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In the field of noninvasive sensing techniques for civil infrastructures monitoring, this paper addresses the problem of crack de-
tection, in the surface of the French national roads, by automatic analysis of optical images. The first contribution is a state of the art
of the image-processing tools applied to civil engineering. The second contribution is about fine-defect detection in pavement sur-
face. The approach is based on a multi-scale extraction and a Markovian segmentation. Third, an evaluation and comparison
protocol which has been designed for evaluating this difficult task—the road pavement crack detection—is introduced. Finally,
the proposed method is validated, analysed, and compared to a detection approach based on morphological tools.

1. Introduction

The evaluation of road quality is an important task in many
countries, like in France, where the national roads are in-
spected each three years in order to estimate the needed repa-
rations. To estimate the quality, these aspects can be taken
into account: the adherence, the microtexture, the macro-
texture, and the surface degradations. Before 1980, all these
inspections were accomplished manually. Since 1980, this
task can be automated with noninvasive techniques to be
more comfortable, less dangerous for employees and users
of the road but also more efficient and less expensive than
manual methods. Many systems have been proposed, based
on ground-penetrating radar [1] or laser system [2]. How-
ever, for noninvasive evaluation of surface degradations, the
recent research results seem more promising with optical
image-processing approaches for these reasons [3]:

(1) The acquisition systems based on optical devices are
easier to design and to use than other kinds of systems
(they are less sensitive to movement and to vibrations
than other systems).

(2) They also allow a dense acquisition (each millimeter),
that is, the acquisition can be realized for the whole

road surface, whereas for the other systems, like laser,
the measurements are available every 4 millimeters at
normal speed (90 km/h).1

(3) The measurement of the defects is more precise
than with other systems because, as explained in (2),
enough information is available.

(4) Even if the images are not always well contrasted, they
are more contrasted than the images/signals that can
be given by other devices, that is, the ratio between
noise and signal is greater with optical sensor than
with other kind of sensors.

Nowadays, many acquisition systems are available [3, 4], see
Table 1 (interested readers can find details about the evalua-
tion of such systems in [5, 6]). Moreover, to the best of our
knowledge, many methods for semiautomatic detection of
road defects can be found in the literature but only one
is commercialized (by INO2). Among all the existing ap-
proaches, it is difficult to know which one is the most adapted
to the task and what is the actual method that is the most
used. This is why the first goal of this paper is to present a
state of the art of assessment methods in noninvasive control
based on image processing.
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Table 1: The quality evaluation systems of the road pavement based on optical devices L, CLS, LC, and IPT mean, respectively, that the
described system involves a laser, a controlled lighting system, a linear camera and/or some image processing tools. The first set corresponds
to systems without image processing tools. While the second group of systems are able to provide nondense measurement, the third group of
systems can give a dense evaluation of the quality of the road.

Name Year Country L CLS LC IPT

ADDA, automated distress data acquisition 1991 USA —

ACM, automated crack monitor 1991 USA —

SIRANO 1991 France —

HARRIS, Highways Agency Road Research Information Systema 1999 UK — —

ADA, automated distress analyserb 2007 USA — —

AIGLE RNc 2008 France —

AMACd 2004 France — — — —

Profilograph and lasere 2007 Danemark — — —

REAL, road excellent automatic loggingf 1992 Japan — — — —

ARAN, automatic road analyser and then FuGro ADVantageg 1993/2003 Canada — — —

PAVUEh 1999 Sweden — —

RoadCracki 2008 Australia — — —
a
http://www.trl.co.uk/facilities/mobile test equipment/highways agency road research information system.htm.

bhttp://www.waylink.com/.
chttp://www.cete-normandie-centre.equipement.gouv.fr/IMG/pdf/15-AigleRNpress cle243947.pdf.
dhttp://www.vectra.fr/sites/fr/materiels-et-solutions/auscultations-des-chaussees/amac.html.
ehttp://www.greenwood.dk/road.php.
f http://www.pasco.co.jp/eng/solutions/geospatial/ground/.
ghttp://www.roadware.com.
hhttp://rst.ramboll.se/en/produkter/rst%20pavue.aspx.
ihttp://www.csiro.au/solutions/psaa.html.

The detection of crack is difficult in the context of road
surface evaluation because the signal to detect is weakly rep-
resented (1.5% of the whole image) and weakly contrasted
(the road possesses a texture that hides the crack). Recent
methods have shown their limits; the detection contains a lot
of false detections (induced by the particular texture of the
road), and the detection is not enough precise (the given
result is a region of detection and not the skeleton with the
width of the crack). The main default of the existing methods
is the fact that the specific geometry of the crack—it is a thin
and linear object—is not taken into account. In consequence,
the second aim of this work is to introduce a new method that
takes into account some geometric properties of the cracks.

Even if this problem is hard and very important in the
field of civil engineering, as far as we are concerned, there
is no protocol for evaluating and for comparing existing
methods, and it is difficult to know what kind of methods has
to be chosen for this task. In consequence, with the multiple
methods proposed in the literature, it seems important to
evaluate and to compare the various methods in order to val-
idate previous work and to identify the approaches that can
be employed and/or the methods that need improvements.
So, the third aspect discussed in this paper is the introduction
of such a protocol.

In consequence, the objectives are as follows: first, to give
a state of the art of the existing methods in noninvasive con-
trol based on image processing for estimating the quality of
the road surface, second, to present our method, and, third,
to introduce a protocol of evaluation and comparison that
allows to highlight the advantages and drawbacks of each
method.

2. Automatic Road Crack Detection

In the literature, many methods have been introduced to
detect thin objects in textured images, like that in medical
imagery, for the detection of blood vessels [27], and satellite
imagery, for road network detection [28]. Since 1990, algo-
rithms have been proposed for the semiautomatic detection
of road cracks (interested readers can see [29] for details
about road imaging systems and their limits). For the de-
tection of cracks, three components have to be taken into
account

(1) acquisition (see Table 2 for details),

(2) storage, and

(3) image processing.

In this paper, only the last step is studied, but the choices for
the two first steps are important for the success of the image
treatment. Moreover, most of the references are given in the
field of road quality assessment, but some of them come from
different applications, like cracks and defects in concrete (for
bridges or pipelines), on ceramics or on metallic surfaces (for
industrial applications). For road cracks, most of the time,
these hypotheses can be exploited.

