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1 Introduction and preliminaries

Fixed point theorems play a crucial role to constructing methods for solving problems in
applied mathematics and the majority of other sciences. Thus, a large number of mathe-
maticians have focused on this interesting topic. The Banach contraction mapping prin-
ciple [1] is one of the pivotal results in fixed point theory. It is widely considered as the
source of metric fixed point theory. Also its significance lies in its vast applicability in a
number of branches of mathematics.

A new category of contractive fixed point problems was addressed by Khan et al. [2].
In this study they introduced the notion of altering distance function which is a control
function that alters distance between two points in a metric space. This function and its
extensions have been used in several problems of fixed point theory, some of which are
noted in [3-6].

Definition 1 ([2]) A function ¢ : [0,00) — [0, 00) is called an altering distance function if
the following properties are satisfied:

(i) @ is nondecreasing and continuous,

(ii) (@) =0ifand onlyif¢=0.

Recently, Samet et al. [7] presented the notions of «-y-contractive and «-admissible
mappings. The results obtained by Samet et al. [7] extended and generalized many existing
fixed point results in the literature, in particular the Banach contraction principle. After
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that, several authors considered the generalizations of this new approach (see [8—13]).
Very recently, Alizadeh et al. [12] offered the concept of a cyclic (o, 8)-admissible mapping
and proved some new fixed point results which generalize and modify some recent results
in the literature.

Definition 2 ([12]) Letf: X — X and o, 8 : X — [0, 00). We say that f is a cyclic («, 8)-
admissible mapping if

(i) a(x)>1 for some x € X implies B(fx) > 1;

(i) B(x)>1 for some x € X implies a(fx) > 1.

The purpose of this paper is to formulate the above definition in terms of two map-
pings so that we can prove existence and uniqueness of common fixed points for these
mappings on a complete metric space. Our results improve and extend the results of [7,
12, 14] and many others. Several examples and interesting consequences of our theorems
are also given. As a consequence of the presented results, we discuss the existence and
uniqueness of the common bounded solution of a functional equation arising in dynamic

programming.

Definition 3 ([15]) Let X be a nonempty set and f, 7 : X — X. The pair (f, T) is said to be
weakly compatible if f and T commute at their coincidence points (i.e. fTx = Tfx whenever
fx = Tx). A point y € X is called a point of coincidence of f and T if there exists a point
x € X such that y = fx = Tx.

Following the direction in [10], we denote by W the family of all functions v : R — R,
such that:

(Y1) ¥ is nondecreasing in each coordinate and continuous;
(Y2) w(t,t,t,8) <t, ¥(t,0,0,t) <t and ¥(0,0,t %) < tforall > 0;
(1//3) w(tl, to, t3, t4) =0 ifand only if L=k =t3=104= 0.

2 Main results
Before proceeding with our results, let us give the following definitions which will be used
efficiently in the proof of main results.

Definition 4 Let f,7:X — X and «, B : X — [0,00). We say that f is a T-cyclic («, 8)-
admissible mapping if

(i) a(Tx)>1 for some x € X implies B(fx) > 1;

(i) B(Tx)>1 for some x € X implies a(fx) > 1.

Examplel Letf,T:R — R be defined by fx = x and Tx = —x. Suppose that o, § : R — R*
are given by a(x) = e™* for all x € R and B(y) = ¢ for all y € R. Then f is a T-cyclic («, 8)
admissible mapping. Indeed, if «(Tx) = ¢* > 1, then x > 0 which implies fx > 0 and so
B(fx) = €* > 1. Also, if B(Ty) = e > 1, then y < 0, which implies fy < 0 and so a(fy) =
e >1.

Definition 5 Let (X, d) be a metric space and let f be a T-cyclic («, 8)-admissible map-
ping. We say that f is a T-cyclic («, 8)-contractive mapping if

a(TB(T) =1 = o(d(fx.fy) <n(Mxy)), (21)
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for all ,y € X, where

M(xp) =y (d(Tx, 13), (T ), (T3, ), 5 [T, f5) + (T, x)]),

Y € W, ¢ is an altering distance function and 7 : [0, 00) — [0, c0) is a nondecreasing func-

tion and continuous from the right with the condition ¢(£) > n(¢) for all £ > 0.

Theorem 1 Let (X,d) be a complete metric space and let f and T be self-mappings on X
such that fX C TX. Let f be a T-cyclic (o, B)-contractive mapping. Assume that TX is a
closed subset of X and the following conditions are satisfied:
(i) there exists xo € X such that o(Txo) > 1 and B(Txq) > 1;
(ii) if {x,} is a sequence in X such that x,, — x and B(x,) > 1 for all n, then B(x) > 1;
(ili) «(Tu) >1and B(Tv) > 1 whenever fu = Tu and fv = Tv.
Then f and T have a unique point of coincidence in X. Moreover, if f and T are weakly

compatible, then f and T have a unique common fixed point.

