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Abstract
In this paper, we use the perturbation method and the mixed monotone iterative
technique to discuss the existence of periodic solutions for impulsive evolution
equations in ordered Banach spaces. Under impulsive functions satisfying broader
monotone conditions and without assumption that the lower and upper solutions
exist, we obtain the existence results of ω-periodic mild solutions. Moreover, an
application is given to illustrate our theoretical results.
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1 Introduction
In this paper, by using the perturbation method and the monotone iterative technique, we
discuss the periodic solutions for the impulsive evolution equation{

u′(t) + Au(t) = f (t, u(t)), t ≥ , t �= tk ,
�u|t=tk = Ik(u(tk)), k ∈ N,

(.)

in an ordered Banach space X, where A : D(A) ⊂ X → X is a closed linear operator and –A
generates a positive C-semigroup T(t) (t ≥ ) in X; f : [, +∞) × X → X is a continuous
function and f is ω-periodic about t. J = [,ω], ω is a constant;  < t < t < · · · < tp < ω.
Ik : X → X (k = , , . . . , p) are impulsive functions. �u|t=tk = u(t+

k ) – u(t–
k ) denotes the jump

of u(t) at t = tk , where u(t+
k ), u(t–

k ) represent the right and left limits of u(t) at t = tk (k ∈ N),
respectively.

Obviously, the periodic problem of impulsive evolution equation (.) is equal to the
periodic boundary value problem of impulsive evolution equation (IPBVP) in J ,⎧⎪⎨

⎪⎩
u′(t) + Au(t) = f (t, u(t)), t ∈ J , t �= tk ,
�u|t=tk = Ik(u(tk)), k = , , . . . , p,
u() = u(ω).

(.)

The study of impulsive differential equations is a new and important branch of differ-
ential equation theory for studying evolution processes of real life phenomena not only in
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natural sciences but also in social sciences such as climate, food supplement, insecticide
population, sustainable development that are subjected to sudden changes at certain in-
stants. The theory of impulsive differential equations has been emerging as an important
area of investigation in the last few decades; see the monographs of Lakshmikantham et
al. [], Benchohra et al. [] and the papers of Chen [], Li and Liu [], Yang [] and Lan
[], where numerous properties of their solutions are studied and detailed bibliographies
are given. Consequently, some basic results on impulsive differential equations have been
obtained and the applications of the theory of impulsive differential equations to different
areas have been considered by many authors, see [, –] and the references therein.

The monotone iterative method based on lower and upper solutions is an effective and
flexible mechanism. This technique is that, for the considered problem, starting from a
pair of ordered lower and upper solutions, one constructs two monotone sequences such
that they uniformly converge to the extremal solutions between the lower and upper so-
lutions. By using the method of lower and upper solutions and the monotone iterative
technique, Du and Lakshmikantham [], Sun and Zhao [] studied the existence of so-
lutions to initial value problem of ordinary differential equation without impulse. Later on,
Guo and Liu [], Li and Liu [] developed the monotone iterative method for impulsive
integro-differential equations. Wang and Wang [] investigated monotone iterative tech-
niques for abstract semilinear evolution equations. Under the condition that the impulsive
function is monotone increasing on the order interval, Chen and Mu [] and Chen and
Li [] discussed the impulsive evolution equations with classical initial conditions.

Luo et al. [] established a monotone iterative method for the antiperiodic boundary
value problem of the first-order impulsive ordinary differential equations

⎧⎪⎨
⎪⎩

u′(t) = f (t, u(t)), t ∈ J , t �= tk ,
�u|t=tk = Ik(u(tk)), k = , , . . . , p,
u() = –u(ω),

(.)

where the impulsive functions Ik (k = , , . . . , p) are nondecreasing. By applying the lower
and upper solution method and the monotone iterative technique, the author obtained
the existence of solutions for problem (.).

Ahmad and Nieto [] applied the method of quasilinearization to obtain monotone
sequences of approximate solutions converging uniformly and quadratically to the unique
solution of the following impulsive anti-periodic problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′(t) = g(t, x(t), x(w(t))), t ∈ J = [, T], t �= tk , tk ∈ (, T),
�x(tk) = Ik(x(tk)), k = , , . . . , p,
x() = –x(T),
x(t) = x(), t ∈ [–r, ].