(1) Photometric hypotheses

(Hp1 ) The crack pixels are darker than the road pixels.

(Hp2 ) The gray-level distributions of road crack and
road surface are independent.
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Figure 1: Examples of histograms (second row) of images (first row) with cracks. These histograms contain only one mode, and it is impos-
sible to separate the gray-level distribution of cracks from the gray-level distribution of the road pavement.

Table 2: The imaging systems. For each kind of configuration, the
given details are the orientation of the sensor (O.) that can be perpe-
ndicular or not to the road plane, the number of sensors, the
presence (—) or not of a laser, the presence (—) or not of overlapp-
ing images (R.) between the different acquisitions. For the sensors,
we distinguish 2D sensors (CCD, charged couple device) from 1D
sensor (linear camera coupled with laser).

O. Sensor Laser R. Citations

⊥ 1 (2D sensor) [7–17]

⊥ 1 (2D sensor) — [18, 19]

⊥ More than one (2D sensors) [20, 21]

⊥ More than one (1D sensors) [22, 23]

⊥ More than one (2D sensors) — [24, 25]

�⊥ More than one (2D sensors) — [26]

(2) Geometric hypotheses

(Hg1 ) A crack is a thin continuous object.

(Hg2 ) A crack is a set of connected segments with dif-
ferent orientations.

(Hg3 ) A crack does not have a constant width on the
whole length.

(3) Photometric and geometric hypotheses

(Hpg1
) The points inside a crack can be considered as

points of interest, from a photometric and/or
a geometric point of view.

These different hypotheses can be complementary, like (Hp1 )
and (Hp2 ) or (Hg1 ) and (Hg3 ), but some of them are opposite,
like (Hg1 ) and (Hg2 ). The hypothesis (Hpg1

) combines two
kinds of constraint because the definition of a point of

interest (POI), that is, a significant point in a scene, can be
expressed both with photometric constraints (some hypoth-
eses about the distribution of gray levels near POI can be
made) and geometric constraints (a point of interest can be
a corner, an edge, or any kind of geometric structure).

In the field of image processing, the semiautomatic meth-
ods and the automatic detection approaches are considered,
and these five families can be distinguished, see Table 3.

(1) Based on histogram analysis (hypotheses Hp1 and
Hp2 ), these methods are the most ancient and the
most popular. They use a thresholding based on an
histogram analysis [7, 30, 31], with Gaussian hypoth-
eses [9] and/or an adaptive or a local thresholding
[32, 33]. These approaches are simple and not time
consuming, but they also give many false detections.
In fact, these methods assume that the two gray level
distributions (the road pavement distribution and
the crack distribution) can be separated based on a
global level statistics (histogram3). In Figure 1, we can
see that most of the time, this hypothesis is not valid.

(2) Based on mathematical morphological tools [15, 33–
38] (hypotheses Hp1 and Hg1 ), an initial thresholding
is needed, and the results contain less false detections
than methods based on histogram analysis. However,
the major drawback of this kind of techniques is that
the quality of the results is highly dependent on the
parameter choices.

(3) Based on a learning phase in order to alleviate the
problems of the two first groups of methods [39, 40]
(hypotheses Hp1 and Hp2 ), most of the approaches
are based on neural networks [8, 41, 42]. The draw-
back is the learning step that cannot allow a fast and
fully automatic analysis.
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Table 3: The classification of existing methods for crack detection (or detection of thin objects in textured images) into five different families.
For each family, the hypotheses used by the methods of the family are specified.

Histogram (Hp1 , Hp2 ) Learning (Hp1 , Hp2 ) Morphology (Hp1 , Hg1 ) Filtering (Hp1 , Hg1–g3 )
Model-based

(Hp1 , Hg1–g3 , Hpg1
)

[7, 9, 11, 12, 14, 20, 22, 30–
32, 35, 57–62]

[8, 10, 13, 21, 39–42, 63–
65]

[15, 23, 33, 34, 36, 37, 66–
69]

[17, 25–28, 38, 43, 44, 46–
54, 70, 71]

[16, 24, 45, 55, 56, 72, 73]

(4) Based on filtering, the most recent ones (hypotheses
Hp1 , Hg1 , and Hg3 ). Edge extraction by filtering with
fixed scale is not adapted to the task of the detection
of road cracks because the width of the crack is not
constant, and this is why many methods are based on
wavelet detections [17, 25, 43, 44] with adaptive fil-
tering [27, 45, 46] (these approaches will be detailed
in the Section 4), contourlets [47], Gabor’s filters
[48], finite impulse response filter (FIR) [26], and
methods using models based on partial differential
equations (PDE) [49, 50]. Some techniques also use
autocorrelation filtering [51, 52] (a similarity score is
estimated between some targets that simulate cracks
and all the targets of the original image). An other
kind of algorithms is based on texture analysis [53,
54] (the crack is considered as a noise inside a tex-
ture).

(5) Based on an analysis of a model [55, 56] (hypotheses
Hp1 , Hg1–g3 , and Hpg1

). Most of these approaches are
based on a local analysis versus a global analysis in
order to take into account the local properties and
the global properties of a crack, by multiscale analysis
of texture combined with an algorithm of minimal
path [55] or by local detection of points of interest
combined with geodesic contours [56].

In conclusion, we can notice the following.

(i) Many methods have been proposed, but the problem
is not still solved. The results contain many false pos-
itives, and the detections are incomplete. Moreover,
most of the existing techniques can give interesting
results for only one given class of road pavement, that
is, the performance of the method is dependent on
the road texture.

(ii) Methods based on histogram study, even those that
are local, do not express correctly the problem, that
is, they do not take into account geometric character-
istics of the cracks and photometric characteristics of
the road pavement.

(iii) Learning methods are efficient,s but the learning step
is expensive (the time and the investments from the
users that are not expert in image processing).

For all these reasons, even if learning methods have been used
in our previous work, this paper focuses on the presentation
of two methods proposed to alleviate the limits of the old
ones by obtaining a dense detection with a low rate of false
detections.

