MCP,
SCAD, Bayesian, and Dantzig. In terms of sparsity, Atan also
has the highest probability of correct-fit. The Atan penalty
performs better than the other penalties. Also, Atan has some
advantages when dimensional 𝑝 is high which can be seen in
Example 9.

We now test the accuracy of our standard error formula
(18). The median absolute deviation divided by 0.6745,
denoted by SD in Table 2, of 3 estimated coefficients in the
200 simulations can be regarded as the true standard error.
The median of the 200 estimated SDs, denoted by SDm, and
the median absolute deviation error of the 200 estimated
standard errors divided by 0.6745, denoted by SDmad, gauge
the overall performance of standard error formula (18).
Table 2 presents the results for nonzero coefficients when
sample size 𝑛 = 200. The results for the other case with 𝑛 =

100 are similar. Table 2 suggests that the sandwich formula
performs surprisingly well.

Example 9. The example is from Wang et al. [23]. More
specifically, we take 𝛽 = (11/4, −23/6, 37/12, −13/9, 1/3, 0, 0,
. . . , 0)

𝑇
∈ R𝑝 and 𝑝 = [4𝑛

1/4
] − 5 and [𝑡] stands for the

largest integer no larger than 𝑡. For this example, predictor
dimension 𝑝 is diverging but the dimension of the true
model is fixed to be 5. Results from the simulation study are
found in Table 3. A similar conclusion as in Example 8 can be
found.

Example 10. In this simulation study presented here, we
examined the performance of the various PLS methods for 𝑝
substantially larger than in the previous studies. In particular,
we took 𝑝 = 339, 𝑛 = 500, 𝜎5 = 5, and 𝛽

∗
= (2𝐼

𝑇

37
, −3𝐼
𝑇

37
,

𝐼
𝑇

37
, 0
𝑇

228
), where 𝐼𝑘 ∈ 𝑅

𝑘 is the vector with all entries equal
to 1. Thus, 𝑝

0
= 111. We simulated 200 independent datasets

{(𝑦
1
, 𝑥
𝑇

1
), . . . , (𝑦

𝑛
, 𝑥
𝑇

𝑛
)} in this study and, for each dataset, we

computed estimates of 𝛽∗. Results from this simulation study
are found in Table 4.
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Table 1: Simulation results for linear regression models of Example 8.

Method MRME Number of zeros Proportion of
C IC Underfit Correct-fit Overfit

𝑛 = 100, 𝜎 = 2

Lasso 0.6213 3.0000 1.2050 0.0000 0.3700 0.6700
Alasso 0.3074 3.0000 0.3500 0.0000 0.7300 0.2700
SCAD 0.2715 3.0000 1.0650 0.0000 0.4400 0.5600
MCP 0.3041 3.0000 0.5650 0.0000 0.5800 0.4200
Dantzig 0.4623 3.0000 0.6546 0.0000 0.5700 0.4300
Bayesian 0.3548 3.0000 0.5732 0.0000 0.6300 0.3700
Atan 0.2550 3.0000 0.1750 0.0000 0.8450 0.1550

𝑛 = 200, 𝜎 = 2

Lasso 0.6027 3.0000 1.0700 0.0000 0.3550 0.6450
Alasso 0.2781 3.0000 0.1600 0.0000 0.8650 0.1350
SCAD 0.2900 3.0000 0.8550 0.0000 0.5250 0.4750
MCP 0.2752 3.0000 0.3650 0.0000 0.6850 0.3150
Dantzig 0.3863 3.0000 0.8576 0.0000 0.4920 0.5080
Bayesian 0.2563 3.0000 0.4754 0.0000 0.7150 0.2850
Atan 0.2508 3.0000 0.1000 0.0000 0.9050 0.0950

Table 2: Standard deviations of estimators for the linear regression model (𝑛 = 200).