Suppose that impulsive functions Ik (k = , , . . . , p) satisfied – ≤ I ′
k(·) ≤  with I ′′

k (·) ≥ .
Recently, Chen [] discussed the existence of solutions to the impulsive periodic bound-

ary value problem in an ordered Banach space X,

⎧⎪⎨
⎪⎩

u′(t) = f (t, u(t), u(t)), t ∈ J , t �= tk ,
�u|t=tk = Ik(u(tk), u(tk)), k = , , . . . , p,
u() = u(ω).

(.)
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Assume that problem (.) has coupled lower and upper L-quasisolutions v and w with
v ≤ w. Suppose that impulsive functions Ik (k = , , . . . , p) are satisfied

Ik(u, v) ≤ Ik(u, v), k = , , . . . , p,

for any t ∈ J and v(t) ≤ u ≤ u ≤ w(t), v(t) ≤ v ≤ v ≤ w(t).
Shao and Zhang [] investigated the periodic solutions for the impulsive evolution

equation

{
u′(t) + Au(t) = f (t, u(t)), t ≥ , t �= tk ,
�u|t=tk = Ik(u(tk)), k ∈ N,

where the impulsive functions satisfied the monotone condition ∀t ∈ [,ω], v(t) ≤ x ≤
x ≤ w(t),

Ik(x) ≤ Ik(x), k = , , . . . , p.

In this paper, we consider the existence of ω-periodic mild solutions for the impulsive
evolution equation (.) by means of the perturbation method and the mixed monotone
iterative technique. In the previous results in the related literature, the impulsive func-
tions were considered as nondecreasing functions, which were not easy to satisfy. To our
knowledge, there are very few papers to study the periodic boundary value problem of im-
pulsive evolution equation under the impulsive functions satisfying quasimonotonicity. In
this paper, we assume that the impulsive functions satisfy quasimonotonicity, which will
compensate for the lack in this area. Applying A = , our results improve and extend the
evolution equations without impulse and some relevant results in ordinary differential
equations.

2 Preliminaries
Let X be a Banach space, A : D(A) ⊂ X → X be a closed linear operator and –A generate a
C-semigroup T(t) (t ≥ ) in X. Then there exist constants M >  and ν ∈ R such that

∥∥T(t)
∥∥ ≤ Meνt , t ≥ ,

ν = inf
{
ν ∈ R | ∃M > ,

∥∥T(t)
∥∥ ≤ Meνt ,∀t ≥ 

} (.)

and ν can also be expressed by ν = lim supt→+∞
ln‖T(t)‖

t , then ν is called a growth index
of the C-semigroup T(t) (t ≥ ). If ν < , then T(t) (t ≥ ) is called an exponentially
stable C-semigroup.

Let T(t) (t ≥ ) be an exponentially stable C-semigroup, for ∀ν ∈ (, |ν|), by the defi-
nition of ν, we have ∃M ≥ ,

∥∥T(t)
∥∥ ≤ Me–νt , t ≥ . (.)

We define an equivalent norm in X by

|x| = sup
t≥

∥∥eνtT(t)x
∥∥, (.)
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then ‖x‖ ≤ |x| ≤ M‖x‖. Respectively, |T(t)| is the norm of the operator T(t) in space
(X, | · |). By (.), we have

∣∣T(t)
∣∣ ≤ e–νt (.)

and |T(ω)| ≤ e–νω < .

Lemma . [] Let T(t) (t ≥ ) be an exponentially stable C-semigroup, then the oper-
ator I – T(ω) has a bounded inverse operator (I – T(ω))– and satisfies the inequality

∣∣(I – T(w)
)–∣∣ ≤ 

 – e–νω
.

Let X be an ordered Banach space with the norm ‖ · ‖ and partial order ‘≤’, whose posi-
tive cone K = {x ∈ X | x ≥ θ} is normal with normal constant N . J = [,ω], ω is a constant.
Let C(J , X) denote the Banach space of all continuous X-value functions on interval J with
the norm ‖u‖C = maxt∈J ‖u(t)‖. Then C(J , X) is an ordered Banach space induced by the
convex cone KC = {u ∈ C(J , X) | u(t) ≥ , t ∈ J}, and KC is also a normal cone.