Proof Let xg € X such that «(Tx) > 1 and 8(Tx) > 1. Define the sequences {x,} and {y,}
in X by

Y =Jfxn = Txps1, neNU{0} (2.2)

If y, = y,41, then y,,; is a point of coincidence of f and T. Suppose that y, # y,.1
for all meN. Since f is a T-cyclic (¢, 8)-admissible mapping and «(Tx,) > 1 then
B(fxo) = B(Tx1) = 1, which implies a(Tx;) = a(fx;) > 1. By continuing this process, we
get a(Txy,) > 1 and B(Txy,41) > 1 for all » € N U {0}. Similarly, since f is a T-cyclic
(o, B)-admissible mapping and B(Txo) > 1, we have B(Txy,) > 1 and «(Tx3,.1) > 1 for

all » € N U {0}, that is, a(Tx,) > 1 and B(Tx,) > 1 for all n € N U {0}. Equivalently,
a(Tx,)B(Txy41) > 1 for all n € NU {0}. Therefore by (2.1) and using (2.2), we get

(p(d()/n,ynﬂ)) = go(d(fxn’fxnﬂ)) = W(M(xm xn+1)) < w(M(xm xn+1))' (2.3)
Since ¢ is nondecreasing, we have

d()/n’ynﬂ) < M(xn:xn+1)r (24)

where

M(xm xn+1)

= W (d(Txn: Txn+l): d( Txmfxn)r d(Txn+l)fxn+l)r % [d(Txn:fxnﬂ) + d(Txn+1:fxn)]>
1
= w (d(yn—l:yn)r d(yn—l:yn): d(yn:yn+l)r E [d(yn—lryn+1) + d(ymyn)])

<y <d(yn—1:yn)rd(yn—hyn)» d(menJrl), %[d()/n—l,yn) + d(yn:yn+1)]>~ (2.5)



Isik et al. Fixed Point Theory and Applications (2015) 2015:163 Page 4 of 19

Thus, from (2.4), we obtain

d(yn; yn+l) < M(xnr xn+1)

S I/f <d(yn—l»yn):d(yn—1’yn)r d(ymywrl)’ %[d(yn—liyn) + d(ymynﬂ)])'

If dyu-1,yn) < dWu, Yus1) for some n € N, then

1
d(yn:ynﬂ) < W (d(yn—lﬁyn)¢d(yn—1)yn)) d(ynry;ﬁl)v g[d(yn—hyn) + d(ymyn+l)])

=< I/f(d(ymynﬂ): d(y;q:ywrl)r d()/nrynd): d()/n,ywrl))
=< d()/n:yrwl),

which is a contradiction, and hence d(y,, y,:1) < d(¥,,-1,y,) for all n € N. Therefore, the
sequence {d(y,, y,+1)} is decreasing and bounded below. Thus, there exists r > 0 such that
limy,— 00 AV Y1) = 1. Assume r > 0. Also, from (2.3), (2.5) and using the properties of ¥,
we deduce

1 (d(ymy;ﬁl)) =7 (M(xm xn+l))

IA

n 1# <d()’nlryn)r d(yn—hyn)r d()/nryn+1)r %[d(yn—lryn) + d()’mynﬂ)]))

77(1/[ (d(yn—l»yn): d(yn—l’yn)» d(yn—l’yn)’ d(yn—l’yn)))
=n d(yn—lyyn))- (2-6)

IA

Considering the properties of ¢ and 7, letting n — 0o in (2.6), we get

¢(r) = 1im ¢(dn,yni1))
< lim n(d(yn1,9w) = 0(r) < (1),
which implies r = 0 and so
Tim d(yy, 1) = 0. (2.7)
Now, we prove that {y,} is a Cauchy sequence. Suppose, to the contrary, that {y,} is not

a Cauchy sequence. Then there exists an ¢ > 0 for which we can find two subsequences

{¥m, } and {y,, } of {y,,} such that m is the smallest index for which nz; > i > k and
AWmpsym) =€ and  dWpm-1,9m,) <e. (2.8)
Using the triangular inequality and (2.8), we have

& S d(ynk;ymk) S d(ynk:ymk—l) + d(ymk—lyymk)

< &+ dWVmp-1,Ymy)-
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By taking k — oo in the above inequality and using (2.7), we obtain
kll>nolo d(ynk!ymk) =é&. (2'9)
By using (2.7), (2.9), and the triangular inequality, we deduce

lim d(¥u-1,Ym) = &
k— 00
Jim A1, Yne) = € (2.10)

klinc;lo d()/mk—lrynk—l) =é&.
From (2.1), we get

<P(d()’nk:)’mk)) = (p(d(fxnk’fxmk))