3. Proposed and Compared Methods

Before introducing the proposed method, we briefly present
the preliminary works that motivate and justify our proposi-
tion. First of all, a neuron-based method has been tested [13],
on the real images of size 768× 512 presented in Section 4.2.
Results are interesting, but learning methods are not easy to
use for a nonspecialist in image processing, and the users
have to spend a lot of time for setting the parameters and
for building the database for the learning step before using
the method. The main goal is to propose a system that
facilitates the work of users and not a system that induces
a lost time by including a learning phase and a maintenance
each year in order to maintain the performances of the
system.4 In consequence, we have now focused our work on
methods that allow automatic processing, and, in particular,
we present two approaches as follows.

(1) The first, Morph, belongs to the families (1) and (2)
because it combines thresholding and refinement by
morphological analysis.

(2) The second, GaMM, of families (4) and (5), is based
on the advantage of multiscale analysis and local
modelling of the crack.

Morph has been proposed before GaMM and is quite
equivalent to the method presented in [15]. The contribu-
tions of this section are about GaMM; we propose a new
model for the sites and the potentials used in the Markovian
model. The advantages of this new method will be illustrated
with qualitative and quantitative results in Section 5.

3.1. Morphological Method (Morph). The chosen approach is
based on hypotheses Hp1 , Hg1 , and Hg3 , and it follows these
steps.

(1) Preprocessing of the images: to reduce the influence
of the texture and to increase the contrast between the
road pavement and the crack.

(2) Binarization by thresholding (the threshold is differ-
ent in the various variant, and a local threshold can
be used).

(3) Refinement by closing.

(4) Segmentation with shape analysis.

(5) Extraction of the characteristics of the cracks.

For step (1), three variants are developed, based on the com-
bination of these local tools: an erosion in gray levels, a con-
ditional median filtering, a histogram equalization, a mean
filtering (these preprocessings are detailed in Section 5.1).
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Method 1 Method 2 Method 3
Erosion Histogram equalization Histogram equalization

Conditional median filter Conditional median filter Grey-level erosion

Grey-level erosion

Histogram equalization

Histogram equalization

Conditional mean filter
Conditional mean filter

Thresholding Thresholding Thresholding

Closing Closing

SegmentationSegmentation Segmentation

Merging of the 3 methods

Closing for final result

Figure 2: The different steps of the method Morph. The conditional filtering is applied when the gray level is higher than 40 (to prevent the
removal of the crack). The last step is proposed in order to reduce false detections and to complete the detection.

The step (4) is realised in two stages. First, a labeling by
analysis of the connected components is realized. Second, the
size and the shape of each component is determined in order
to remove components which have a shape that is not similar
to a crack; the shape of a crack has to be a thin object. It
induces constraints on the width w and the height h of the
component. More precisely, from an expert point of view, a
crack is not significant if h < 50 cm, but we can suppose that
we manage to detect only a small part of the crack, and this
constraint becomes h < 7.5 mm. Moreover, the mean width
and the maximal width of the crack have to respect these
rules: wmin < 3 mm and wmax < 6.5 mm. All these thresholds
are empirically set. In Figure 2, we illustrate the kind of
results obtained at each step for the 3 variants. The next step

of the method Morph merges the 3 results (with a weighted
sum, and the weights are chosen with a learning phase).
The final stage refines the result by computing the closing in
gray levels of the fusion result.

3.2. Adaptive Filtering and Markovian Modelling (GaMM).
More recently, our work focused on the field of wavelet de-
composition. As it is difficult to chose the mother wavelet5

well adapted to the detection of road cracks, the adaptive
filter theory seems convenient, and, in particular, it allows
to build a mother wavelet adapted to our task. We present
the first step of the algorithm based on adaptive filtering
(hypotheses Hp1 and Hg3 ) and the second stage on Markovian
segmentation that can take into account the particular
geometry of the crack (Hg2 and Hg3 ).
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Input
Road images
Initialization
Number of scales and angles
Steps
(1) For each scale do
(1a) For each direction do

Estimate Adaptive Filter (AF)
(1b) Merge AF in all the directions
(2) For each scale do
(2a) Initialization of the sites (Markov)
(2b) While not (stop condition) do

Updating of the sites
(3) Fusion of the results on each scale

Algorithm 1: The studied algorithm for the method based on ada-
ptive filtering and segmentation by Markovian modelling. The step
(1) leads to a binary image using adaptive filtering, while step (2)
refines this result with a Markovian modelling.

3.2.1. Algorithm. The goal of this algorithm, presented in
Algorithm 1, is to obtain, step (1), a binarization (black pixels
for the background and white pixels for the cracks) and a
refinement of this detection by using a Markovian segmenta-
tion, step (2). Using adaptive filtering is important in order
to allow the detection of the crack with nonconstant width
(hypothesis Hg3 ).6 The number of scales for the adaptive
filtering has to be chosen and depends on the resolution of
the image. By supposing a resolution of 1 mm per pixel, by
choosing 5 scales, a crack with a width from 2 mm to 1 cm
can be detected. Moreover, the number of directions (for the
filtering) also has to be chosen, and it seems natural to take
these four directions: [0,π/4,π/2, 3π/4] that correspond to
the four usual directions used for crack classification. The
adaptive filtering is applied in each scale, each direction, and
then all the results are merged on each scale (mean of the
coefficients). The results of this filtering is the initialization
of the Markovian segmentation step.

3.2.2. Adaptive Filtering. Some details are provided in order
to realize step (1a) and (1b) in Algorithm 1. The ψ ∈
L2(R2)7 function is a wavelet if

∫
R2

|Ψ(x)|2
‖x‖2 dx <∞, with x = (i, j), (1)

where Ψ is the Fourier transform of ψ. Equation (1) induces
that

∫
R2 ψ(x)dx = 0. The wavelet family is defined for each

scale s and for each position u, by

ψ(x) = 1
2
ψ
(
Rθ
(

(x− u)
s

))
, (2)

where Rθ is a rotation of angle θ.
One of the main difficulties for applying a wavelet de-

composition is the choice of the mother wavelet ψ. Numer-
ous functions are used in the literature: the Haar wavelet,
the Gaussian derivatives, the Mexican hat filter, the Morlet
wavelet. It is very hard to determine which one is the best

for a given application. In the case of crack detection, two
elements are present: the crack (if there is a crack) and the
background (the road surface can be viewed as a repetitive
texture). The goal of the crack detection is to recognize a
signal (its shape is known up to a factor) mixed with a
noise whose characteristics are known. Consequently, adap-
tive filtering is well designed for the problem: extracting
singularities in coefficients estimated by a wavelet transform.
If s is a discrete and deterministic signal with s = (s1 · · · sN ),
N the number of samples, and z = (z1 · · · zN ) is a noisy
observation of s, b is supposed to be an additive noise: z =
s + b. The main hypothesis is that this second-order noise
is centered and stationary, with the autocorrelation function
φbb of terms φbb(i, j) = φbb|i− j| , independent of the signal s. The
adaptive filter h of s is defined by

h = φ−1
bb s. (3)