Let J ′ = J \ {t, t, . . . , tp}, J ′′ = J \ {, t, t, . . . , tp}. Let J = [t, t], Jk = (tk–, tk], k =
, , . . . , p + , where t = , tp+ = ω. Evidently, PC(J , X) = {u : J → X | u(t) is continuous in
J ′ and left continuous at tk , and u(t+

k ) exists, k = , , . . . , p}. PC(J , X) is a Banach space with
the norm ‖ · ‖PC = supt∈J ‖u(t)‖. Evidently, PC(J , X) is also an ordered Banach space with
the partial order ‘≤’ induced by the positive cone KPC = {u ∈ PC(J , X) | u(t) ≥ θ , t ∈ J}. KPC

is normal with the same normal constant N . For v, w ∈ PC(J , X) with v ≤ w, we use [v, w] to
denote the order interval {u ∈ PC(J , X) | v ≤ u ≤ w} in PC(J , X), and [v(t), w(t)] to denote
the order interval {u ∈ X | v(t) ≤ u(t) ≤ w(t), t ∈ J} in X. We use X to denote the Banach
space D(A) with the graph norm ‖ · ‖ = ‖ · ‖ + ‖A · ‖.

Definition . If functions v ∈ PC(J , X) ∩ C(J ′′, X) ∩ C(J ′, X) satisfy

⎧⎪⎨
⎪⎩

v′
(t) + Av(t) ≤ f (t, v(t)), t ∈ J , t �= tk ,

�v|t=tk ≤ Ik(v(tk)), k = , , . . . , p,
v() ≤ v(ω),

(.)

we call v a lower solution of IPBVP (.); if all the inequalities of (.) are inverse, we call
it an upper solution of IPBVP (.).

3 Linear impulsive evolution equation
Let I = [t, T]. Denote by C(I, X) the Banach space of all continuous X-value functions on
interval I with the norm ‖u‖C = maxt∈I ‖u(t)‖. It is well known [] that for any x ∈ D(A)
and h ∈ C(I, X), the initial value problem (IVP) of linear evolution equation

{
u′(t) + Au(t) = h(t), t ∈ I,
u(t) = x

(.)

has a unique classical solution u ∈ C(I, X) ∩ C(I, X) expressed by

u(t) = T(t – t)x +
∫ t

t

T(t – s)h(s) ds, t ∈ I. (.)
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If x ∈ X and h ∈ C(I, X), the function u given by (.) belongs to C(I, X). We call it a
mild solution of IVP(.). For any h ∈ PC(J , X), we consider the periodic boundary value
problem of linear impulsive evolution equation (LIPBVP) in X,

⎧⎪⎨
⎪⎩

u′(t) + Au(t) = h(t), t ∈ J , t �= tk ,
�u|t=tk + aku(tk) = ek , k = , , . . . , p,
u() = u(ω),

(.)

where ak is constant, ek ∈ X, k = , , . . . , p.

Theorem . Let X be a Banach space, –A generate an exponentially stable C-semigroup
T(t) (t ≥ ) in X and ν be a growth index of the semigroup T(t). If 

ω

∑p
k= ln( – ak) < –ν,

for any h ∈ PC(J , X), ak <  is constant and ek ∈ X, k = , , . . . , p, LIPBVP (.) has a unique
mild solution u ∈ PC(J , X) given by

u(t) =
∏

k:<tk<t

( – ak)T(t)B(h) +
∑

k:<tk<t

∏
i:tk≤ti<t

( – ai)
∫ tk

tk–

T(t – s)h(s) ds

+
∫ t

tj

T(t – s)h(s) ds +
∑

k:<tk <tj

∏
i:tk <ti<t

( – ai)T(t – tk)ek + T(t – tj)ej

= Q(h), (.)

where tj < t (j = , , , . . . , p) is the nearest point of t, j = max{k |  < tk < t} and

B(h) =

[
I –

p∏
k=

( – ak)T(ω)

]–[ p∑
k=

p∏
i=k

( – ai)
∫ tk

tk–

T(ω – s)h(s) ds

+
∫ ω

tp

T(ω – s)h(s) ds +
p–∑
k=

p∏
i=k+

( – ai)T(ω – tk)ek + T(ω – tp)ep

]
.