Method �̂�
1

�̂�
2

�̂�
5

SD SDm (SDmad) SD SDm (SDmad) SD SDm (SDmad)
Lasso 0.1753 0.1453 (0.0100) 0.1730 0.1688 (0.0094) 0.1591 0.1301 (0.0079)
Alasso 0.1483 0.1638 (0.0095) 0.1642 0.1636 (0.0098) 0.1475 0.1439 (0.0073)
SCAD 0.1797 0.1634 (0.0105) 0.1819 0.1608 (0.0104) 0.1398 0.1438 (0.0076)
MCP 0.1602 0.1643 (0.0096) 0.1861 0.1656 (0.0097) 0.1464 0.1435 (0.0069)
Dantzig 0.1734 0.1645 (0.0115) 0.1723 0.1665 (0.0094) 0.1581 0.1538 (0.0074)
Bayesian 0.1568 0.1635 (0.0089) 0.1678 0.1649 (0.0092) 0.1367 0.1375 (0.0078)
Atan 0.1510 0.1643 (0.0108) 0.1591 0.1658 (0.0096) 0.1609 0.1434 (0.0083)

Perhaps the most striking aspect of the results presented
in Table 4 is that hardly no method ever selected the correct
model in this simulation study. However, given that 𝑝, 𝑝

0
,

and 𝛽
∗ are substantially larger in this study than in the

previous simulation studies, this may not be too surprising.
Notice that, on average, Atan selects the most parsimonious
models of all methods and has the smallest model error.
Atan’s nearest competitor in terms of model error is Alasso.
This implementation of Alasso has mean model error 0.2783,
but its average selected model size is 103.5250 larger than
Atan’s. Since 𝑝

0
= 111, it is clear that Atan underfits in some

instances. In fact, all of the methods in this study underfit
to some extent. This may be due to the fact that many of
the nonzero entries in 𝛽

∗ are small relative to the noise level
𝜎
2
= 5.

Example 11. As an extension of this method, we consider the
problem of simultaneous variable selection and estimation in
the partially linear model:

𝑌 = 𝑋

𝛽 + 𝑔 (𝑇) + 𝜀, (21)

where𝑌 is a scalar response variate,𝑋 is a 𝑝-vector covariate,
𝑇 is a scalar covariate and takes values in a compact interval
(for simplicity, we assume this interval to be [0, 1]), 𝛽 is 𝑝 ×

1 column vector of unknown regression parameter, function
𝑔(⋅) is unknown, and model error 𝜀 is independent of (𝑋, 𝑇)
withmean 0. Traditionally, it has generally been assumed that
𝛽 is finite dimension; several standard approaches, such as the
kernel method, the spline method [41], and the local linear
estimation [17], have been proposed.

In this study, we simulate 𝑛 = 100, 200 points 𝑇
𝑖
, 𝑖 =

1, . . . , 100(200), from the uniform distribution on [0, 1]. For
each 𝑖, 𝑒

𝑖𝑗
𝑠 are simulated to be normally distributed with

autocorrelated variance structure 𝐴𝑅(𝜌), such that

cov (𝑒
𝑖𝑗
, 𝑒
𝑖𝑙
) = 𝜌
|𝑖−𝑗|

, 1 ≤ 𝑖, 𝑗 ≤ 10. (22)

𝑋
𝑖𝑗
’s are then formed as follows:

𝑋
𝑖1
= sin (2𝑇

𝑖
) + 𝑒
𝑖1
,

𝑋
𝑖2
= (0.5 + 𝑇

𝑖
)
−2

+ 𝑒
𝑖2
,
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Table 3: Simulation results for linear regression models of Example 9.

