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Besides inheriting the properties of classical Bézier curves of degree 𝑛, the corresponding 𝜆-Bézier curves have a good performance
in adjusting their shapes by changing shape control parameter. In this paper, we derive an approximation algorithm for multidegree
reduction of 𝜆-Bézier curves in the 𝐿

2
-norm. By analysing the properties of 𝜆-Bézier curves of degree 𝑛, a method which can deal

with approximating 𝜆-Bézier curve of degree 𝑛 + 1 by 𝜆-Bézier curve of degree 𝑚 (𝑚 ≤ 𝑛) is presented. Then, in unrestricted and
𝐶
0, 𝐶1 constraint conditions, the new control points of approximating 𝜆-Bézier curve can be obtained by solving linear equations,

which can minimize the least square error between the approximating curves and the original ones. Finally, several numerical
examples of degree reduction are given and the errors are computed in three conditions. The results indicate that the proposed
method is effective and easy to implement.

1. Introduction

Bézier curves are one of the main mathematical models in
CAD/CAM system [1]. Degree reduction of Bézier curve
is an important technique in geometric computation and
geometric approximation [2] and has great significance for
shape design. Firstly, it is embodied in data transfer and
exchange between CAD systems or in CAD system, because
the highest allowable degree of Bernstein polynomial for
curve is generally different in various CAD systems or
models. Next, degree reduction of curve is favorable for data
compression. With the popularization of digitized and net-
work product design, data communication between design
systems becomes quite frequent [3], and geometric data in
design system has come to mass [4].Therefore, the operation
of degree reduction attracts a good deal of attention.

The issue of degree reduction of Bézier curves is con-
cerned with the solution of the following problem: for a given
Bézier curve R

𝑛
(𝑡) of degree 𝑛 with Bézier points {r

𝑖
}
𝑛

𝑖=0
,

find an approximate Bézier curve ̃R
𝑚
(𝑡) of lower degree 𝑚,

where 𝑚 < 𝑛, with the set of Bézier points {̃r
𝑖
}
𝑚

𝑖=0
, so that

R
𝑛
and ̃R

𝑚
satisfy boundary conditions at the end points,

and the error between R
𝑛
and R̃

𝑚
is minimum. For degree

reduction of Bézier curves, many scholars have done a lot of
research that can be classified into three categories: geometry

of approximate control point [5–8], algebraic means of basis
function transformations [9–14], and B net and constrained
optimization [15, 16]. Watkins and Worsey [9] presented an
algorithm for generating (𝑛 − 1)st degree approximation to
𝑛th degree Bézier curve. Eck [10] investigated a complete
algorithm for performing the degree reduction within a
prescribed error tolerance by help of subdivision. Chen and
Wang [11] investigated the problem of optimal multidegree
reduction of Bézier curves with constraints of endpoints
continuity. Zheng and Wang [12] proved that the problem
of finding a best 𝐿

2
-approximation over the interval [0, 1]

for constrained degree reduction is equivalent to that of
finding aminimum perturbation vector in a certain weighted
Euclidean norm. Using the transformation matrices, Lu and
Wang [13] presented a method for the best multidegree
reduction with respect to √𝑡 − 𝑡2-weighted square norm for
the unconstrained case. Tan and Fang [14] proposed three
methods for degree reduction of interval generalized Ball
curves of Wang-Said type. Degree reduction of Bézier curves
has been conducted according to different norms, mostly 𝐿

2
-

norms, for both unconstrained and constrained conditions.
In general, unconstrained degree reduction gives lower error
than the constrained one. However, Bézier curves are often a
part of a piecewise curve, so constrained degree reduction is
preferred.
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Although Bézier curves have now become a powerful
tool for constructing free-form curves in CAD/CAM, they
have their own disadvantages. Specifically, the shape of a
Bézier curve is well-determined by its control points after
choosing the basis functions [17]. In recent years, in order
to improve the performance of Bézier curves, many scholars
have constructed some new curves which are similar to the
Bézier ones by introducing parameters into basis functions;
see [18–22]. These new curves share many basic properties
with the Bézier ones. Furthermore, they hold the property of
flexible shape adjustability. Yan and Liang [18] constructed
a new kind of basis function by a recursive approach;
thus a kind of parametric curves with shape parameter is
defined, which are called 𝜆-Bézier curves. These new curves
have most properties of the corresponding classical Bézier
curves. Moreover, the shape parameter can adjust the shape
of the new curves without changing the control points.
Focusing on degree reduction of 𝜆-Bézier curves, we study
the corresponding problem by the least square method and
obtain the new control points as well as the shape parameter
of approximating 𝜆-Bézier curves.

The remainder of the paper is organized as follows. The
definition and properties of 𝜆-Bézier curves are introduced
in Section 2. In Section 3, we give the problem description of
approximating degree reduction. In Section 4, we present the
least square degree reduction of 𝜆-Bézier curve. Numerical
examples are given in Section 5, and we present some
applications. At last, a short conclusion is given in Section 6.

2. The Definition and Properties of
𝜆-Bézier Curves

2.1. Extension of Basis Function. The definition of extension
Bernstein basis functions is given as follows [18].

Definition 1. Let 𝜆 ∈ [−1, 1]; for any 𝑡 ∈ [0, 1], the polynomial
functions

𝑏
0,2
(𝑡; 𝜆) = (1 − 2𝜆𝑡 + 𝜆𝑡

2
) (1 − 𝑡)

2
,

𝑏
1,2
(𝑡; 𝜆) = 2𝑡 (1 − 𝑡) (1 + 𝜆 − 𝜆𝑡 + 𝜆𝑡

2
) ,

𝑏
2,2
(𝑡; 𝜆) = (1 − 𝜆 + 𝜆𝑡

2
) 𝑡
2

(1)

are called the extension Bernstein basis functions of degree 2
associated with the shape parameter 𝜆.