The crack signal depends on the definition of the crack. In
this paper, like in most of the papers of this domain, crack
pixels correspond to black pixels surrounded by background
pixels (road pixels). This is why, in [46], a crack is a piecewise
constant function f , defined for each position x ∈ R by:

f (x) =
⎧⎪⎨
⎪⎩
−a If x ∈

[
−T

2
,
T

2

]
,

0, elsewhere,
(4)

where the factor a and the thresholdT have to be determined.
It does not correspond to a realistic representation of the
crack. Because of subsampling, lights, and orientation of the
camera, the signal is more like a Gaussian function with zero
mean

f (x) = −ae(−1/2)(x/σ)2

, (5)

where a is the size of the crack and depends on σ , the
deviation of the Gaussian law, that is, a = 1/σ

√
(2π).

Consequently, the term σ allows to fix the width of the crack
(like threshold T in (4)). Finally, for step (1), h is estimated
for each of the 5 scales, as explained in the beginning of
Section 3.2.1, and φbb is interpolated in order to have the
same size. Then the filter is rotated in order to cover the 4
orientations.

3.2.3. Segmentation. The goal of this part is to extract shapes,
that is, cracks, using the detection maps estimated at the first
stage of the algorithm (step (2a) of Algorithm 1). For the
first step of segmentation (initialization), the sites are of size
3×3, consequently, a regular grid is considered in the image.
In [46], four configurations are possible and represented in
Figure 3 (the part inside the rectangle with low gray levels).
The initialization of the sites is based on the configuration
that maximizes the coefficients obtained with the adaptive
filtering. More formally, if we denoted γ2,0, γ2,π/4, γ2,π/2, and
γ2,3π/4, the four configurations, the best configuration γbest is:

γbest = arg max
α∈[0,...,3π/4]

m2,α, (6)
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Figure 3: The sixteen configurations in order to improve the mod-
eling of sites. The four initial configurations proposed in [46] are in
the bold rectangle, the sites are represented by the clearer gray levels,
and, for the proposed configurations, the sites are represented by the
darker gray levels.

where m2,α is the mean of the coefficients on the considered
configuration γ2,α. These four configurations do not repre-
sent all the possibilities and are not realistic configurations.
In fact, all these four configurations are centered, whereas it
is possible to have some noncentered configurations. Conse-
quently, we use the set of sixteen configurations illustrated in
Figure 3 (all the presented sites). By modifying the number
of configurations, we need to adapt the initialization of sites,
and (6) becomes

γbest = arg max
i∈[0;4], α∈[0,...,3π/4]

mi,α, (7)

where mi,α is the mean of the coefficients on the considered
configuration γi,α.

The image is considered as a finite set of sites denoted
S = {s1, . . . , sN}. For each site, the neighborhood is defined
by: Vs = {s′ | s /∈ Vs′ & s′ ∈ Vs ⇒ s ∈ Vs′ }. A clique c is
defined as a subset of sites in S whose every pair of distinct
sites are neighbors.

These random fields are considered as follows.

(1) The observation field Y = {ys} with s ∈ S. Here, ys
is the mean of the coefficients on the site.

(2) The descriptor field L = {ls} with s ∈ S. If there is
a crack ls = 1 elsewhere ls = 0.

At each iteration, a global cost, or a sum of potentials that
depends on the values of the sites and the links between
neighborhoods, is updated. This global cost takes into
account the coefficients of the sites (computed from the
coefficients estimated during the first part of the algorithm:
adaptive filtering) and the configurations of each site and its
neighbor sites (the 8 neighbors). More formally, the global

Table 4: The function u2 used in [46]. This table presents the
values u2(s′, s) for the sites in low gray levels in Figure 3. In our
experiments, like the authors, we have chosen β1 = −2, β2 = −1,
and β3 = 2.

γ2,0 γ2,π/4 γ2,π/2 γ2,3π/4

γ2,0 β1 β2 β3 β2

γ2,π/4 β2 β1 β2 β3

γ2,π/2 β3 β2 β1 β2

γ2,3π/4 β2 β3 β2 β1

cost is the sum of all the potential functions of the sites. This
potential function contains two terms as follows.

us = α1u1(s) + (1− α1)
∑
s′∈Vs

u2(s, s′). (8)

The first term, u1, corresponds to the data term, and it
evaluates how a site is similar to a crack from a photometric
point of view (hypotheses Hp1 and Hp2 ). This term is based
on the results given by the adaptive filtering. The second
term, u2, represents the constraints induced by the neighbors
of the site. More precisely, it estimates the consistency bet-
ween a site and each neighbor site, and it takes into account
the geometric hypotheses Hg2 and Hg3 . The choice of the
value α1 depends on the importance of each part of (8), and
it will be discussed in Section 5.1.1.

The function u1 is given by,

u1
(
ys, ls = 1

) =
⎧⎨
⎩
eξ1(k−ys)2

If ys ≥ k,

1 elsewhere,

u1
(
ys, ls = 0

) =
⎧⎨
⎩
eξ2(ys−k)2

If ys < k,

1 elsewhere.

(9)

The parameters ξ1, ξ2, and k have to be fixed.8 For the defi-
nition of u2, we have to determine the number of cliques. In
[46], 4 cliques are possible and the 8-connexity is considered.
The potential function proposed in the precedent work
only considers the difference of orientations between two
neighborhoods and not the position between the two sites of
the clique, see Table 4. Some cases are not penalized with the
old configuration. For example, these two unfavorable cases
are not penalized as follows:

(i) two sites with the same orientation but with no con-
nection between them,

(ii) two sites with the same orientation, but their position
makes them parallel.

This is why, with the sixteen configurations that are presented
in Figure 3, the potential has to take into account the
differences of orientations between two sites (there are 16×16
possibilities) and the position of the two sites (there is 8 pos-
sibilities because we consider the 8 neighbors). Consequently,
the new potential function u2 follows these two important
rules.