< (M Fnr X)) (211)
where
M(xnermk) = w(d(Txnk; Txmk)y d(Txnk»fxnk)xd(Txmk;fxmk)y

%[d(Txnk,fxmk) + d(Txmk,fxnk)]>

IA

W (max{e,d(ynk_l,ymk-l)},d(ynk—wnk)’ AWm-1, V),
1
max{e, E [d()/nk—l,ymk) + d()’mk—l’ynk)] })

Now, from the properties of ¢, ¥, and n and using (2.7), (2.9), (2.10), and the above
inequality, as k — oo in (2.11), we have

p(e) <n(¥(e,0,0,8)) < nle) < p(e),

which implies that ¢ = 0, a contradiction with ¢ > 0. Thus {y,} is a Cauchy sequence in X.
From the completeness of (X, d), there exists z € X such that

nli)r{)loy,, =z (2.12)
From (2.2) and (2.12), we obtain

fxn—>2z and Tx,q — z. (2.13)
Since TX is closed, by (2.13), z € TX. Therefore, there exists # € X such that Tu = z.

As y, — z and B(y,) = B(Tx,1) > 1 for all nm € N, by (ii), B(z) = B(Tu) > 1. Thus,
o(Tx,)B(Tu) > 1 for all n € N.
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Now, applying inequality (2.1), we get
o (d(fxnfu)) < n(M(xy, u)), (2.14)
where
M (%, u)

=y (d(Tx,,, Tu), d(Tx,, fx,), d(Tu, fu), % [d(Tx,,,fu) + d(Tu,fx,,)])
<y <d(Txn, Tu), d(Txy, fx,), d(Tu, fu), % max{d(Tu,fu), [d(Txn,fu) + d(Tu,fxn)] }>

Taking k — oo in the inequality (2.14) and using the properties of ¢, ¥, n, and the above
inequality we have

o(d(z,fu)) < n(w (0, 0,d(z,fu), %d(z, u)))
< n(d(z,fu)) < p(d(z,fu)),

which implies d(z,fu) = 0, that is, z = fu. Thus, we deduce
o= fiu=Tis (215)

and so z is a point of coincidence for f and T'. The uniqueness of the point of coincidence
is a consequence of the conditions (2.1) and (iii), and so we omit the details.
By (2.15) and using the weak compatibility of f and T, we obtain

fz=fTu=Tfu=Tz (2.16)

and so fz = Tz. Uniqueness of the point of coincidence implies z = fz = Tz. Consequently,

z is a unique common fixed point of f and T. d

Example 2 Let X = R be endowed with the usual metric d(x,y) = |x — y| for all x,y € X.
Also, let ¢(f) = ¢t and n(¢) = %t for all £ > 0, and (¢, o, £3, £4) = max{ty, to, t3,t,} for all
t, by, t3,t > 0.

Now, define the self-mappings f and T on X by

3 ifxe[0,1],
fx= and Tx=

2 ifxeR\[0,1]

ifx € [-1,0],
if x € R\[-1,0].

R Wik

Then it is clear that fX C TX. Also, define the mappings «, 8 : X — [0, 00) by

¢ ifxe(-00,-1),
ax)=qe™* ifxe[—%,O],

0 ifxe(0,00),
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Figure 1 Plot of Tx (in blue) and fx (in red) on [-2, 0.6
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Figure 2 Zoom of the plot in Figure 1. In violet,
we have {yp} = {f} = {Txn41} at the starting point xo ~ ~0-0051
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and

e ifxe[-3,0],

p=1" 1
0 ifxeR\[-5,0]

Letx € X such that «(7x) > 1so that Tx € —%, 0] and hence x € [-1, 0]. By the definitions
of f and B, we have fx € [—%,0] and so B(fx) > 1.

Similarly, one can show that if 8(7x) > 1 then «(fx) > 1. Thus, f is a T-cyclic (o, B)-
admissible mapping. Moreover, the conditions «(7xy) > 1 and B(Txy) > 1 are satisfied
with xg = —é.

Now, let {x,} be a sequence in X such that B(x,) > 1foralln € Nand x, — x as n — oo.
Then, by the definition of 8, we have x, € [—%,0] forallme Nandsox € [—%, 0], that is,
Bx) = 1.

Next, we prove that f is a T-cyclic («, 8)-contractive mapping. Let «(Tx)8(Ty) > 1, then
Tx € [—%,0], Ty e [—%,0] andsox € [-1,0],y € [—%,O], Thus, we get

o(dlfs ) = Ifs ~ 1 = 511

IA

WIN Ol N

2
Ix—yl=§|Tx—Ty|

=<

M(x,y) = n(M(x,9)).
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Obviously, assumption (iii) of Theorem 1 is satisfied. Consequently, all conditions of The-
orem 1 hold, and hence f and T have a unique common fixed point. Here 0 is the common
fixed point of f and T’ see Figures 1 and 2.