For any integer 𝑛 (𝑛 ≥ 3), the functions 𝑏
𝑖,𝑛
(𝑡; 𝜆) (𝑖 =

0, 1, . . . , 𝑛) defined recursively by

𝑏
𝑖,𝑛
(𝑡; 𝜆) = (1 − 𝑡) 𝑏

𝑖,𝑛−1
(𝑡; 𝜆) + 𝑡𝑏

𝑖−1,𝑛−1
(𝑡; 𝜆) ,

𝑡 ∈ [0, 1] ,

(2)

are called the extension Bernstein basis functions of degree 𝑛.
In the case 𝑘 = −1 or 𝑘 > 𝑙, we set 𝑏

𝑘,𝑙
(𝑡; 𝜆) = 0.

Theorem 2. The extension Bernstein basis functions of degree
𝑛 can be expressed explicitly as

𝑏
𝑖,𝑛
(𝑡; 𝜆)

= (1 +

3𝐶
𝑖−1

𝑛−2
+ 𝐶
𝑖

𝑛−1
− 𝐶
𝑖

𝑛

𝐶
𝑖

𝑛

𝜆 −

2𝐶
𝑖

𝑛−1

𝐶
𝑖

𝑛

𝜆𝑡 + 𝜆𝑡
2
)

⋅ 𝐶
𝑖

𝑛
𝑡
𝑖
(1 − 𝑡)

𝑛−𝑖
(𝑖 = 0, 1, . . . , 𝑛) ,

(3)

where 𝑛 ≥ 2, 𝐶𝑖
𝑛
= 𝑛!/𝑖!(𝑛 − 𝑖)!.

2.2. Construction of 𝜆-Bézier Curves

Definition 3. Given control points P∗
𝑖
(𝑖 = 0, 1, . . . , 𝑛; 𝑛 ≥ 2)

in 𝑅2 or 𝑅3, then

p∗ (𝑡; 𝜆) =
𝑛

∑

𝑖=0

P∗
𝑖
𝑏
𝑖,𝑛
(𝑡; 𝜆) , 𝑡 ∈ [0, 1] , 𝜆 ∈ [−1, 1] (4)

is called a 𝜆-Bézier curve of degree 𝑛 with shape parameter
𝜆, where basis functions 𝑏

𝑖,𝑛
(𝑡; 𝜆) (𝑖 = 0, 1, . . . , 𝑛; 𝑛 ≥ 2) are

defined by (3) (see Definition 3.2 in [18]).
When the shape parameter 𝜆 is equal to zero, 𝜆-Bézier

curves degenerate to the classical Bézier curves. 𝜆-Bézier
curve inherits most properties of the classical Bézier curve,
such as convex hull property, geometric invariance, symme-
try, and the following terminal property:

p∗ (0; 𝜆) = P∗
0
,

p∗ (1; 𝜆) = P∗
𝑛
,

𝑑p∗ (𝑡; 𝜆)
𝑑𝑡








𝑡=0

= (𝑛 + 2𝜆) (P∗
1
− P∗
0
) ,

𝑑p∗ (𝑡; 𝜆)
𝑑𝑡








𝑡=1

= (𝑛 + 2𝜆) (P∗
𝑛
− P∗
𝑛−1
) .

(5)

Because of introducing parameter 𝜆, 𝜆-Bézier curves have
more powerful expressiveness than the classical Bézier
curves.

Figure 1 shows graphs of 𝜆-Bézier curves with the same
control polygon but different shape parameters. Figure 1(a)
shows the curves generated by the extension Bernstein basis
functions with 𝑛 = 3 and p∗(𝑡; 1) (solid lines), p∗(𝑡; 0)
(dashed lines), and p∗(𝑡; −1) (dot-dashed lines), respectively.
Figure 1(b) shows the curves generated by the same basis
functions as in Figure 1(a)with 𝑛 = 4 andp∗(𝑡; 1) (solid lines),
p∗(𝑡; 0) (dashed lines), and p∗(𝑡; −1) (dot-dashed lines),
respectively. From the figures, we can see that 𝜆-Bézier curves
approach the control polygon when the shape parameter is
increasing.

3. Problem Description

Problem 4. Given control points {P∗
𝑖
}
𝑛+1

𝑖=0
⊂ R𝑠 (𝑠 = 2, 3), 𝜆-

Bézier curve of degree 𝑛 + 1 is expressed as follows:

p∗ (𝑡; 𝜆) =
𝑛+1

∑

𝑖=0

P∗
𝑖
𝑏
𝑖,𝑛+1

(𝑡; 𝜆) , 𝑡 ∈ [0, 1] , (6)
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(a) 𝜆-Bézier curve of degree 3
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(b) 𝜆-Bézier curve of degree 4

Figure 1: 𝜆-Bézier curves with the same control polygon but different shape parameters.

where {𝑏
𝑖,𝑛+1

(𝑡; 𝜆)}
𝑛+1

𝑖=0
are basis functions of degree 𝑛 + 1 and

𝜆 ∈ [−1, 1] is global shape parameter. Given control points
{P
𝑖
}
𝑚

𝑖=0
⊂ R𝑠, the corresponding 𝜆-Bézier curves of degree 𝑚

(𝑚 ≤ 𝑛) are

p (𝑡; 𝜆) =
𝑚

∑

𝑖=0

P
𝑖
𝑏
𝑖,𝑚
(𝑡; 𝜆) , (7)

such that the distance minimizes between p∗(𝑡; 𝜆) and p(𝑡; 𝜆)
in certain distance function 𝑑(p∗(𝑡; 𝜆), p(𝑡; 𝜆)).