Method MRME Number of zeros Proportion of
C IC Underfit Correct-fit Overfit

𝑛 = 200, 𝑝 = 10

Lasso 0.9955 4.9900 2.0100 0.0100 0.1150 0.8750
Alasso 0.5740 4.8650 0.1100 0.1350 0.8150 0.0500
SCAD 0.5659 4.9800 0.5600 0.0200 0.5600 0.4200
MCP 0.6177 4.9100 0.1200 0.0900 0.8250 0.0850
Dantzig 0.6987 4.8900 0.6700 0.1100 0.4360 0.4540
Bayesian 0.5656 4.8650 0.2500 0.1350 0.6340 0.2310
Atan 0.5447 4.8900 0.1150 0.1100 0.8250 0.0650

𝑛 = 400, 𝑝 = 12

Lasso 1.2197 5.0000 2.0650 0.0000 0.1400 0.8600
Alasso 0.4458 4.9950 0.0900 0.0050 0.9250 0.0700
SCAD 0.4481 5.0000 0.4850 0.0000 0.6350 0.3650
MCP 0.4828 5.0000 0.1150 0.0000 0.8950 0.1050
Dantzig 0.7879 5.0000 0.5670 0.0000 0.3200 0.6800
Bayesian 0.4237 5.0000 0.1800 0.0000 0.7550 0.2450
Atan 0.4125 4.9950 0.0250 0.0050 0.9700 0.0250

𝑛 = 800, 𝑝 = 16

Lasso 1.2004 5.0000 2.5700 0.0000 0.0900 0.9100
Alasso 0.3156 5.0000 0.0700 0.0000 0.9300 0.0700
SCAD 0.3219 5.0000 0.6550 0.0000 0.5950 0.4050
MCP 0.3220 5.0000 0.0750 0.0000 0.9300 0.0700
Dantzig 0.5791 5.0000 0.5470 0.0000 0.3400 0.6600
Bayesian 0.3275 5.0000 0.2800 0.0000 0.6750 0.3250
Atan 0.3239 5.0000 0.0750 0.0000 0.9350 0.0650

Table 4: Simulation results for linear regression models of Example 10.

Method MRME Number of zeros Proportion of
C IC Underfit Correct-fit Overfit

𝑛 = 500, 𝜎 = 5

Lasso 0.3492 110.2000 24.7450 0.5650 0.0000 0.4350
Alasso 0.2783 103.5250 6.1250 1.0000 0.0000 0.0000
SCAD 0.3012 106.0400 35.7150 0.9900 0.0000 0.0150
MCP 0.2791 103.3600 8.1100 1.0000 0.0000 0.0900
Dantzig 0.3120 108.3400 18.4650 0.7570 0.0000 0.2430
Bayesian 0.2876 104.4350 7.4700 0.9800 0.0000 0.0200
Atan 0.2794 101.4000 4.0600 1.0000 0.0000 0.0000

𝑋
𝑖3
= exp (𝑇

𝑖
) + 𝑒
𝑖3
,

𝑋
𝑖5
= (𝑇
𝑖
− 0.7)

4
+ 𝑒
𝑖5
,

𝑋
𝑖6
= 𝑇
𝑖
(1 + 𝑇

2

𝑖
)
−1

+ 𝑒
𝑖6
,

𝑋
𝑖5
= √1 + 𝑇

𝑖
+ 𝑒
𝑖7
,

𝑋
𝑖8
= log (3𝑇

𝑖
+ 8) + 𝑒

𝑖8
.

(23)

We investigate the scenario: 𝑝 = 10, 𝑋
𝑖𝑗
= 𝑒
𝑖𝑗
, 𝑗 = 4, 9, 10.

In the scenario, we have 𝛽
𝑗
= 𝑗, 1 ≤ 𝑗 ≤ 4, and 𝛽

𝑗
= 0 with

others, 𝜀 ∼ 𝑁(0, 1). For each case, we repeated the simulation
200 times. We investigate 𝑔(⋅) functions: 𝑔(𝑡) = cos (2𝜋𝑡).
For comparison, we apply the different penalties in the para-
metric component with the B-spline in the nonparametric
component.

The results are summarized in Table 5. Columns 2–5 in
Table 5 are the averages of the estimates of 𝛽

𝑗
, 𝑗 = 1, . . . , 4,

respectively. Column 6 is the number of estimates of 𝛽
𝑗
,
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Table 5: Example 11: comparison of estimators.