Corollary 1 Let (X,d) be a complete metric space and let f and T be self-mappings on X
such that fX C TX. Let f be a T-cyclic («, B)-admissible mapping such that

a(Tx)B(D)e(d(fx. 7)) < n(M(x,y)), (2.17)

forall x,y € X, where ¢ is an altering distance function and n : [0,00) — [0, 00) is a nonde-
creasing function and continuous from the right with the condition ¢(t) > n(t) forall t >0
and

M(x,y) = max{d(Tx, Ty), d(Tx, fx), d(Ty, fy), % [d(Tx,fy) + d(Ty,fx)] }

Assume that TX is a closed subset of X and the following conditions are satisfied:
(i) there exists xy € X such that o(Txg) > 1 and B(Txo) > 1;
(il) if {xu} is a sequence in X such that x,, — x and B(x,) > 1 for all n, then B(x) > 1;
(ili) «(Tu) >1and B(Tv) > 1 whenever fu = Tu and fv = Tv.
Then f and T have a unique point of coincidence in X. Moreover, if f and T are weakly
compatible, then f and T have a unique common fixed point.

Proof Let a(Tx)B(Ty) > 1 for x,y € X. If we take ¥ (1, ta, t3, ta) = max{ty, to, £3, ta} in Theo-
rem 1, then from (2.17), we have

o(d(fx.fy)) < n(Mx,y)).

This implies that the inequality (2.1) holds. Therefore, the proof follows from Theo-
rem 1. g

If we choose T = Iy in Theorem 1, we have the following corollary.

Corollary 2 Let (X,d) be a complete metric space and f : X — X be a cyclic («, B)-
admissible mapping such that

a@BO) =1 = (dfx.fy) <n(Mxy)), (218)

forall x,y € X, where € V, ¢ is an altering distance function and 1 : [0, 00) — [0,00) is
a nondecreasing function and continuous from the right with the condition ¢(t) > n(t) for
allt >0 and

1
MyG5) = ().l 0,050, [ )+ ) )
Assume that the following conditions are satisfied:

(i) there exists xo € X such that a(xo) > 1 and B(xo) > 1;
(ii) if {x4} is a sequence in X such that x,, — x and B(x,) > 1 for all n, then B(x) > 1;
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(ili) o(u) >1and B(v) > 1 whenever fu = u and fv=v.

Then f has a unique fixed point.
If we take n(¢) = () — n'(¢) in Corollary 2, we have the following corollary.

Corollary 3 Let (X,d) be a complete metric space and f : X — X be a cyclic («, B)-
admissible mapping such that

a@)By) =1 = e(dfx.f)) < e(M(xy) —n' (Ms(x,9)), (2.19)

for all x,y € X, where € WV, ¢ is an altering distance function and n' : [0, 00) — [0, 00)
is such that ¢(t) — n'(t) is nondecreasing and n'(t) is continuous from the right, with the
condition ¢(t) > n'(t) for all t > 0.
Assume that the following conditions are satisfied:
(i) there exists xo € X such that a(xg) > 1 and B(xo) > 1;
(ii) if {%u} is a sequence in X such that x,, — x and B(x,) > 1 for all n, then B(x) > 1;
(ili) o(u) >1and B(v) > 1 whenever fu = u and fv=v.
Then f has a unique fixed point.

If we take ¢(z) = ¢ in Corollary 3, we have the following corollary.

Corollary 4 Let (X,d) be a complete metric space and f : X — X be a cyclic («, B)-
admissible mapping such that

a@)B) =1 = d(fx.fy) < Mi(xy) - n' (Mpx,), (2.20)

forallx,y € X, where € W and n' : [0,00) — [0, 00) is such that t — n'(t) is nondecreasing
and n\(t) is continuous from the right, with the condition n*(¢) > 0 for all t > 0.
Assume that the following conditions are satisfied:
(i) there exists xo € X such that o(xg) > 1 and B(xo) > 1;
(il) if {x4} is a sequence in X such that x,, — x and B(x,) > 1 for all n, then B(x) > 1;
(ili) a(u) >1and B(v) > 1 whenever fu = u and fv=v.

Then f has a unique fixed point.

We denote by @ the family of all functions ¢ : R* — R, such that

(¢1) ¢ is nondecreasing in each coordinate and continuous;
(¢2) ¢(t1 tt, t) <t d)(t, %) t, 0) <t and ¢(0; %, 0, t) <t for all £ > 0;
(¢3) @(ti,t2,t3,t4) =0 ifand onlyifty =, = t3 = £4 = 0.

Definition 6 Let (X,d) be a metric space and let f be a T-cyclic («, 8)-admissible map-
ping. We say that f is a T-cyclic («, B)-rational contractive mapping if

a(TB(T) =1 =  ¢(d(fx.fy) <n(Nxy)), (2.21)

for all ,y € X, where

Nx) = ¢>(d<Tx, 1), (T f), d( Ty fo), T SCSNAL Sy )),

1+d(Tx, Ty)
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¢ € D, ¢ is an altering distance function and 7 : [0,00) — [0, 00) is a nondecreasing func-

tion and continuous from the right with the condition ¢(£) > n(¢) for all £ > 0.