Here we are interested in obtaining explicit expression
of approximating 𝜆-Bézier curves p(𝑡; 𝜆), so we choose the
following least square distance function:

𝑑
2
(p∗ (𝑡; 𝜆) , p (𝑡; 𝜆)) = ∫

1

0





p∗ (𝑡; 𝜆) − p (𝑡; 𝜆)



2

2
𝑑𝑡. (8)

Then we can convert Problem 4 into 𝑠 subproblems, and
every subproblem leads to a minimized component function:

𝑑
2
(𝑝
∗

𝑘
(𝑡; 𝜆) , 𝑝

𝑘
(𝑡; 𝜆)) = ∫

1

0

[𝑝
∗

𝑘
(𝑡; 𝜆) − 𝑝

𝑘
(𝑡; 𝜆)]

2

𝑑𝑡

(𝑘 = 1, 2, . . . , 𝑠) .

(9)

Let p∗(𝑡; 𝜆) = (𝑝
∗

1
(𝑡; 𝜆), 𝑝

∗

2
(𝑡; 𝜆), . . . , 𝑝

∗

𝑠
(𝑡; 𝜆)) and p(𝑡; 𝜆) =

(𝑝
1
(𝑡; 𝜆), 𝑝

2
(𝑡; 𝜆), . . . , 𝑝

𝑠
(𝑡; 𝜆)); then (8) is determined by the

following formula:

𝑑 (p∗ (𝑡; 𝜆) , p (𝑡; 𝜆))

= [

𝑠

∑

𝑘=1

𝑑
2
(𝑝
∗

𝑘
(𝑡; 𝜆) , 𝑝

𝑘
(𝑡; 𝜆))]

1/2

.

(10)

For subdistance function 𝑑2(𝑝∗
𝑘
(𝑡; 𝜆), 𝑝

𝑘
(𝑡; 𝜆)), it is sufficient

to minimize 𝑑(p∗(𝑡; 𝜆), p(𝑡; 𝜆)). Therefore, we can just study
the problem of minimum component function in the follow-
ing.

Problem 5. Given a series of real numbers {𝑃∗
𝑖
}
𝑛+1

𝑖=0
, from

which we will determine 𝜆-Bézier functions of degree 𝑛 + 1,

𝑓
∗
(𝑡; 𝜆) =

𝑛+1

∑

𝑖=0

𝑃
∗

𝑖
𝑏
𝑖,𝑛+1

(𝑡; 𝜆) , (11)

where 𝑃
∗

𝑖
denotes a component of vector P∗

𝑖
, then it is

necessary to find real numbers {𝑃
𝑗
}
𝑚

𝑗=0
with the corresponding

𝜆-Bézier functions of degree𝑚

𝑓 (𝑡; 𝜆) =

𝑚

∑

𝑗=0

𝑃
𝑗
𝑏
𝑗,𝑚

(𝑡; 𝜆) (12)

such that 𝑑2(𝑓∗(𝑡; 𝜆), 𝑓(𝑡; 𝜆)) = ∫

1

0
[𝑓
∗
(𝑡; 𝜆) − 𝑓(𝑡; 𝜆)]

2
𝑑𝑡

minimizes by least square distance.
In order to determine the approximate function 𝑓(𝑡; 𝜆),

primarily, we aim to obtain the coefficients {𝑃
𝑗
}
𝑚

𝑗=0
.

4. Least Square Degree Reduction of
𝜆-Bézier Curves

4.1. The Approximate Degree Reduction of 𝜆-Bézier
Curves under Unrestricted Condition

Theorem 6. If coefficients {𝑃
𝑗
}
𝑚

𝑗=0
of approximating functions

𝑓(𝑡; 𝜆) are solutions of Problem 5, the vector P = (𝑃
0
,
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𝑃
1
, . . . , 𝑃

𝑚
)
𝑇 satisfies linear systems AP = b, where

A = (𝑎
𝑖,𝑗
)
𝑚+1,𝑚+1

,

b = (𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑚+1
)
𝑇

,

𝑎
𝑖+1,𝑗+1

= ∫

1

0

𝑏
𝑖,𝑚
(𝑡; 𝜆) 𝑏

𝑗,𝑚
(𝑡; 𝜆) 𝑑𝑡,

𝑏
𝑗+1

= ∫

1

0

[

𝑛+1

∑

𝑖=0

𝑃
∗

𝑖
𝑏
𝑖,𝑛+1

(𝑡; 𝜆)] 𝑏
𝑗,𝑚

(𝑡; 𝜆) 𝑑𝑡.

(𝑖, 𝑗 = 0, 1, . . . , 𝑚) .

(13)

Proof. By Problem 5, we obtain

𝑆 = 𝑑
2
(𝑓
∗
(𝑡; 𝜆) , 𝑓 (𝑡; 𝜆))

= ∫

1

0

[𝑓
∗
(𝑡; 𝜆) − 𝑓 (𝑡; 𝜆)]

2

𝑑𝑡

= ∫

1

0

[

[

𝑛+1

∑

𝑖=0

𝑃
∗

𝑖
𝑏
𝑖,𝑛+1

(𝑡; 𝜆) −

𝑚

∑

𝑗=0

𝑃
𝑗
𝑏
𝑗,𝑚

(𝑡; 𝜆)
]

]

2

𝑑𝑡.

(14)

Let 𝜕𝑆/𝜕𝑃
𝑗
= 0 (𝑗 = 0, 1, . . . , 𝑚); then the above equations

can be simplified to the following ones:

𝑚

∑

𝑖=0

𝑃
𝑖
∫

1

0

𝑏
𝑖,𝑚
(𝑡; 𝜆) 𝑏

𝑗,𝑚
(𝑡; 𝜆) 𝑑𝑡

= ∫

1

0

[

𝑛+1

∑

𝑖=0

𝑃
∗

𝑖
𝑏
𝑖,𝑛+1

(𝑡; 𝜆)] 𝑏
𝑗,𝑚

(𝑡; 𝜆) 𝑑𝑡

(𝑗 = 0, 1, . . . , 𝑚) .