Proof Let J = [t, t], Jk = (tk–, tk], k = , , . . . , p + , where t = , tp+ = ω. For any h ∈
PC(J , X), we first show that the initial value problem of linear impulsive evolution equation

⎧⎪⎨
⎪⎩

u′(t) + Au(t) = h(t), t ∈ J , t �= tk ,
�u|t=tk + aku(tk) = ek , k = , , . . . , p,
u() = x.

(.)

Let t ∈ J = [t, t], equation (.) is equivalent to the initial value problem of linear evo-
lution equation

{
u′(t) + Au(t) = h(t), t ∈ J,
u() = x.

(.)

Then (.) has a unique mild solution u ∈ C(J, X) given by

u(t) = T(t)x +
∫ t


T(t – s)h(s) ds.
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Especially, we have

u(t) = T(t)x +
∫ t


T(t – s)h(s) ds ∈ X. (.)

Let t ∈ J = (t, t], equation (.) is equivalent to the initial value problem of linear evo-
lution equation

{
u′(t) + Au(t) = h(t), t ∈ J,
u(t+

 ) = u(t) – au(t) + e.
(.)

Combining with (.), then (.) has a unique mild solution u ∈ C(J, X) expressed by

u(t) = T(t – t)
[
( – a)u(t) + e

]
+

∫ t

t

T(t – s)h(s) ds

= T(t – t)
[

( – a)
(

T(t)x +
∫ t


T(t – s)h(s) ds

)
+ e

]
+

∫ t

t

T(t – s)h(s) ds

= ( – a)T(t)x + ( – a)
∫ t


T(t – s)h(s) ds +

∫ t

t

T(t – s)h(s) ds + T(t – t)e.

Particularly, we have

u(t) = ( – a)T(t)x + ( – a)
∫ t


T(t – s)h(s) ds +

∫ t

t

T(t – s)h(s) ds + T(t – t)e.

Similarly, let t ∈ Jk = (tk–, tk] (k = , , . . . , p + ), where tp+ = ω, equation (.) is equiv-
alent to the initial value problem of linear evolution equation

{
u′(t) + Au(t) = h(t), t ∈ Jk ,
u(t+

k–) = ( – ak–)u(tk–) + ek–, k = , , . . . , p + .
(.)

Then (.) has a unique mild solution uk ∈ C(Jk , X) expressed by

uk(t) = T(t – tk–)
[
( – ak–)uk–(tk–) + ek–

]
+

∫ t

tk–

T(t – s)h(s) ds

=
∏

k:<tk<t

( – ak)T(t)x +
∑

k:<tk<t

∏
i:tk≤ti<t

( – ai)
∫ tk

tk–

T(t – s)h(s) ds

+
∫ t

tj

T(t – s)h(s) ds +
∑

k:<tk <tj

∏
i:tk <ti<t

( – ai)T(t – tk)ek + T(t – tj)ej,

where tj < t (j = , , , . . . , p) is the nearest point of t, j = max{k |  < tk < t}.
Let

u(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(t), t ∈ J,
u(t), t ∈ J,
. . . ,
up+(t), t ∈ Jp+.

(.)
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Inversely, the function u ∈ PC(J , X) defined by (.) is a unique mild solution of the initial
value problem of linear evolution equation (.).

Next,we show that LIPBVP (.) has a unique mild solution u ∈ PC(J , X) given by (.).
If a function u ∈ PC(J , X) defined by (.) is a solution of LIPBVP (.), then x = u(ω),
namely

(
I –

p∏
k=

( – ak)T(ω)

)
x

=
p∑

k=

p∏
i=k

( – ai)
∫ tk

tk–

T(ω – s)h(s) ds +
∫ ω

tp

T(ω – s)h(s) ds

+
p–∑
k=

p∏
i=k+

( – ai)T(ω – tk)ek + T(ω – tp)ep. (.)