Theorem 2 Let (X,d) be a complete metric space and let f and T be self-mappings on X
such that fX C TX. Let f be a T-cyclic («, B)-rational contractive mapping. Assume that
TX is a closed subset of X and the following conditions are satisfied:
(i) there exists xq € X such that a(Tx¢) > 1 and B(Txq) > 1;
(ii) if {x4} is a sequence in X such that x,, — x and B(x,) > 1 for all n, then B(x) > 1;
(iti) «(Tu) > 1 and B(Tv) > 1 whenever fu = Tu and fv = Tv.
Then f and T have a unique point of coincidence in X. Moreover, if f and T are weakly

compatible, then f and T have a unique common fixed point.
Proof Similar to the proof of Theorem 1, we define sequences {x,} and {y,} in X by y,, =

fxy = Txyy1 and note that a(Tx,) B(Tx,,1) > 1 for all n € N U {0}. Also we assume that y,, #
yn-1 for all n € N. Then by (2.21), we have

‘p(d(Yn’yn+l)) = Qo(d(fxmfxwrl)) = U(N(xmxml)) < QD(N(xn»anrl))- (2.22)

Since ¢ is nondecreasing, we get

d(ymyn+1) < N(xm xn+1)¢ (223)

where

1
Ny, %p41) = @ (d( Txy, T 1), Ed(Txnrfan); d(Txnﬂ;fxn):

[1 + d(Txnrfxn)]d(Txn+l:fxn+1))
1+d(Tx,, Txni1)

[1 + d(yn—l:yn)]d(ymynﬂ))

1
= dnf;ny_d n-1> J/n+ ’d nynjs
¢><(y1y)2(y1y 1), A ) 1+ dma,yn)

1
S ¢ (d(yn—lyyn); 5 [d(yn—lyyn) + d(yn:yrﬁl)]; O; d(y;q:ynﬂ)) . (224')
Thus, from (2.23), we deduce

d(y;fuynﬂ) < N(xmxnﬂ)

S ¢ (d(yn—lyyn)r % [d(yn—lryn) + d(meml)], Or d(ynry;ﬁl)) .

If d(yu-1,¥n) < A, Yns1) for some n € N, then

1
d(yn:ynﬂ) < ¢ <d(yn11_yn)) 5 [d(yn—l)yn) + d(ynrynﬂ)]’ 0) d(ym_yrﬁl))

< ¢(d(ymyn+l); d(yn;ynﬂ); d(yn;ynﬂ)r d()/n»ywrl))
S d(y;«n_y;ﬁl)’
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which is a contradiction, and hence d(y,, y,+1) < d(¥,-1,y,) for all n € N. Therefore, the
sequence {d(y,,¥n41)} is decreasing and bounded from below. Thus, there exists § > 0
such that lim,_, oo d(¥y, Y441) = 8. Also, from (2.22), (2.24) and using the properties of ¢
and 7, we obtain

<P(d()/myn+1))

E n (N(xnr xn+1))

IA

n<¢> (d(yn_l,yn), a0 + d(yn,ym)],o,d(yn,yml)»

n (¢ (d(yn—l»yn): d@n—l’yn): d@n—lryn)’ d(Yn—lyyn)))
(d(yn—byn)) < go(d(yn—l’yn))- (225)

=
=7
Consider the properties of ¢ and 7, letting # — 0o in (2.25), we get

¢(8) = im @ (d(yu, yua1))
< lim 5(d(u-1,74)) = 1(8) < 9(9),
which implies § = 0 and so
lim d(y,,Yu:1) = 0. (2.26)
Now, we want to show that {y,} is a Cauchy sequence. Suppose, to the contrary, that
{yn} is not a Cauchy sequence. Then there exists an ¢ > 0 for which we can find two sub-

sequences {yy, } and {y,, } of {y,,} such that 7 is the smallest index for which n; > m; > k
and

AWn>Ym) =€ and  dYu—1,Ym,) < €. (2.27)

Using the triangular inequality and (2.27), we have

&= d(ymkrynk) = d(ymk’ynk—l) + d(ynk—hynk)

< &+ dWu-1,Yn)-
By taking k — oo in the above inequality and using (2.26), we obtain
kli?olod(ym"’y”k) =¢. (2.28)
By using (2.26), (2.28), and the triangular inequality, we deduce
/}LHJO AWu-1,Ymy) = &,

kli>nolo d(ymk—lyynk) =&, (229)

lim d(ymy—1, Y1) = €.

k—00
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From (2.21), we get

(AW Ymy)) = (A xnr frmy)) < 0 (N K Xy ) (2.30)

where

1
N(xnermk) = ¢ (d(Txnk; Txmk): Ed(Txnk:fxmk): d(Txmk:fxnk)y

(1 + d(Txp s fou N A(Txmy s fomy)
1+d(Txy, Txp,) )