(15)

Furthermore, (15) can be represented in matrix form by
calculation, which is described as follows:

AP = b, (16)

where

A = (𝑎
𝑖,𝑗
)
𝑚+1,𝑚+1

,

b = (𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑚+1
)
𝑇

,

𝑎
𝑖+1,𝑗+1

= ∫

1

0

𝑏
𝑖,𝑚
(𝑡; 𝜆) 𝑏

𝑗,𝑚
(𝑡; 𝜆) 𝑑𝑡,

𝑏
𝑗+1

= ∫

1

0

[

𝑛+1

∑

𝑖=0

𝑃
∗

𝑖
𝑏
𝑖,𝑛+1

(𝑡; 𝜆)] 𝑏
𝑗,𝑚

(𝑡; 𝜆) 𝑑𝑡.

(𝑖, 𝑗 = 0, 1, . . . , 𝑚) .

(17)

Let e
𝑗+1

= (𝑎
1,𝑗+1

, 𝑎
2,𝑗+1

, . . . , 𝑎
𝑚+1,𝑗+1

)
𝑇
(𝑗 = 0, 1, . . . , 𝑚), and

suppose

𝑚

∑

𝑗=0

𝑐
𝑗+1

e
𝑗+1

= 𝑐
1

[

[

[

[

[

[

[

𝑎
1,1

𝑎
2,1

.

.

.

𝑎
𝑚+1,1

]

]

]

]

]

]

]

+ 𝑐
2

[

[

[

[

[

[

[

𝑎
1,2

𝑎
2,2

.

.

.

𝑎
𝑚+1,2

]

]

]

]

]

]

]

+ ⋅ ⋅ ⋅

+ 𝑐
𝑚+1

[

[

[

[

[

[

[

𝑎
1,𝑚+1

𝑎
2,𝑚+1

.

.

.

𝑎
𝑚+1,𝑚+1

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

0

0

.

.

.

0

]

]

]

]

]

]

]

.

(18)

That is,

𝑚

∑

𝑗=0

𝑐
𝑗+1
𝑎
𝑖+1,𝑗+1

= ∫

1

0

[

[

𝑚

∑

𝑗=0

𝑐
𝑗+1
𝑏
𝑗,𝑚

(𝑡; 𝜆)
]

]

𝑏
𝑖,𝑚
(𝑡; 𝜆) 𝑑𝑡

= 0 (𝑖 = 0, 1, . . . , 𝑚) .

(19)

We then get the following formula:

∫

1

0

[

[

𝑚

∑

𝑗=0

𝑐
𝑗+1
𝑏
𝑗,𝑚

(𝑡; 𝜆)
]

]

2

𝑑𝑡

= ∫

1

0

[

[

𝑚

∑

𝑗=0

𝑐
𝑗+1
𝑏
𝑗,𝑚

(𝑡; 𝜆)
]

]

[

𝑚

∑

𝑖=0

𝑐
𝑖+1
𝑏
𝑖,𝑚
(𝑡; 𝜆)] 𝑑𝑡

=

𝑚

∑

𝑖=0

𝑐
𝑖+1
∫

1

0

[

[

𝑚

∑

𝑗=0

𝑐
𝑗+1
𝑏
𝑗,𝑚

(𝑡; 𝜆)
]

]

𝑏
𝑖,𝑚
(𝑡; 𝜆) 𝑑𝑡 = 0;

(20)

thus ∑𝑚
𝑗=0

𝑐
𝑗+1
𝑏
𝑗,𝑚
(𝑡; 𝜆) ≡ 0. Since {𝑏

0,𝑚
(𝑡; 𝜆), 𝑏

1,𝑚
(𝑡; 𝜆), . . . ,

𝑏
𝑚,𝑚

(𝑡; 𝜆)} are linearly independent in interval 𝑡 ∈ [0, 1],
we have 𝑐

𝑗+1
≡ 0 (𝑗 = 0, 1, . . . , 𝑚), which means vectors

{e
1
, e
2
, . . . , e

𝑚+1
} are linearly independent, and then solutions

of linear systems (16) are uniquely determined.

4.2. The Approximate Degree Reduction of 𝜆-Bézier Curves
under𝐶0 Constraint Condition. When approximating degree
reduction, we expect to satisfy 𝐶0 continuity, that is, main-
taining interpolation of terminal points, so two equations
𝑃
0
= 𝑃
∗

0
and 𝑃
𝑚
= 𝑃
∗

𝑛+1
are determined. The remaining𝑚− 1

control points are determined by the following theorem.

Theorem 7. If coefficients {𝑃
𝑖
}
𝑚

𝑖=0
of approximating functions

𝑓(𝑡; 𝜆) are solutions of Problem 5 and maintain 𝐶0 continuity,
the vector P = (𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑚−1
)
𝑇satisfies linear systems
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AP = b except for two equations 𝑃
0
= 𝑃
∗

0
and 𝑃

𝑚
= 𝑃
∗

𝑛+1

for terminal points, where

A = (𝑎
𝑖,𝑗
)
𝑚−1,𝑚−1

,

b = (𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑚−1
)
𝑇

,

𝑎
𝑖,𝑗
= ∫

1

0

𝑏
𝑖,𝑚
(𝑡; 𝜆) 𝑏

𝑗,𝑚
(𝑡; 𝜆) 𝑑𝑡,

𝑏
𝑗

= ∫

1

0

[

𝑛+1

∑

𝑖=0

𝑃
∗

𝑖
𝑏
𝑖,𝑛+1

(𝑡; 𝜆)] 𝑏
𝑗,𝑚

(𝑡; 𝜆) 𝑑𝑡

− ∫

1

0

(𝑃
∗

0
𝑏
0,𝑚

(𝑡; 𝜆) + 𝑃
∗

𝑛+1
𝑏
𝑚,𝑚

(𝑡; 𝜆)) 𝑏
𝑗,𝑚

(𝑡; 𝜆) 𝑑𝑡.