8 International Journal of Geophysics

u2

θ0 = θ1 = θ2 = π/4, θ3 = π/2
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For s2: u2 = π/4− 1 + 0
For s3: u2 = π/2− 0 + 2

s3

s2

s0

s1

s3

s2

s0

s1

(a)

θ0 = θ1 = θ2 = θ3 = π/2
θe1 = 0, θe2 = θe3 = π/2
For s1: u2 = 0− 1 + 0
For s2: u2 = π − 3 + 0
For s3: u2 = 0− 0 + 2

s3

s2

s2s0

s1

(b)

Figure 4: Examples of the function u2. These two examples of sites with their respective neighbors show the behavior of the potential u2 with
the two considered aspects: orientation and distance. In example (a), with the help of the orientation term, the configuration s3 is penalized
and, s2 is less penalized than s3. In example (b), with the help of the two terms about the distance, the site s3 is penalized, compared to s1.
On the contrary, the particular case of s2 is favorable, and it compensates the penalty given by the orientations.

Camera 1

Camera 2

Camera 3

Lighting
system

Scene

(a) System (b) Human machine interface

(c) Environment images (notused) (d) Processed images

Figure 5: The acquisition system used for the evaluation. In (a), the acquisition system is illustrated whereas in (b) it shows the user interface.
In (c, d), an example of the final images is given. In (d), we can see the road that is visible in (c). The processing is done 1 meter by 1 meter,
that is, independently on each image presented in (d). The surface contains two reparations of vertical cracks. In some cases, the 3 sensors
do not have the same settings, and the global illuminations are different, so it can generate some “false cracks”. This aspect has been easily
taken into account in a preprocessing step by eliminating the junction area in the region of interest.
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Synthetic image Ground truth

Real image + simulated
defect

Ground truth

Real image manually segmented

Pseudoground truth

Figure 6: Examples of the images tested.

(R1) The lower the difference of orientations between two
sites, the lower the potential.

(R2) The lower the distance between two sites, the lower
the potential (in this case, the distance means the
minimal distance between the extremities of the two
segments).

More formally, if

(i) d denotes the Euclidean distance between the two
closest extremities of the sites, with d ∈ [0,dmax],9

(ii) θ1 and θ2 are the orientations of, respectively, s =
{pi}i=1···Ns

, and s′ = {p′i}i=1···N ′
s

where, pi, respec-
tively p′i , is the pixel i of theNs, respectivelyN ′

s , pixels
that composes the site s, respectively s′,

(iii) θe is the angle between the two sites; the u2 function
is defined by

u2(s′, s) = α2

( |2θe − θ1 − θ2|
2π

)

+ (1− α2)

⎛
⎝ J(NbC)mini, j

(
d
(
si, s′j

))

dmax
− NbC

3

⎞
⎠,

(10)

where NbC indicates the number of connected pixels
between the two sites s and s′, and J(x) equals 1 if
x = 0 and 0 elsewhere. The first term is induced
by the rule about the orientations, (R1). This term
equals zero when the sites have the same orientation,
and this orientation is the same as the orientation
between the sites, that is, θe = θ2 = θ1. This first term
penalizes the configurations where the sites do not
have the same orientation but also the particular case
where they are parallel, see example (a) in Figure 4.
The second term and the third term express the rule
(R2) about the distances. Two aspects have to be dis-
tinguished: the number of connected pixels, when
the sites are connected, and, on the contrary, that is,
when the sites are not connected, the distance bet-
ween the sites. It allows to give low influence at dis-
connected sites and also to increase the cost of sites
that are parallel but connected, see example (b) in
Figure 4. To study the influence of all these terms,
the equation has been normalized, and the different
terms have been weighted (using α2, the choices for
α2 will be discussed in Section 5.1.1).

4. Evaluation Protocol

For the evaluation of automatic crack detection by image
processing methods, to the best of our knowledge, no eval-
uation and comparison protocol has been proposed in the
community. However, in all the countries, for estimating the
quality of the road surface, it is important to know exactly
the size and the width of defects, that is, to detect precisely
the defect. This is why it seems important to characterize
quantitatively the performances of the methods. For building
this kind of protocol, it is necessary, first, to choose the
tested images, second, to choose how to build reference seg-
mentations, and, third, to determine the criteria used for
the quantitative analysis. For estimating the reference seg-
mentations, two approaches can be used

(1) To compute synthetic images with synthetic defects. The
exact position of the defects is known, and the ref-
erence segmentations can be considered as ground
truth.

(2) To propose reliable segmentations of real images. It sup-
poses that we are able to provide a segmentation that
is reliable enough to be employed as a reference. For
evaluation, these segmentations can be called “pseu-
doground truth.”

The two solutions are studied, and, we explain how the man-
ual segmentations (that are our references) are computed.
Before, we briefly describe the acquisition system.

4.1. Acquisition. The acquisition system used for the dataset
of our experiments is described in Figure 5. It contains 4
video cameras with 3 sensors in gray levels in the backside
of the car and 1 color in front of the car. The first camera is
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Figure 7: The variations between each manual segmentations that are used for building pseudoground truth. The first graph represents for
each operator (one curve for one operator) and each image (x-coordinates), cf. Figure 16 for the corresponding images, the mean distance,
Di, i ∈ {1, 2, 3, 4}. The second graph presents D, cf. Section 4.3 and Table 5. This graph allows us to distinguish the different categories
of images (red axes): reliable (D < Tr), moderately reliable (Tr ≤ D < Ta), ambiguous (Ta ≤ D). In the two graphs, the purple axes represent
the five different samples of images (each sample corresponds to a kind of road pavement). The first ones were acquired with a static system
whereas the four others were acquired with a dynamic system.

needed to determine the environment conditions (weather,
location, traffic) whereas the three other ones are used for the
crack detection. The resolution of this one is smaller than the
3 others, and; moreover, the optical axis is not perpendicular
to the road surfaces, on the contrary of the 3 others. The 3
cameras have been physically synchronized directly during
the acquisition. To be independent of the illumination
problems, nine stroboscopic lights have been added. The
position of the lights is perpendicular to the road plane,
and they are distant from the surface of 1 meter. The light
power has been chosen in order to not deteriorate the visu-
alisation of the road pavement and the defects.