1
= ¢ (d(ynk—l:ymk—l)r Ed(y;qk—l,ymk)r d()/mk—l,ynk)y

[1 + d(ynkl,ynk)]d(ymkl)ymk))
1+ d(ynk—l’ymk—l)

< max{e, N, Xm,) |

1
- ¢<max{5,d(ynk_1,ymk_1)}, 5 max{s,d(ynk_l,ymk)},

[]- + d(ynk—lvynk)]d(ymk—l’ymk)>
1+ d(ynk—l’ymk—l) '

maX{S,d(ymk—lyynk)}x

Therefore limy_, oo max{e, N (%, %, )} = ¢ (e, %,8,0) <e.
Now, from the properties of ¢ and 1 and using (2.26), (2.28), (2.29), and the previous
inequality, as k — oo in (2.30), we have

¢(e) = im (d(yn, yn1)) < lim 1(max{e, N, xm)}) < n(e) < o(e),

which implies that ¢ = 0, a contradiction with ¢ > 0. Thus {y,} is a Cauchy sequence in X.
From the completeness of (X, d), there exists w € X such that

lim y, =w (2.31)

n—00

and so by (2.31), we obtain
fx,—>w and Tx,q — w. (2.32)

Since TX is closed, by (2.32), w € TX. Therefore, there exists v € X such that 7v = w.
As y, > w and B(y,) = B(Txy1) > 1 for all n € N, by (ii), B(w) = B(Tv) > 1. Thus,
a(Tx,)B(Tv) > 1forall m e N.

Now, applying inequality (2.21), we get

@(d(fxnfv)) < (N @), (2.33)
where
N(x,,v) < q&(d(Tx,,, Tv), % max{d(v, V), d(Tx,, v)},d(Tv,fx,,),

d(Tv,fv)max{M 1})

1+d(Tx,, Tv) ’
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Taking k — oo in the inequality (2.33), using the properties of ¢, n and the previous in-
equality we have

o(aon ) = (o0 a0m),0,d09)) )
< n(dw.fn) < p(d(w.fv)),
which implies d(w,fv) = 0, that is, w = fv. Thus, we deduce
w=fo="Ty, (2.34)

and so w is a point of coincidence for f and T'. The uniqueness of the point of coincidence
is a consequence of the conditions (2.21) and (iii), and so we omit the details.
By (2.34) and using the weak compatibility of f and T, we obtain

fw=fIv="Tfv=Tw. (2.35)

The uniqueness of the point of coincidence implies w = fw = Tw. Consequently, w is the
unique common fixed point of f and T. d

Corollary 5 Let (X,d) be a complete metric space and let f and T be self-mappings on X
such that fX C TX. Let f be a T-cyclic (v, B)-admissible mapping such that

a(T) (D¢ (d(fx.f7) < n(N(x ),

forallx,y € X, where ¢ is an altering distance function and 1 : [0, 00) — [0, 00) is a nonde-
creasing function and continuous from the right with the condition ¢(t) > n(t) forall t >0
and

N(x,y) = max{d(Tx, Ty), %d(Tx,fy), da(Ty, fx), 1+ (T, fl(Ty,f3) }

1+d(Tx, Ty)

Assume that TX is a closed subset of X and that the following conditions are satisfied:
(i) there exists xg € X such that a(Tx¢) > 1 and B(Txq) > 1;
(ii) if {x,} is a sequence in X such that x,, — x and B(x,) > 1 for all n, then B(x) > 1;
(ili) «(Tu) >1 and B(Tv) > 1 whenever fu = Tu and fv = Tv.
Then f and T have a unique point of coincidence in X. Moreover, if f and T are weakly
compatible, then f and T have a unique common fixed point.

If we take T = Iy and 7(t) = ¢(t) — n'(¢) in Theorem 2, we have the following corollary.

Corollary 6 Let (X,d) be a complete metric space and f : X — X be a cyclic («, B)-
admissible mapping such that

a@)B) =1 = e(dfxf) < e(Nrx) - n'(Nr(x,9),

for all x,y € X, where ¢ € @, ¢ is an altering distance function and n' : [0,00) — [0, 00)
is such that ¢(t) — n'(t) is nondecreasing and n'(t) is continuous from the right, with the
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condition ¢(t) > n'(t) forall t > 0, and

d(x, fo)1d(y,
Nf(x,)/)=¢<d(x,y),%d(x,fy),d(y,fx), [+ dlx f5)] (yfy))'

1+d(x,y)

Assume that the following conditions are satisfied:

(i) there exists xo € X such that o(xo) > 1 and B(xo) > 1;

(il) if {%u} is a sequence in X such that x,, — x and B(x,) > 1 for all n, then B(x) > 1;
(ili) o(u) >1and B(v) > 1 whenever fu = u and fv=v.
Then f has a unique fixed point.