(𝑖, 𝑗 = 1, 2, . . . , 𝑚 − 1) .

(21)

Proof. According to the condition of 𝐶0 continuity, that is,
𝑓
∗
(0; 𝜆) = 𝑓(0; 𝜆) and 𝑓∗(1; 𝜆) = 𝑓(1; 𝜆), it is easy to obtain

two equations 𝑃
0
= 𝑃
∗

0
and 𝑃

𝑚
= 𝑃
∗

𝑛+1
. Then by applying

Problem 5, we get

𝑆 = 𝑑
2
(𝑓
∗
, 𝑓) = ∫

1

0

[𝑓
∗
(𝑡; 𝜆) − 𝑓 (𝑡; 𝜆)]

2

𝑑𝑡

= ∫

1

0

[

[

𝑛+1

∑

𝑖=0

𝑃
∗

𝑖
𝑏
𝑖,𝑛+1

(𝑡; 𝜆) −

𝑚

∑

𝑗=0

𝑃
𝑗
𝑏
𝑗,𝑚

(𝑡; 𝜆)
]

]

2

𝑑𝑡.

(22)

Let 𝜕𝑆/𝜕𝑃
𝑗
= 0 (𝑗 = 1, 2, . . . , 𝑚− 1). Equation (22) can be

simplified to the following equations:

𝑚−1

∑

𝑖=1

𝑃
𝑖
∫

1

0

𝑏
𝑖,𝑚
(𝑡; 𝜆) 𝑏

𝑗,𝑚
(𝑡; 𝜆) 𝑑𝑡

= ∫

1

0

[

𝑛+1

∑

𝑖=0

𝑃
∗

𝑖
𝑏
𝑖,𝑛+1

(𝑡; 𝜆) − 𝑃
∗

0
𝑏
0,𝑚

(𝑡; 𝜆)

− 𝑃
∗

𝑛+1
𝑏
𝑚,𝑚

(𝑡; 𝜆)] 𝑏
𝑗,𝑚

(𝑡; 𝜆) 𝑑𝑡.

(23)

Furthermore, these equations can be represented in
matrix form as follows:

AP = b, (24)

where

A = (𝑎
𝑖,𝑗
)
𝑚−1,𝑚−1

,

b = (𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑚−1
)
𝑇

,

𝑎
𝑖,𝑗
= ∫

1

0

𝑏
𝑖,𝑚
(𝑡; 𝜆) 𝑏

𝑗,𝑚
(𝑡; 𝜆) 𝑑𝑡,

𝑏
𝑗

= ∫

1

0

[

𝑛+1

∑

𝑖=0

𝑃
∗

𝑖
𝑏
𝑖,𝑛+1

(𝑡; 𝜆)] 𝑏
𝑗,𝑚

(𝑡; 𝜆) 𝑑𝑡

− ∫

1

0

(𝑃
∗

0
𝑏
0,𝑚

(𝑡; 𝜆) + 𝑃
∗

𝑛+1
𝑏
𝑚,𝑚

(𝑡; 𝜆)) 𝑏
𝑗,𝑚

(𝑡; 𝜆) 𝑑𝑡.

(𝑖, 𝑗 = 1, 2, . . . , 𝑚 − 1) .

(25)

Let e
𝑗
= (𝑎
1,𝑗
, 𝑎
2,𝑗
, . . . , 𝑎

𝑚−1,𝑗
)
𝑇
(𝑗 = 1, 2, . . . , 𝑚 − 1), and

suppose

𝑚−1

∑

𝑗=1

𝑐
𝑗
e
𝑗
= 𝑐
1

[

[

[

[

[

[

[

𝑎
1,1

𝑎
2,1

.

.

.

𝑎
𝑚−1,1

]

]

]

]

]

]

]

+ 𝑐
2

[

[

[

[

[

[

[

𝑎
1,2

𝑎
2,2

.

.

.

𝑎
𝑚−1,2

]

]

]

]

]

]

]

+ ⋅ ⋅ ⋅

+ 𝑐
𝑚−1

[

[

[

[

[

[

[

𝑎
1,𝑚−1

𝑎
2,𝑚−1

.

.

.

𝑎
𝑚−1,𝑚−1

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

0

0

.

.

.

0

]

]

]

]

]

]

]

.

(26)

That is,

𝑚−1

∑

𝑗=1

𝑐
𝑗
𝑎
𝑖,𝑗
= ∫

1

0

[

[

𝑚−1

∑

𝑗=1

𝑐
𝑗
𝑏
𝑗,𝑚

(𝑡; 𝜆)
]

]

𝑏
𝑖,𝑚
(𝑡; 𝜆) 𝑑𝑡 = 0

(𝑖 = 1, 2, . . . , 𝑚 − 1) .

(27)

Because {𝑏
1,𝑚
(𝑡; 𝜆), 𝑏

2,𝑚
(𝑡; 𝜆), . . . , 𝑏

𝑚−1,𝑚
(𝑡; 𝜆)} are linearly

independent in interval 𝑡 ∈ [0, 1], the vectors {e
1
, e
2
, . . . ,

e
𝑚−1

}, as in Theorem 6, are linearly independent. Thus
solutions of linear systems (24) are uniquely determined and
maintain 𝐶0 continuity.