Estimator 𝛽
1

𝛽
2

𝛽
3

𝛽
4

𝐶 �̃� MME (SD) RASE (𝑔(𝑇))
𝑛 = 100, 𝑝 = 10

SCAD 0.9617 2.0128 2.8839 4.0611 4.7450 5.0000 0.0695 (0.0625) 0.6269
Lasso 0.8278 1.9517 2.7984 3.9274 5.5200 6.0000 0.1727 (0.0790) 0.8079
Dantzig 0.8767 1.9544 2.7894 3.9302 5.4590 6.0000 0.1696 (0.0680) 0.7278
Atan 0.9710 2.0121 2.9865 4.0472 4.9820 5.0000 0.0658 (0.0630) 0.6214

𝑛 = 200, 𝑝 = 10

SCAD 0.9836 1.9989 2.9283 4.0278 5.2000 5.0000 0.0230 (0.0210) 0.3604
Lasso 0.9219 1.9529 2.9124 3.9580 5.1450 5.0000 0.0500 (0.0315) 0.4220
Dantzig 0.9534 1.9675 2.9096 3.9345 5.1460 5.0000 0.0510 (0.0290) 0.4154
Atan 0.9904 1.9946 2.9548 4.0189 5.1250 5.0000 0.0190 (0.0245) 0.3460

5 ≤ 𝑗 ≤ 𝑝, which are 0, averaged over 200 simulations,
and their medians are given in column 7. Model errors are
computed as ME(�̂�) = (�̂� − 𝛽)

𝑇
𝐸(xx𝑇)(�̂� − 𝛽). Their medians

are listed in the 8th column, followed by the model errors
standard deviations in parentheses.

The performance of �̂�(𝑇) is assessed by the square root of
average squared errors (RASE):

RASE2 = 1

𝑛

𝑛

∑

𝑖=1

(�̂� (𝑇
𝑖
) − 𝑔 (𝑇

𝑖
))
2
, (24)

where {𝑇
𝑖
, 𝑖 = 1, . . . , 𝑛} are the observed data points at which

function 𝑔 is estimated. Column 9 summarizes the RASE
values for the different situations.

We can see the following from Table 5: (1) Comparing
with the Lasso and Dantzig estimator, the SCAD and Atan
estimators have a smallermodel error, which is due to the fact
that the SCAD and Atan estimators are unbiased estimators
while the Lasso and Dantzig are biased especially for the
larger coefficient. Moreover, the Atan and SCAD estimators
are more stable. (2) Each method is able to select important
variables, but it is obvious that the Atan estimator has slightly
stronger sparsity. (3) For the nonparametric component, Atan
and SCAD estimator have smaller RASE values.

5.2. RealDataAnalysis. In this section,we apply theAtan reg-
ularization scheme to a prostate cancer example. The dataset
in this example is derived from a study of prostate cancer in
[42].The dataset consists of themedical records of 97 patients
who were about to receive a radical prostatectomy. The
predictors are eight clinical measures: log(cancer volume)
(lcavol), log (prostate weight) (lweight), age, the logarithm
of the amount of benign prostatic hyperplasia (lbph), sem-
inal vesicle invasion (svi), log (capsular penetration) (lcp),
gleason score (gleason), and percentage gleason score 4 or
5 (pgg45). The response is the logarithm of prostate-specific
antigen (lpsa). One of the main aims here is to identify which
predictors are more important in predicting the response.

The Lasso, Alasso, SCAD, MCP, and Atan are all applied
to the data. We also compute the OLS estimate of the prostate
cancer data. Results are summarized in Table 6. The OLS
estimator does not perform variable selection. Lasso selects
five variables in the final model; SCAD selects lcavol, lweight,

Table 6: Prostate cancer data: comparing different methods.