4.2. Reference Images. The most difficult is to propose images
with a reference segmentation. On the first hand, we intro-
duce synthetic images with a simulated crack (the size of
these images is 256× 256).10 As shown in Figure 6, the result
is not realistic enough. It does not seem realistic because the
contrast is too important between the road and the crack.
Moreover, the interruptions of the crack, the changes in the
direction, the presence of many paths, and so forth, in the
default, are not simulated. In order to be more realistic, it
seems that we have to design and to implement a complex
heuristic to simulate the crack, and it represents too much
effort for having only a synthetic default. This is why, on
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the other hand, we have simulated different defects on real
images that previously contain no defect (the size of these
images are 768 × 512 and 1920 × 480). The result is more
realistic, but the shape and the photometric aspect of the
cracks (which are randomly chosen) does not seem realistic
enough. This is why it appears important to propose a set
of real images (size 768 × 512 and 1920 × 480) with manual
segmentations that are reliable enough to be considered as
reference segmentations. To summarize, the two first kinds of
images allow to propose an exact evaluation and to illustrate
theoretically the behavior of the method whereas the last
kind of images allows to validate the work on real images with
a pseudoground truth.

4.3. Reference Segmentations. For real images, we briefly ex-
plain how the manual segmentations are validated. Four
experts have manually segmented the images with the same
tools11 and in the same conditions. Then, the four segmenta-
tions are merged, following these rules.

(1) A pixel marked as a crack by more than two experts
is considered as a crack pixel.

(2) Every pixel marked as a crack and next to a pixel kept
by step (1) or (2) is also considered as a crack.

The second rule is iterative and stops when no pixel is added.
Then, the result is dilated with a squared structuring element
of size 3 × 3. To evaluate the reliability of the reference
segmentations, we estimate, first, the percentage of covering
between each operator and, second, the mean distance, D,
between each pixel (detected by only one expert and not kept
in the reference image) and the reference segmentation.

Table 5 shows some results for 5 of the 42 images man-
ually segmented. We have distinguished 5 families: the first
one contains images acquired in static whereas the four other
ones are acquired in dynamic. Moreover, we have 4 different
kinds of road pavement acquired in dynamic. The 5 images
have been taken in order to show results on each of these
families. We can notice that the first 2 images are the most
reliable because the mean error is less than 2 pixels. The
precision of these results is satisfactory. On the contrary,
the last 3 images show the important variabilities between
operators and how it is difficult to extract a segmentation
for these images and, in particular, in the image 936, where
the error is due to a bad interpretation of one of the four
operators who finds a defect that does not exist.

By analyzing the results for the criterion D, presented in
Table 5, we can classify the 42 tested images in 3 categories,
that is, images with the following.

(1) A reliable segmentation: the criterion D < Tr . It
means that all the operators have built segmentations
that are quite near to each other.

(2) A segmentation that is moderately reliable: the crite-
rion Tr ≤ D < Ta. It means that some parts of the
crack are not easy to segment, and there are local
errors.

(3) An ambiguous segmentation: the criterion D ≥ Tr . It
clearly shows that the images are difficult to segment,

Reliable segmentations

Moderately reliable segmentations

Ambiguous segmentations

Figure 8: The levels of difficulties of the tested images. On these
images, we present the four manual segmentations. The codes are
red (light and dark), blue, green, for each of the four operators. The
parts in yellow correspond to the parts of the cracks detected by
more than one operator. There are two examples per category of
segmentation. To better visualize, only a part of the images is shown.
In the ambiguous images, we clearly see the mistake of the operator
in dark red.
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Table 5: The comparison of the 4 manual segmentations for esti-
mating the final reference segmentations. For each image, we spec-
ify: the percentage of pixels in the whole image that are preserved as
crack pixels in the final reference segmentation (F), the percentage
of recovering between 2, 3 and 4 manual segmentations and the
sum of these 3 percentages (S). For all the crack pixels that are not
preserved in the final reference segmentation, the mean distance to
this segmentation is given (D).

Images F (%) 2 (%) 3 (%) 4 (%) S (%) D (pix)

42
0.4 26.69 14.59 4.2 45.48 1.45

463 0.17 23.46 5.95 0.39 29.8 1.4

936 0.41 23.52 7.41 0.9 31.83 7.05

41 0.33 22.64 7.31 1.33 31.28 3.56

88 1.44 22.74 8.23 1.23 32.2 2.76

and, in most of the cases, it means that some parts are
detected as a crack whereas they are not and reversely.

The threshold have been empirically chosen: Tr = 2 and
Ta = 4. In Figure 7, first, we present the mean distance,
Di, i ∈ {1, 2, 3, 4}, between the final reference segmentation,
Sr , and each manual segmentation, Si (obtained with each
operator), and, second, the criterion D for each real image of
our protocol. The first graph illustrates how it is important
to combine the four manual segmentations instead of using
only one manual segmentation. Indeed, we can notice that
each operator, alternately, gives an interpretation that is
different from the three others. The second graph explains
how the thresholds are chosen for determining the detections
that are “accepted” for the evaluation, see Section 4.4 for
explanations about accepted detections.

The three categories of reference segmentations are illus-
trated in Figure 8. Overall, the four segmentations are near
to each other, and, if the segmentations are combined, it
permits to detect the width of the crack. However, these
examples also present some difficulties of the crack segmen-
tation: areas where the cracks are less visible and regions
where the texture elements that have the same size and/or the
same gray levels as the crack pixels. Thus, in some cases, one
operator extends the crack or gives a different shape. In
some extreme cases, the operator can even confound a crack
and another object of the scene (a piece of wood, e.g.). In
another way, these examples highlight the interest in com-
bining different segmentations in order to obtain reference
segmentations as reliable as possible.