4.3. The Approximate Degree Reduction of 𝜆-Bézier Curves
under𝐶1 Constraint Condition. When approximating degree
reduction, if 𝐶1 continuity is maintained (i.e., four equations
𝑃
0
= 𝑃
∗

0
,𝑃
𝑚
= 𝑃
∗

𝑛+1
,𝑃
1
= 𝑃
∗

0
+((𝑛+1+2𝜆)/(𝑚+2𝜆))(𝑃

∗

1
−𝑃
∗

0
),

and 𝑃
𝑚−1

= 𝑃
∗

𝑛+1
− ((𝑛 + 1 + 2𝜆)/(𝑚 + 2𝜆))(𝑃

∗

𝑛+1
− 𝑃
∗

𝑛
) are

specified), the remaining𝑚−3 control points are determined
by the following theorem.

Theorem 8. If coefficients {𝑃
𝑖
}
𝑚

𝑖=0
of approximate functions

𝑓(𝑡; 𝜆) are solutions of Problem 5 and maintain C1 continuity,
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Figure 2: Degree reduction with various constraint conditions (from degree 5 to degree 4). Blue solid: the given curve of degree 5; red
dot-dashed line: the degree-reduced curve of degree 4.

the vector P = (𝑃
2
, 𝑃
3
, . . . , 𝑃

𝑚−2
)
𝑇 satisfies linear systems

AP = b except for four equations 𝑃
0
= 𝑃
∗

0
, 𝑃
𝑚

= 𝑃
∗

𝑛+1
,

𝑃
1
= 𝑃
∗

0
+ ((𝑛 + 1 + 2𝜆)/(𝑚 + 2𝜆))(𝑃

∗

1
− 𝑃
∗

0
), and 𝑃

𝑚−1
=

𝑃
∗

𝑛+1
− ((𝑛 + 1 + 2𝜆)/(𝑚 + 2𝜆))(𝑃

∗

𝑛+1
− 𝑃
∗

𝑛
) for terminal points,

where

A = (𝑎
𝑖−1,𝑗−1

)
𝑚−3,𝑚−3

,

b = (𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑚−3
)
𝑇

,

𝑎
𝑖−1,𝑗−1

= ∫

1

0

𝑏
𝑖,𝑚
(𝑡; 𝜆) 𝑏

𝑗,𝑚
(𝑡; 𝜆) 𝑑𝑡,

𝑏
𝑗−1

= ∫

1

0

[

𝑛+1

∑

𝑖=0

𝑃
∗

𝑖
𝑏
𝑖,𝑛+1

(𝑡; 𝜆) − 𝑃
0
𝑏
0,𝑚

(𝑡; 𝜆)

− 𝑃
1
𝑏
1,𝑚

(𝑡; 𝜆)] 𝑏
𝑗,𝑚

(𝑡; 𝜆) 𝑑𝑡

− ∫

1

0

(𝑃
𝑚−1

𝑏
𝑚−1,𝑚

(𝑡; 𝜆) + 𝑃
𝑚
𝑏
𝑚,𝑚

(𝑡; 𝜆))

⋅ 𝑏
𝑗,𝑚

(𝑡; 𝜆) 𝑑𝑡.

(𝑖, 𝑗 = 2, 3, . . . , 𝑚 − 2) .

(28)

Proof. According to the condition of 𝐶1 continuity, we get

𝑓
∗
(0; 𝜆) = 𝑓 (0; 𝜆) ,

𝑓
∗
(1; 𝜆) = 𝑓 (1; 𝜆) ,

𝑑 [𝑓
∗
(𝑡; 𝜆)]

𝑑𝑡









𝑡=0

=

𝑑 [𝑓 (𝑡; 𝜆)]

𝑑𝑡









𝑡=0

,

𝑑 [𝑓
∗
(𝑡; 𝜆)]

𝑑𝑡









𝑡=1

=

𝑑 [𝑓 (𝑡; 𝜆)]

𝑑𝑡









𝑡=1

.

(29)
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Figure 3: Error graph of degree reduction of 𝜆-Bézier of degree 5.

It is easy to obtain the following four equations:

𝑃
0
= 𝑃
∗

0
,

𝑃
𝑚
= 𝑃
∗

𝑛+1
,

𝑃
1
= 𝑃
∗

0
+

𝑛 + 1 + 2𝜆

𝑚 + 2𝜆

(𝑃
∗

1
− 𝑃
∗

0
) ,

𝑃
𝑚−1

= 𝑃
∗

𝑛+1
−

𝑛 + 1 + 2𝜆

𝑚 + 2𝜆

(𝑃
∗

𝑛+1
− 𝑃
∗

𝑛
) .

(30)

Then by Problem 5, we obtain

𝑆 = 𝑑
2
(𝑓
∗
, 𝑓) = ∫

1

0

[𝑓
∗
(𝑡; 𝜆) − 𝑓 (𝑡; 𝜆)]

2

𝑑𝑡

= ∫

1

0

[

[

𝑛+1

∑

𝑖=0

𝑃
∗

𝑖
𝑏
𝑖,𝑛+1

(𝑡; 𝜆) −

𝑚

∑

𝑗=0

𝑃
𝑗
𝑏
𝑗,𝑚

(𝑡; 𝜆)
]

]

2

𝑑𝑡.

(31)

Let 𝜕𝑆/𝜕𝑃
𝑗
= 0 (𝑗 = 2, 3, . . . , 𝑚 − 2). Equation (31) can be

simplified to the following form:

𝑚−2

∑

𝑖=2

𝑃
𝑖
∫

1

0

𝑏
𝑖,𝑚
(𝑡; 𝜆) 𝑏

𝑗,𝑚
(𝑡; 𝜆) 𝑑𝑡

= ∫

1

0

[

𝑛+1

∑

𝑖=0

𝑃
∗

𝑖
𝑏
𝑖,𝑛+1

(𝑡; 𝜆)] 𝑏
𝑗,𝑚

(𝑡; 𝜆) 𝑑𝑡

− ∫

1

0

(𝑃
0
𝑏
0,𝑚

(𝑡; 𝜆) + 𝑃
1
𝑏
1,𝑚

(𝑡; 𝜆)

+ 𝑃
𝑚−1

𝑏
𝑚−1,𝑚

(𝑡; 𝜆) + 𝑃
𝑚
𝑏
𝑚,𝑚

(𝑡; 𝜆)) 𝑏
𝑗,𝑚

(𝑡; 𝜆) 𝑑𝑡.