Method 𝑅
2

𝑅
2
/𝑅
2

OLS Variables selected
OLS 0.6615 1.0000 All
Lasso 0.5867 0.8870 (1, 2, 4, 5, 8)
Alasso 0.5991 0.9058 (1, 2, 5)
SCAD 0.6140 0.9283 (1, 2, 4, 5)
MCP 0.5999 0.9069 (1, 2, 5)
Atan 0.6057 0.9158 (1, 2, 5)

lbph, and svi in the final model, while Alasso, MCP, and
Atan select lcavol, lweight, and svi. Thus, Atan selects a
substantially simpler model than Lasso, SCAD. Furthermore,
as indicated by the columns labeled 𝑅

2 (𝑅2 is equal to one
minus the residual sum of squares divided by the total sum of
squares) and𝑅2/𝑅2OLS in Table 6, the Atan estimator describes
more variability in the data than Alasso and MCP and nearly
as much as OLS estimator.

6. Conclusion and Discussion

In this paper, a new Atan penalty which very closely resem-
bles 𝐿

0
penalty is proposed. First, we establish the theory

of the Atan estimator under mild conditions. The theory
indicates that the Atan-penalized least squares procedure
enjoys oracle properties even when the number of variables
grows slower than the number of observations. Second, the
iteratively reweighted Lasso algorithm makes our proposed
estimator implementation fast. Third, we suggest a BIC-like
tuning parameter selector to identify the true model con-
sistently. Numerical studies further endorse our theoretical
results and the advantage of the Atan estimator for model
selection.

We do not address the situation where 𝑝 ≫ 𝑛 in this
paper. In fact, the proposed Atan method can be easily
extended for variable selection in the situation of𝑝 ≫ 𝑛. Also,
as it is shown in Example 11, the Atan method can be applied
to semiparametric model and nonparametric model [43, 44].
Furthermore, there is a recent field of applications of variable
selection which is to look for impact points in functional data
analysis [45, 46].The possible combination of Atan estimator
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with the questions in [45, 46] would be interesting. These
problems are beyond the scope of this paper and will be
interesting topics for future research.

Appendix

Proof of Theorem 2. Let 𝛼
𝑛
= √𝑝𝜎2/𝑛 and fix 𝑟 ∈ (0, 1). To

prove the theorem, it suffices to show that if 𝐶 > 0 is large
enough, then

𝑄
𝑛
(𝛽
∗
) < inf
‖𝜇‖=𝐶

𝑄
𝑛
(𝛽
∗
+ 𝛼
𝑛
𝜇) (A.1)

holds for all 𝑛 sufficiently large, with probability at least 1 − 𝑟.
Define𝐷

𝑛
(𝜇) = 𝑄

𝑛
(𝛽
∗
+ 𝛼
𝑛
𝜇) − 𝑄

𝑛
(𝛽
∗
) and note that

𝐷
𝑛
(𝜇) =

1

2𝑛
(𝛼
2

𝑛

X𝜇

2
− 2𝛼
𝑛
𝜀
𝑇X𝜇)

+

𝑝

∑

𝑗=1

{𝑝
𝜆,𝑎

(

𝛽
∗

𝑗
+ 𝛼
𝑛
𝜇
𝑗


) − 𝑝
𝜆,𝛾

(

𝛽
∗

𝑗


)} .

(A.2)

The fact that 𝑝
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is concave on [0,∞) implies that
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when 𝑛 is sufficiently large.
Condition (B) implies that

𝛾 (𝛾 + 2/𝜋)
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Thus, for 𝑛 big enough,
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On the other hand (D) implies
1
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Furthermore, (C) and (B) imply

𝐶𝑝𝜆𝛼
𝑛
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From (A.5)–(A.8), we conclude that if 𝐶 > 0 is large enough,
then inf

‖𝜇‖=𝐶
𝐷
𝑛
(𝜇) > 0 holds for all 𝑛 sufficiently large, with

probability at least 1 − 𝑟. This proves Theorem 2.