If we take ¢(£) = ¢ in Corollary 6, we have the following corollary.

Corollary 7 Let (X,d) be a complete metric space and f : X — X be a cyclic («, B)-
admissible mapping such that

a@pO) =1 =  difu.fy) < Nrxy)—n' (Nr(x.)),

for all x,y € X, where n' : [0,00) — [0, 00) is such that t — n}(t) is nondecreasing and n'(t)
is continuous from the right, with the condition n'(t) > 0 for all t > 0.
Assume that the following conditions are satisfied:
(i) there exists xo € X such that a(xg) > 1 and B(xo) > 1;
(il) if {x4} is a sequence in X such that x,, — x and B(x,) > 1 for all n, then B(x) > 1;
(iti) o(u) >1and B(v) > 1 whenever fu = u and fv=v.
Then f has a unique fixed point.

3 Cyclicresults
The mappingsf, T : AUB — AUBare called cyclicif fA € TBand fB C TA, where A, B are
nonempty subsets of a metric space (X, d). Moreover, f and T are called cyclic contraction
if there exists k € (0,1) such that d(fx,fy) < kd(Tx, Ty) for all x € A and y € B. For more
results see [16—19].

In this section we give some fixed point results involving cyclic mappings which can be

regarded as consequences of the theorems presented in the previous section.

Theorem 3 Let A and B be two closed subsets of complete metric space (X, d) such that
ANB#W@andf,T:AUB— AU B be mappings such that fA € TB and fB C TA. Assume
that T(A U B) is a closed subset of X such that

o(d(fx.fy)) < n(Mlx,)), (3.1)

forall x € A and y € B, where ¢ is an altering distance function and 1 : [0,00) — [0,00) is
a nondecreasing function and continuous from the right with the condition ¢(t) > n(t) for
allt>0.
(i) If T is one to one then there exists z € AN B such that fz = Tz.
(ii) Iff and T are weakly compatible, then f and T have a unique common fixed point
z€e ANB.
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Proof Define «, B : X — [0,00) by

1, ifxeTA, 1, ifxeTB,
a@=1" "I and py=1 DTN
0, otherwise 0, otherwise.

Let «(Tx)B(Ty) > 1. Then Tx € TA and Ty € TB. Since T is one to one, we have x € A and
y € B. Hence, from (3.1) we obtain

o(d(fx.fy)) < n(Mx,)).

Let «(Tx) > 1 for some x € X, so Tx € TA and then x € A. Hence, fx € TB and so B(fx) > 1.
Again, let B(Tx) > 1 for some x € X. Then Tx € TB and so x € B. Hence, fx € TA and then
a(fx) > 1. Therefore, f is a T-cyclic («, 8)-admissible mapping.

There exists an xy € A N B, as A N B is nonempty. This implies that Tx, € TA and Tx, €
TB and so «(Txy) > 1 and B(Txq) > 1.

Let {x,} be a sequence in X such that 8(x,) > 1 forall» € Nand x, — x as # — 00. Then
x, € TB for all » € N and so x € TB. This implies that 8(x) > 1.

Then the conditions (i) and (ii) of Theorem 1 hold. So there exist u,z € A U B such that
u = fz = Tz. On the other hand, since T is one to one, there exist z; € A, zo € B such that
Tz = Tzp = u implies z; = z; = z. Therefore, u = Tz for z € AN B. If f and T are weakly
compatible, following the proof of Theorem 1, we have u = fu = Tu. The uniqueness of the
common fixed point follows from (3.1). O

Similarly, we can prove the following theorem.

Theorem 4 Let A and B be two closed subsets of complete metric space (X, d) such that
ANBF#PDandf,T:AUB— AU B be mappings such that fA C TB and fB C TA. Assume
that T(A U B) is a closed subset of X such that

o(d(fx.f7) < n(N(x,)), (3.2)

forall x € A and y € B, where ¢ is an altering distance function and n : [0,00) — [0, 00) is
a nondecreasing function and continuous from the right with the condition ¢(t) > n(t) for
allt>0.
(i) If T is one to one then there exists z € AN B such that fz = Tz.
(ii) Iff and T are weakly compatible, then f and T have a unique common fixed point
z€e ANB.

4 Application to functional equations
The existence and uniqueness of solutions of functional equations and system of func-
tional equations arising in dynamic programming have been studied by using different
fixed point theorems (see [20-22]).

Throughout this section, we assume that U/ and V are Banach spaces, W C U is a state
space, D C V is a decision space. Now, we apply our results in order to prove the existence
and uniqueness of the common solution of the following functional equations:

P= sug{p(x,y) + G(x,y,P(r(x,y)))}, xeW, (4.1)
ye
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and

Q= sgg{q(x,y) +K(%,Q(tx))}, xeW, (4.2)
y
wheret: WxD— W,p,qg: WxD— Rand G,K: W x D xR — R.Itis well known that
equations of the type (4.1) and (4.2) provide useful tools for mathematical optimization,
computer programming, and in dynamic programming (see [23, 24]).