(32)
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Figure 4: Degree reduction with various constraint conditions (from degree 7 to degree 5). Green solid: the given curve of degree 7; red
dot-dashed line: the degree-reduced curve of degree 5.

Furthermore, this equation can be represented inmatrix form
as follows:

AP = b, (33)

where

A = (𝑎
𝑖−1,𝑗−1

)
𝑚−3,𝑚−3

,

b = (𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑚−3
)
𝑇

,

𝑎
𝑖−1,𝑗−1

= ∫

1

0

𝑏
𝑖,𝑚
(𝑡; 𝜆) 𝑏

𝑗,𝑚
(𝑡; 𝜆) 𝑑𝑡,

𝑏
𝑗−1

= ∫

1

0

[

𝑛+1

∑

𝑖=0

𝑃
∗

𝑖
𝑏
𝑖,𝑛+1

(𝑡; 𝜆) − 𝑃
0
𝑏
0,𝑚

(𝑡; 𝜆)

− 𝑃
1
𝑏
1,𝑚

(𝑡; 𝜆)] 𝑏
𝑗,𝑚

(𝑡; 𝜆) 𝑑𝑡

− ∫

1

0

(𝑃
𝑚−1

𝑏
𝑚−1,𝑚

(𝑡; 𝜆) + 𝑃
𝑚
𝑏
𝑚,𝑚

(𝑡; 𝜆))

⋅ 𝑏
𝑗,𝑚

(𝑡; 𝜆) 𝑑𝑡.

(𝑖, 𝑗 = 2, 3 . . . , 𝑚 − 2) .

(34)

Let e
𝑗
= (𝑎
1,𝑗
, 𝑎
2,𝑗
, . . . , 𝑎

𝑚−3,𝑗
)
𝑇
(𝑗 = 1, 2, . . . , 𝑚 − 3), and

suppose

𝑚−3

∑

𝑗=1

𝑐
𝑗
e
𝑗
= 𝑐
1

[

[

[

[

[

𝑎
1,1

𝑎
2,1

.

.

.

𝑎
𝑚−3,1

]

]

]

]

]

+ 𝑐
2

[

[

[

[

[

𝑎
1,2

𝑎
2,2

.

.

.

𝑎
𝑚−3,2

]

]

]

]

]

+ ⋅ ⋅ ⋅

+ 𝑐
𝑚−3

[

[

[

[

[

𝑎
1,𝑚−3

𝑎
2,𝑚−3

.

.

.

𝑎
𝑚−3,𝑚−3

]

]

]

]

]

=

[

[

[

[

[

0

0

.

.

.

0

]

]

]

]

]

.

(35)
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(c) Under 𝐶1 constraint condition

Figure 5: Error graph of degree reduction of 𝜆-Bézier of degree 7.

That is,

𝑚−3

∑

𝑗=1

𝑐
𝑗
𝑎
𝑖,𝑗
= ∫

1

0

[

[

𝑚−3

∑

𝑗=1

𝑐
𝑗
𝑏
𝑗+1,𝑚

(𝑡; 𝜆)
]

]

𝑏
𝑖+1,𝑚

(𝑡; 𝜆) 𝑑𝑡 = 0

(𝑖 = 1, 2, . . . , 𝑚 − 3) .

(36)

Because {𝑏
2,𝑚
(𝑡; 𝜆), . . . , 𝑏

𝑚−2,𝑚
(𝑡; 𝜆)} are linearly independent

in interval 𝑡 ∈ [0, 1], the vectors {e
1
, e
2
, . . . , e

𝑚−3
}, as inTheo-

rem 6, are linearly independent.Therefore, solutions of linear
systems (33) exist uniquely and maintain 𝐶1 continuity.

5. Numerical Examples

Example 1. Given the shape parameter 𝜆 = 1 and the
coordinates of control points {P∗

0
= (−5, 0), P∗

1
= (−7, 2),

P∗
2
= (−3, 5), P∗

3
= (2, 6), P∗

4
= (5, 3), P∗

5
= (3, 0)}, we can

construct 𝜆-Bézier curve of degree 5. Then this curve can be
separately reduced to 𝜆-Bézier curve of degree 4, respectively,
under unrestricted and 𝐶0, 𝐶1 constraint condition. Control
points and errors for approximating 𝜆-Bézier curve of degree
4 to a 𝜆-Bézier curve of degree 5 are shown in Table 1. Degree
reduction with various constraint conditions from degree 5
to degree 4 is shown in Figure 2.

We give the approximation error graphs of degree reduc-
tion of degree 5 in three conditions with different shape
parameter, as shown in Figure 3. From Figure 3, the approx-
imation error value of degree reduction decreases at first
and then increases when increasing the shape parameter.The
range of error value is [0.27488 × 10−4, 1.1886 × 10−4] in (a),
and those in (b) and (c) are [0.60937 × 10−4, 2.3013 × 10−4]
and [0.85492 × 10−3, 2.3364 × 10−3], respectively.
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Table 1: Control points and approximation errors with different constraint conditions in Example 1 (from degree 5 to degree 4).