4.4. Criteria of Efficiency. In this section, we introduce how
the reference segmentation and the estimated segmentation
are compared. In Figure 9, we present common evaluation
criteria that are used for segmentation evaluation:

(1) the percentage of correct detections (true positives)
(TP),

(2) the percentage of false positives (FP),

Sensitivity

Specificity

Similarity
coefficient or

DICE similarity

Proportion of good
detections

Proportion of
nondetected pixels

Ratio between good
detections and
nondetections

True positives (TP)

Positives (P)

Accepted

False positives (FP)

False negatives (FN)

True negatives (TN)

TP
TP+FN

TN
TN+FP

2TP
FN+TP+P

Figure 9: The evaluation criteria. In this figure, two segmentations
of the same crack are represented the black line corresponds to a
manual (or reference) segmentation, and the red line is an estimat-
ed segmentation. The goal is to evaluate the quality of the estimated
segmentation that corresponds to the positives (P). All the nons-
elected pixels that do not correspond to the crack are called the
true negatives (TN). The piece of line with the two colors (red and
black) are the correct detections or true positives (TP). In this table,
different criteria are introduced, but, in this work, we have used
the DICE because this coefficient well represents what we want to
measure: the quality of the detection against the percentage of the
crack that is detected, in order to determine how to reduce false
detections whilst increasing the density.

(3) the percentage of false negatives (FN), and

(4) the similarity coefficient (DICE).

This last criterion seems to be the most significant because
it evaluates the ratio between the FP and the FN, and it
resumes the results of all the criteria. Moreover, it directly
expresses what is important to evaluate: how the method can
reduce errors of detection whilst increasing the density of
good detections.

For real images, the detections that are “accepted” have
been added in order to tolerate a small error on the local-
ization of crack pixels. This criterion is needed because per-
fect detection seems, for the moment, difficult to reach, see
the results in Table 5. In consequence, these accepted pixels
have been included in the estimation of the similarity co-
efficient or DICE. The threshold for accepted detections
equals 0 for synthetic images whereas it depends on the mean
distances, see D in Table 5, for the real images.

5. Experimental Results

In this section, two aspects are studied and presented:

(1) the evaluation of the method based on an adaptive
filtering and a Markovian modelling in order to
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Figure 10: The variations of the similarity coefficients (given in Figure 9) for the 4 variants. The first graph shows the results for synthetic
images (the first 3 ones are obtained from real images with simulated defect), and the second graph presents the results with real images.
The good performances of the methods InMM and GaMM can be noticed.

Image Ground truth Init

Gaus InMM GaMM

Figure 11: The segmentation results on some synthetic images presented in Figure 6. These are the results obtained with the four variants,
and they show how the method GaMM gives the clearest result. We can also notice the good results of the method InMM.

characterize its behavior, to estimate the best param-
eters and to determine the best variant;

(2) the comparison to the Morph method.

5.1. Adaptive Filtering and Markovian Modelling. We want to
determine, first, how to fix the different parameters, second,

the preprocessing steps that are necessary, and, finally, which
variant is the most efficient. In consequence, these points
have been studied.

(i) Parameter values. The weights α1, (8), and α2, (10),
are tested from 0 to 1 with a step of 0.1.
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(ii) Preprocessings. These preprocessings have been exper-
imented to reduce noises induced by texture, to in-
crease the contrast of the defect and to reduce the
light halo in some images as follows.

(1) Threshold. This preprocessing has been pro-
posed in order to reduce the light halo in the
last 4 images presented in Figure 6 and in all the
images of the last four categories in Figure 7.
Each pixel lower than a given threshold is re-
placed by the local average of the gray levels.

(2) Smoothing. A mean filter of size 3× 3 is applied
to reduce the granularity of the texture.

(3) Erosion. An erosion (in gray level) with a square
structuring element of size 3× 3 is also applied
to reduce the granularity of the texture.

(4) Restoration. It combines the advantages of all
the previous methods in three steps: a histo-
gram equalization, a thresholding (like Thresh-
old), and an erosion (like Erosion).

In order to preserve the crack signal, each pixel under a given
threshold is not filtered.12

(iii) Algorithm variants. Four variants are compared as fol-
lows.

(1) Init. This is the initial method proposed in [46].

(2) Gaus. This variant supposes that the distribu-
tion of the gray levels inside a crack follows
a Gaussian function, see Section 3.2.2.

(3) InMM. This is the initial version with an im-
provement of the Markovian modelling (new
definition of the sites and of the potential func-
tion), see Section 3.2.3.

(4) GaMM. This is the method Gaus with the new
Markovian modelling.

(iv) Comparison. We have compared this method with the
method based on morphological tools and that is
quite similar to [15], Morph.

5.1.1. Influence of Parameters. Among all the results, two
conclusions can be done.

(1) For each variant and each preprocessing, the weights
between the term for adaptive filtering and the term
for the Markovian modelling should be the same, see
(8), that is, α1 = 0.5. However, when the weight given
to adaptive filtering is the largest, the quality of the
results is lower than that when it is the reverse. It
means that in this kind of application, the geometric
information is more reliable than the photometric
information. It seems coherent with the difficulties
induced by the acquisition.

(2) For the Markovian modelling, we have noticed that
the results are the best when the weights are the same
between the orientation term and the distance term,

Init

Gaus

InMM

GaMM

Figure 12: The segmentation results on some real images. These
are the results obtained with the real images presented in Figure 6.
The method InMM obtains the clearest detection (i.e., with less false
detection), but we can also notice the good quality of the detection
map with the method GaMM.

see (10), that is, α2 = 0.5. However, better results are
obtained when the weight of the orientation is greater
than the weight of the distance one instead of the
reverse. It means that the orientation characteristics
are more reliable than the distance ones, and this
remark is coherent with the fact that cracks present
strong spatial constraints. Moreover, it is also linked
with the difficulties induced by the acquisition (the
lighting system makes the photometric information
less reliable).

5.1.2. Preprocessing. These tests have been done with real
images, because the synthetic images do not need preprocess-
ings. These conclusions can be made for the needed prepro-
cessing per method:

(i) Init: restoration;

(ii) Gaus: restoration;

(iii) InMM: threshold;

(iv) GaMM: erosion.

However, for the first dataset (acquired with lighting con-
ditions more comfortable than the lighting conditions of
the next 4 ones), the preprocessing is not significant for
increasing the quality of the results. Moreover, with the new
Markovian modelling, the preprocessing step does not signif-
icantly increase the quality of the results.
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Figure 13: The comparison of the similarity coefficients between GaMM and Morph. The purple axes correspond to the five sets of tested
images. For the first set that corresponds to real images with no illumination problems, the results are mixed whereas, for the four other
sets, GaMM is the best. The mean of this criterion is 0.6 (variance = 0.0257) for GaMM whereas it is 0.49 (variance = 0.0750) for Morph.
However, this method has one step of characterization of the cracks (not introduced in GaMM), and this step can remove cracks that do
not respect the characteristics of a cracks (in length, size, and shape). This step contributes to reduce errors, but, in some difficult cases, it
decreases the performances of the detection, compared to GaMM.