For ∀ν ∈ (, –ν), by Lemma ., since r(
∏p

k=( – ak)T(ω)) ≤ ∏p
k= | – ak|e–νω , and


ω

∑p
k= ln( – ak) < –ν, ak < , by the arbitrary of ν , we have r(

∏p
k=( – ak)T(ω)) ≤∏p

k=( – ak)eνω < , and I –
∏p

k=( – ak)T(ω) has a bounded inverse operator. From (.),
we choose

x =

[
I –

p∏
k=

( – ak)T(ω)

]–[ p∑
k=

p∏
i=k

( – ai)
∫ tk

tk–

T(ω – s)h(s) ds

+
∫ ω

tp

T(ω – s)h(s) ds +
p–∑
k=

p∏
i=k+

( – ai)T(ω – tk)ek + T(ω – tp)ep

]

� B(h). (.)

Combining (.) with (.), we obtain that the function u(t) ∈ PC(J , X) given by (.) is
a unique mild solution of LIBPVP (.) on J and the operator Q : PC(J , X) → PC(J , X) is
a continuous operator. So, the conclusion of Theorem . holds. �

Remark . In Theorem ., let X be an ordered Banach space, –A generate a posi-
tive C-semigroup T(t) (t ≥ ) in X and ν be a growth index of the semigroup T(t). If

ω

∑p
k= ln( – ak) < –ν, for any h ≥ θ , ak <  is constant and ek ≥ θ , k = , , . . . , p, then the

solution operator Q of LIPBVP (.) is a positive operator.

4 Proof of the main results
Theorem . Let X be an ordered Banach space, whose positive cone K is normal, and N

be the normal constant. Let A : D(A) ⊂ X → X be a closed linear operator and –A generate
a compact and positive C-semigroup T(t) (t ≥ ) in X. f ∈ C(J × X, X) is ω-periodic about
t, Ik ∈ C(X, X), k = , , . . . , p. Assume that IPBVP (.) has lower and upper solutions v

and w with v(t) ≤ w(t) (t ∈ J). Suppose that the following conditions are satisfied:

(P) There exists a constant C ≥  such that

f (t, x) – f (t, x) ≥ –C(x – x), t ∈ J ,

for ∀t ∈ J , v(t) ≤ x ≤ x ≤ w(t).
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(P) ∃ ≤ Nk < , for ∀t ∈ J , v(t) ≤ x ≤ x ≤ w(t), impulsive functions Ik satisfy

Ik(x) – Ik(x) ≥ –Nk(x – x), k = , , . . . , p.

Then IPBVP (.) has minimal and maximal ω-periodic mild solutions u and u between v

and w, which can be obtained by monotone iterative sequences starting from v and w.

Proof Define D = [v, w]. For ∀h ∈ D, we consider the periodic boundary value problem
of linear impulsive evolution equation (LIPBVP) in X,

⎧⎪⎨
⎪⎩

u′(t) + Au(t) + Cu(t) = f (t, h(t)) + Ch(t), t ∈ J , t �= tk ,
�u|t=tk + Nku(tk) = Ik(h(tk)) + Nkh(tk), k = , , . . . , p,
u() = u(ω),

(.)

where ∀t ∈ [,ω], define tj < t (j = , , , . . . , p) is the nearest point of t, j = max{k |  < tk <
t}, f(t, x) = f (t, x) + Cx.

Let C > ν, –(A + CI) generate an exponentially stable, compact and positive C-semi-
group S(t) = e–CtT(t) (t ≥ ) in X, whose growth index is –C + ν. Since C > ν,  ≤ Nk < ,
so


ω

p∑
k=

ln( – Nk) < C – ν. (.)