Constraint condition Control points Errors

Under unrestricted condition
P
0
= (−5.0241, −0.01868), P

1
= (−7.2251, 2.266),

P
2
= (−0.24919, 6.690), P

3
= (5.2589, 3.672),

P
4
= (3.0186, −0.03573)

𝑑
2
(p∗
5
(𝑡; 1), p

4
(𝑡; 1)) = 0.11866 × 10

−3

Under 𝐶0 constraint condition P
0
= (−5, 0), P

1
= (−7.2449, 2.273),

P
2
= (−0.24428, 6.705), P

3
= (5.2705, 3.639), P

4
= (3, 0)

𝑑
2
(p∗
5
(𝑡; 1), p

4
(𝑡; 1)) = 0.23013 × 10

−3

Under 𝐶1 constraint condition
P
0
= (−5, 0), P

1
= (−7.3333, 2.3333),

P
2
= (−0.22601, 6.7616), P

3
= (5.3333, 3.5000),

P
4
= (3, 0)

𝑑
2
(p∗
5
(𝑡; 1), p

4
(𝑡; 1)) = 0.21581 × 10

−2

Table 2: Control points and approximation errors with different constraint conditions in Example 2 (from degree 7 to degree 5).

Constraint condition Control points Error

Under unrestricted condition
P
0
= (−0.0073157, −0.01488), P

1
= (1.6003, 3.489),

P
2
= (2.7337, 0.4590), P

3
= (4.8462, −0.5802),

P
4
= (7.1691, 4.336), P

5
= (9.0139, 0.2929)

𝑑
2
(p∗
7
(𝑡; 1), p

5
(𝑡; 1)) = 0.25675 × 10

−4

Under 𝐶0 constraint condition
P
0
= (0, 0), P

1
= (1.6128, 3.443), P

2
= (2.7475, 0.5180),

P
3
= (4.7940, −0.5994), P

4
= (7.2115, 4.325),

P
5
= (9, 0.3)

𝑑
2
(p∗
7
(𝑡; 1), p

5
(𝑡; 1)) = 0.45964 × 10

−4

Under 𝐶1 constraint condition P
0
= (0, 0), P

1
= (1.6667, 3.3333), P

2
= (2.7655, 0.7045),

P
3
= (4.6134, −0.6613), P

4
= (7.3333, 4.3), P

5
= (9, 0.3)

𝑑
2
(p∗
7
(𝑡; 1), p

5
(𝑡; 1)) = 0.30212 × 10

−3

Example 2. Given the shape parameter 𝜆 = −1 and the
coordinates of control points {P∗

0
= (0, 0), P∗

1
= (1, 2),

P∗
2
= (2, 2.3), P∗

3
= (3, 0.4), P∗

4
= (5, 0.8), P∗

5
= (6, 2.1),

P∗
6
= (8, 2.7), P∗

7
= (9, 0.3)}, we can construct a 𝜆-Bézier

curve of degree 7.Then this curvewill be separately reduced to
𝜆-Bézier curves of degree 5 under three conditions. Control
points and errors for approximating 𝜆-Bézier curve of degree
5 to a 𝜆-Bézier curve of degree 7 are shown in Table 2. Degree
reductions with various constraint conditions from degree 7
to degree 5 are shown in Figure 4.

We give the approximation error graphs of degree reduc-
tion of 𝜆-Bézier of degree 7 in three conditions with different
shape parameter, as shown in Figure 5. From Figure 5, the
approximation error value of degree reduction increases and
slope decreases by increasing the shape parameter. The range
of error value is [0.25675 × 10

−4
, 1.812 × 10

−4] in (a), and
those in (b) and (c) are [0.45964 × 10−4, 3.3081 × 10−4] and
[0.30212 × 10−3, 2.2919 × 10−3], respectively.

Example 3. Given shape parameter𝜆 = −1, and two segments
of 𝜆-Bézier curves of degree 7 expressing patterned vase,
then they will be separately reduced to two segments of
𝜆-Bézier curve of degree 5 under unrestricted condition.
Control points and error for approximating 𝜆-Bézier curve
of degree 5 to a 𝜆-Bézier curve of degree 7 are shown in
Table 3. Degree reductions of these two segments are shown
in Figure 6. In addition, approximation errors with 𝐶0 and
𝐶
1 constraint conditions in Example 3 are 0.81951×10−3 and

0.50732 × 10
−2, respectively.

With the change of shape parameter, we present error
graph of degree reduction of 𝜆-Bézier of degree 7 which
expresses patterned vase in unrestricted condition, as is
shown in Figure 7. From Figure 7, the error value increases
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Figure 6: Degree reduction of 𝜆-Bézier curve of degree 7 which
expresses patterned vase in unrestricted condition. Green solid and
blue solid: the given curve of degree 7; red dot-dashed line: the
degree-reduced curve of degree 5.

with that of shape parameter. The range of error value is
[0.45528 × 10−3, 1.6712 × 10−3].

6. Concluding Remarks

𝜆-Bézier curves of degree 𝑛 have the same properties as
Bézier curves. In addition, they have better performance
when adjusting their shapes by changing the shape parameter,
which includes shape adjustability and better approximation
to control polygon as shown in Figure 1.

Furthermore, the problem of degree reduction for 𝜆-
Bézier curves is studied by least squared approximation. An
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Figure 7: Error graph of degree reduction of 𝜆-Bézier of degree 7
which expresses patterned vase in unrestricted condition.

algorithm for approximating degree reduction of 𝜆-Bézier
curves of degree 𝑛 is provided by adjusting control points
under three conditions, which can minimize the least square
error between the approximating curves and the original
ones. Three practical examples show that the method is
applicable for CAD/CAM modeling systems. We will focus
on studying the degree reduction for 𝜆-Bézier surfaces in
future work.
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Computer-Aided Design, vol. 27, no. 11, pp. 845–851, 1995.

[11] G.-D. Chen and G.-J. Wang, “Optimal multi-degree reduction
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reduction of Bézier curves,” Tsinghua Science & Technology, vol.
3, no. 2, pp. 997–1000, 1998.

[16] S. Hu, Some geometric problems of data communications in CAD
system [Ph.D. thesis], Zhejiang University, Hangzhou, China,
1996.

[17] X.-A. Han, Y. C.Ma, and X. L. Huang, “A novel generalization of
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