Proof of Lemma 3. Suppose that 𝛽 ∈ 𝑅
𝑝 and that ‖𝛽 − 𝛽

∗
‖ ≤

𝐶√𝑝𝜎2/𝑛. Define �̃� ∈ 𝑅
𝑝 by �̃�

𝐴
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the proof of Theorem 2, let
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where 𝑄
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On the other hand, since the Atan penalty is concave on
[0,∞),
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for 𝑗 ∈ 𝐴
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By (C),

lim inf
𝑛→∞

arctan( 𝐶
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It follows from (A.10)–(A.12) that there is constant𝐾 > 0 such
that
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Since 𝜆√𝑝𝜎2/𝑛 → ∞, the result follows.
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Proof ofTheorem 4. Taken together,Theorem 2 and Lemma 3
imply that there exists a sequence of local minima �̂� of (8)
such that ‖�̂� − 𝛽∗‖ = 𝑂

𝑃
(√𝑝𝜎2/𝑛) and �̂�

𝐴
𝑐 = 0. Part (i) of the

theorem follows immediately.
To prove part (ii), observe that, on the event {𝑗; �̂�
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whenever {𝑗; �̂�
𝑗

̸= 0} = 𝐴. Now note that conditions (B)–(D)
imply


𝑛𝐵
𝑛
(𝜎
2X𝑇
𝐴
X
𝐴
)
−1/2

𝑝


𝐴



= 𝑂
𝑃
(√

𝑛𝑝

𝜎2

𝜆𝛾 (𝛾 + 2/𝜋)

𝛾2 + 𝜌2
) = 𝑜

𝑃
(1) ,

(A.17)

and, thus,
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To complete the proof of (ii), we use the Lindeberg-Feller
central limit theorem to show that
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Thus, the Lindeberg condition is satisfied and (A.19)
holds.

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the Tian Yuan Special Funds of
the National Natural Science Foundation of China (Grant no.
11426192) and the Project of Education of Zhejiang Province
(no. Y201533324).

References

[1] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society, Series B: Methodological,
vol. 58, no. 1, pp. 267–288, 1996.

[2] I. E. Frank and J. H. Friedman, “A statistical view of some
chemometrics regression tools,”Technometrics, vol. 35, no. 2, pp.
109–148, 1993.

[3] J. Fan and R. Li, “Variable selection via nonconcave penalized
likelihood and its oracle properties,” Journal of the American
Statistical Association, vol. 96, no. 456, pp. 1348–1360, 2001.

[4] C.-H. Zhang, “Nearly unbiased variable selection under mini-
max concave penalty,”The Annals of Statistics, vol. 38, no. 2, pp.
894–942, 2010.

[5] J. Lv and Y. Fan, “A unified approach to model selection and
sparse recovery using regularized least squares,” The Annals of
Statistics, vol. 37, no. 6, pp. 3498–3528, 2009.

[6] L. Dicker, B. Huang, and X. Lin, “Variable selection and estima-
tion with the seamless-𝐿

0
penalty,” Statistica Sinica, vol. 23, no.

2, pp. 929–962, 2013.
[7] E. Candes and T. Tao, “The Dantzig selector: statistical estima-

tion when p is much larger than n,”The Annals of Statistics, vol.
35, no. 6, pp. 2313–2351, 2007.

[8] J. Ghosh and A. E. Ghattas, “Bayesian variable selection under
collinearity,” The American Statistician, vol. 69, no. 3, pp. 165–
173, 2015.



12 Journal of Probability and Statistics

[9] J. Fan, L. Z. Xue, andH. Zou, “Strong oracle optimality of folded
concave penalized estimation,” Annals of Statistics, vol. 42, no.
3, pp. 819–849, 2014.

[10] H. Akaike, “Information theory and an extension of the max-
imum likelihood principle,” in Proceedings of the 2nd Interna-
tional Symposium on Information Theory, B. N. Petrov and F.
Csaki, Eds., pp. 267–281, Akademiai Kiado, Budapest, Hungary,
1973.

[11] G. Schwarz, “Estimating the dimension of a model,” Annals of
Statistics, vol. 6, no. 2, pp. 461–464, 1978.

[12] D. P. Foster and E. I. George, “The risk inflation criterion for
multiple regression,” The Annals of Statistics, vol. 22, no. 4, pp.
1947–1975, 1994.

[13] L. Breiman, “Heuristics of instability and stabilization in model
selection,”The Annals of Statistics, vol. 24, no. 6, pp. 2350–2383,
1996.