Let B(W) denote the space of all bounded real-valued functions defined on the set W.
Meanwhile, B(W) endowed with the sup metric d(4, k) = sup,.y |hx — kx| for all &,k €
B(W) is a complete metric space.

We consider the operators f, T : B(W) — B(W) given by

fhx) = sug{p(x,y) + G(x,y,h(r(x,y)))}, x € W,heB(W),
ye

Th(x) = sup{q(x,y) + K(x,5,h(t(x,9)))}, x€ W,heBW).
yeD

Suppose that the following conditions hold:
(Al) For any i € B(W), there exists k € B(W) such that

fh(x) = Tk(x), xeW.
(A2) There exists i € B(W) such that
fh(x) = Th(x) implies Tfh(x)=fTh(x), xeW.

(A3) p,g: W xD—Rand G,K: W x D x R — R are bounded.

(A4) &(Th) = 0 for some k € B(W) implies & (fh) > 0.

(A5) |G(x,y,h(x)) — G(x,y, k(x))| <In(1 + M(h,k)) where h,k € B(W), E(Th) > 0, and
&(Tk) >0, (x,y) € W x D, t € W and

M(h, k) = max{d(Th(t), Tk(t)), d(Th(t),fh()), d(Tk(¢), fk(z)),
% [d(Th(2).fk(2)) + d(Tk(®).fh(®))] }

(A6) If {h,} is a sequence in B(W) such that &(4,) > 0 for all » € NU {0} and &, — h*
as n — oo, then &(h*) > 0.
(A7) There exists hy € B(W) such that £(Thg) > 0.

Theorem 5 Assume that conditions (A1)-(A7) are satisfied and T(B(W)) is a closed and
bounded subspace of B(W). Then the functional equations (4.1) and (4.2) have a unique
common bounded solution in W.

Proof Let X be an arbitrary positive number and x € /4, i, € B(W) such that §(Th;) > 0
and &£(Th;) > 0. Then there exist y;,y, € D such that

() < pley1) + G(x, 91, I (T(x,01))) + A, (4.3)
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fha(x) < p(x,y2) + G(x,yz, hy (t(x,yz))) + A, (4.4)
Si(x) = p(x,2) + G(x, 52, I ((%,72))), (4.5)
Sha(®) = p(x, 1) + G, y1, B2 (2 (%, 31))). (4.6)

Next, by using (4.3) and (4.6), we have

S (x) = fha (%) < G(x, 31,11 (z (%, 31))) = G(% 91, 2 (T (%, 91))) + A
< |G(x,y1,h1(t(x,y1))) - G(x,y1, 12 (r(x,yl)))‘ + A
<In(1+M(h, hy)) + A 4.7)

Analogously, by using (4.4) and (4.5), we obtain
Sha(x) — fin (x) < In(1 + M(hy, ha)) + A (4.8)
Therefore, from (4.7) and (4.8), we deduce
[ﬂfn(x) —f]’lz(x)’ <In(1+M(hy, b)) + A
or, equivalently,
d(fhy, fhy) < ln(l +M(h1,h2)) + A
Since X > 0 is arbitrary, we get

d(ﬂ’ll,fhg) < lIl(l +M(h1,h2)).
Now, define «, 8 : B(W) — [0, 00) by

1, if&(k) > 0 where h € B(W),
0, otherwise.

a(h)=ﬂ(h)={

Also, define ¢,n : [0,00) — [0,00) by ¢(¢) = ¢ and n(¢) = In(1 + ¢). Therefore, using the

last inequality, we have

a(Th)B(Tha)e(d(fh, fh2)) < 1(M(h, b))

One easily shows that all the hypotheses of Corollary 1 are satisfied. Therefore f and T
have a unique common fixed point, that is, the functional equations (4.1) and (4.2) have a

unique bounded common solution. O

Now, we give the following condition to use in the next theorem:

(A5) |G(x,y,h(x)) — G(x,y,k(x))| < In(1 + N(h,k)) where h,k € B(W), E&(Th) > 0, and
&(Tk) > 0; and (x,y) € W x D, t € W and
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N, k) = max{d(Th(t), T(z)), %d(Th(t), 1K(8)), d(Tk@), fh(®)),

(1 +d(Th(2), fn(£)1d(Tk(2), fk(t)) }
1+d(Th(t), Tk(t))

Theorem 6 Let all the conditions of Theorem 5 be fulfilled. If we write the condition (A5')
instead of the condition (A5) in Theorem 5, then functional equations (4.1) and (4.2) have
a unique common bounded solution in W.

Proof Following similar arguments to the proof of Theorem 5, one can easily show that
all the hypotheses of Corollary 5 hold. Then the functional equations (4.1) and (4.2) have
a unique bounded common solution. d
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