5.1.3. Variants. The results are presented for

(1) synthetic images,

(2) real images.

For the first category, the ground truth is available whereas,
for the second category, a pseudoground truth is used and
the detections which are accepted are taken into account
in the evaluation, that is, a threshold is applied to the dis-
tance between the segmentation estimated by the evaluated
method and the pseudoground truth segmentation. The
thresholds applied on the distance for the accepted detections
are determined with the results given in Table 5, column D.

In Figure 10, the evolution of the similarity coefficients,
or DICE, is presented for the 11 synthetic images, in
Figure 10(a), and 10 of the real images, in Figure 10(b). With
synthetic images, the method GaMM is clearly the best for
most of the images. However, for one image (the fifth), the
results are worse than the results of the method Gaus, but
they are still correct (DICE = 0.72). On the contrary, for the
most difficult images (the 3 first ones that contain a real road
background), the method GaMM obtains acceptable results
(DICE > 0.5) whereas the other methods are not efficient at
all. Illustrations are given in Figures 11 and 12; they show
how the method GaMM can reduce false detections.

5.2. Results and Comparison with Morph. Finally, we have
compared the results of GaMM on each of the complemen-
tary dataset (32 images) with Morph. The mean DICE is 0.6
with GaMM whereas it is 0.49 with Morph, see Figure 13. It
shows how GaMM can outperform Morph. However, if we
compare image per image, the results show that in 50% of
the cases GaMM is the best, see illustrations of these results

in Figures 14 and 15. More precisely, GaMM seems more
efficient with ambiguous images, whereas Morph is the best
with reliable images. Finally, we can also precise the execution
time for the two methods: about 1 minute for GaMM and
5 seconds for Morph with a processor Intel core 2 duo of
2 GHz. These execution times give only some indications
because the implementation, in particular for GaMM, has
not been optimized.

6. Conclusions

In conclusion, this paper gives a review about image-proc-
essing methods for the crack detection of road pavement.
It can help the researchers who want to choose and to
adapt an auscultation method to the constraints of the
transport structure that is studied (it depends on the
quality of the surface, the needs of the auscultation).
Moreover, a new method for the detection of road cracks
has been introduced, and we have presented a new evalua-
tion and comparison protocol for automatic detection of
road cracks. As far as we are concerned, we proposed real
images with ground truth for the first time in the community.
Actually, this dataset is available on this website: http://
perso.lcpc.fr/sylvie.chambon/FISSURES/. The new method,
GaMM, has been validated by the proposed protocol and
compared to a previous one, Morph. This evaluation shows
the complementarity of the two methods: the Morph method
obtains more true positives than the GaMM method whereas
this one reduces the percentage of false positives.

Our first improvements of this work will focus on the
evaluation and comparison protocol. We want to increase
our data set by taking into account the different qualities of
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Synthetic images Ground truth

Morph

Morph

Real images Pseudoground truth

GaMM

GaMM

Figure 14: The differences between Morph and GaMM. Examples
with synthetic images and real ones. Morph is more efficient than
GaMM with simple synthetic images whereas GaMM has a better
behavior with real images.

road surface or road texture (because for the moment, each
proposed method seems very dependent on the quality of the
road texture). In a second step, our future work will include
new experiments about the acquisition system. Indeed, the
acquisitions, and the results obtained with the acquisition
system presented have shown its limits for example, in
Figure 6, some parts of the crack are not “visible.” It comes
from the fact that, to highlight the crack, it depends on the
orientation of the lights and of the sensors. Using one single
sensor and one light always in the same position/orientation,
we can sometimes miss some defaults in the acquisition. So, it
seems important to study other kinds of systems to improve
the quality of the automatic treatments. Finally, we want to
improve the GaMM method by adding the extraction of the
crack characteristics, like that in Morph.

Morph

Real images

Pseudoground truth

GaMM

Figure 15: The differences between Morph and GaMM. Examples
with real images acquired on a vehicle. The detection with GaMM
is more complete than the detection with Morph.

Endnotes

1. It has been determined from the most recent systems.

2. http://www.ino.ca/fr-CA/Realisations/Description/pro-
ject-p/systeme-laser-mesure-fissures.html.

3. This separation would be possible based on local statis-
tical analysis around the crack.

4. This maintenance is necessary because the conditions
and the systems of acquisition can changed every year,
and the road pavement also evolves.

5. It is useful for generating the wavelet family for multi-
scale analysis.

6. This hypothesis is realistic for this application.

7. L2 is the square integrable space.

8. The choice of k is related to the maximal number of
pixels that belong to a crack (it depends on the reso-
lution of images and hypothesis about the size and the
configuration of the cracks). We have chosen k in order
to consider at most 5% of the image as a crack.
Moreover, our experiments have brought us to take ξ1

= ξ2 = 100.

9. As the sites are of size 3× 3, dmax = 5
√

2.

10. The road is a random texture, that is, each intensity is
randomly chosen by supposing a uniform distribution
of intensities in [0; 255]. Then, the user gives the posi-
tion of the beginning, the length, and the orientation
(vertical, horizontal, or oblique) of the crack. The crack
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Figure 16: The reference segmentations (or pseudoground truth) used in our evaluation protocol for real images. In each original image,
the reference segmentation is highlighted in red. Visually, these manual segmentations seem correct and useful for being the reference
segmentations in our comparison protocol.

points are built by randomly selecting the next point in
the neighborhood and the intensity in [0; 100].

11. We use a “home-made” software that proposes an inter-
face that helps the person to segment the default. The
principle is that the user has to select points on the crack.
These points have to be close enough (from 5 to 20 pixels
of distance). Then, the path between two close points is
automatically detected by using a simple heuristic; the

path that minimizes the mean intensity is selected. The
interface is complete enough to allow the displacement
of the points, and the removing of some points, the
removing of some cracks. The user can also select the
width of the path (crack). Some filters are also proposed
to improve the contrast between the crack and the road
in order to help the user.

12. Experimentally, this threshold equals 40.
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