[14] K. Knight and W. Fu, “Asymptotics for lasso-type estimators,”
Annals of Statistics, vol. 28, no. 5, pp. 1356–1378, 2000.

[15] H. Zou, “The adaptive lasso and its oracle properties,” Journal of
the American Statistical Association, vol. 101, no. 476, pp. 1418–
1429, 2006.

[16] P. Zhao and B. Yu, “On model selection consistency of lasso,”
Journal of Machine Learning Research, vol. 7, pp. 2541–2563,
2006.

[17] J. Fan and H. Peng, “Nonconcave penalized likehood with a
diverging number parameters,” Annals of Statistics, vol. 32, pp.
928–961, 2004.

[18] Y.Kim,H.Choi, andH.-S.Oh, “Smoothly clipped absolute devi-
ation on high dimensions,” Journal of the American Statistical
Association, vol. 103, no. 484, pp. 1665–1673, 2008.

[19] Y. Kim and S. Kwon, “Global optimality of nonconvex penalized
estimators,” Biometrika, vol. 99, no. 2, pp. 315–325, 2012.

[20] C.-H. Zhang and T. Zhang, “A general theory of concave reg-
ularization for high-dimensional sparse estimation problems,”
Statistical Science, vol. 27, no. 4, pp. 576–593, 2012.

[21] L. Wang, Y. Kim, and R. Li, “Calibrating nonconvex penalized
regression in ultra-high dimension,”TheAnnals of Statistics, vol.
41, no. 5, pp. 2505–2536, 2013.

[22] H. Wang, R. Li, and C.-L. Tsai, “Tuning parameter selectors for
the smoothly clipped absolute deviation method,” Biometrika,
vol. 94, no. 3, pp. 553–568, 2007.

[23] H. Wang, B. Li, and C. Leng, “Shrinkage tuning parameter
selection with a diverging number of parameters,” Journal of the
Royal Statistical Society, Series B: Statistical Methodology, vol. 71,
no. 3, pp. 671–683, 2009.

[24] J. Chen and Z. Chen, “Extended Bayesian information criteria
for model selection with large model spaces,” Biometrika, vol.
95, no. 3, pp. 759–771, 2008.

[25] Y. Kim, S. Kwon, and H. Choi, “Consistent model selection
criteria on high dimensions,” Journal of Machine Learning
Research, vol. 13, pp. 1037–1057, 2012.

[26] L. Breiman, “Better subset regression using the non-negative
garrote,” Technometrics, vol. 37, no. 4, pp. 373–384, 1995.

[27] H. Zou and T. Hastie, “Regularization and variable selection via
the elastic net,” Journal of the Royal Statistical Society. Series B.
Statistical Methodology, vol. 67, no. 2, pp. 301–320, 2005.

[28] H. Zou and H. H. Zhang, “On the adaptive elastic-net with a
diverging number of parameters,” The Annals of Statistics, vol.
37, no. 4, pp. 1733–1751, 2009.

[29] H. Zou and R. Li, “One-step sparse estimates in nonconcave
penalized likelihood models,” The Annals of Statistics, vol. 36,
no. 4, pp. 1509–1533, 2008.

[30] D. R. Hunter and R. Li, “Variable selection using MM algo-
rithms,” The Annals of Statistics, vol. 33, no. 4, pp. 1617–1642,
2005.

[31] P. Breheny and J. Huang, “Coordinate descent algorithms for
nonconvex penalized regression, with applications to biological
feature selection,” The Annals of Applied Statistics, vol. 5, no. 1,
pp. 232–253, 2011.

[32] J. Fan and J. Lv, “Nonconcave penalized likelihood with NP-
dimensionality,” IEEE Transactions on Information Theory, vol.
57, no. 8, pp. 5467–5484, 2011.

[33] T. Zhang, “Multi-stage convex relaxation for feature selection,”
Bernoulli, vol. 19, no. 5, pp. 2277–2293, 2013.

[34] J. H. Friedman, T. Hastie, H. Höfling, and R. Tibshirani, “Path-
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