From Theorem ., LIPBVP (.) has a unique mild solution u ∈ PC(J , X) given by

u(t) =
∏

k:<tk<t

( – Nk)S(t)B(h) +
∑

k:<tk <t

∏
i:tk≤ti<t

( – Ni)
∫ tk

tk–

S(t – s)f
(
s, h(s)

)
ds

+
∫ t

tj

S(t – s)f
(
s, h(s)

)
ds +

∑
k:<tk<tj

∏
i:tk <ti<t

( – Ni)S(t – tk)
(
Ik

(
h(tk)

)
+ Nkh(tk)

)

+ S(t – tj)
(
Ij
(
h(tj)

)
+ Njh(tj)

)
� Q(h), (.)

where

B(h) �
(

I –
p∏

k=

( – Nk)S(ω)

)–[ p∑
k=

p∏
i=k

( – Ni)
∫ tk

tk–

S(ω – s)f
(
s, h(s)

)
ds

+
∫ ω

tp

S(ω – s)f
(
s, h(s)

)
ds +

p–∑
k=

p∏
i=k+

( – Ni)S(ω – tk)
(
Ik

(
h(tk)

)
+ Nkh(tk)

)

+ S(ω – tp)
(
Ip

(
h(tp)

)
+ Nph(tp)

)]
.

Since f and Ik are continuous, so Q : D → PC(J , X) is continuous.
Clearly, the ω-periodic mild solutions of IPBVP (.) are equivalent to the fixed points

of operator Q.
(i) We show Q : D → PC(J , X) is an increasing operator.
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In fact, for ∀h, h ∈ D and h ≤ h, from the assumptions (P) and (P), we have

f
(
t, h(t)

)
= f

(
t, h(t)

)
+ Ch(t) ≤ f

(
t, h(t)

)
+ Ch(t) = f

(
t, h(t)

)
, t ∈ J

and

Ik
(
h(tk)

)
+ Nkh(tk) ≤ Ik

(
h(tk)

)
+ Nkh(tk), k = , , . . . , p.

Since S(t) is an exponentially stable and positive C-semigroup, combining this with
(.), then [I –

∏p
k=( – Nk)S(ω)] has a bounded inverse operator and it can be expressed

that (I –
∏p

k=( – Nk)S(ω))– =
∑∞

n=(
∏p

k=( – Nk))nS(nω). Obviously, the operator (I –∏p
k=( – Nk)S(ω))– is a positive operator. Hence, we have

p∑
k=

p∏
i=k

( – Ni)
∫ tk

tk–

S(ω – s)f
(
s, h(s)

)
ds +

∫ ω

tp

S(ω – s)f
(
s, h(s)

)
ds

≤
p∑

k=

p∏
i=k

( – Ni)
∫ tk

tk–

S(ω – s)f
(
s, h(s)

)
ds +

∫ ω

tp

S(ω – s)f
(
s, h(s)

)
ds

and

p–∑
k=

p∏
i=k+

( – Ni)S(ω – tk)
(
Ik

(
h(tk)

)
+ Nkh(tk)

)
+ S(ω – tp)

(
Ip

(
h(tp)

)
+ Nph(tp)

)

≤
p–∑
k=

p∏
i=k+

( – Ni)S(ω – tk)
(
Ik

(
h(tk)

)
+ Nkh(tk)

)

+ S(ω – tp)
(
Ip

(
h(tp)

)
+ Nph(tp)

)
.

Namely, B(h) ≤ B(h). Thus we obtain the inequality
∏

k:<tk <t( – Nk)S(t)B(h) ≤∏
k:<tk<t( – Nk)S(t)B(h). Combining this with (.), we have Q(h) ≤ Q(h).
(ii) We show v ≤ Q(v), Q(w) ≤ w.
Let⎧⎪⎨

⎪⎩
v′

(t) + Av(t) + Cv(t) = h(t), t ∈ J , t �= tk ,
�v|t=tk + Nkv(tk) = ek , k = , , . . . , p,
v() = v(ω),

(.)

from the definition of v, we have
{

h(t) ≤ f (t, v(t)) + Cv(t), t ∈ J , t �= tk ,
ek ≤ Ik(v(tk)) + Nkv(tk), k = , , . . . , p.

(.)

By Theorem ., (.) and (.), we have

v(t) =
∏

k:<tk<t

( – Nk)S(t)B(h) +
∑

k:<tk <t

∏
i:tk≤ti<t

( – Ni)
∫ tk

tk–

S(t – s)h(s) ds

+
∫ t

tj

S(t – s)h(s) ds +
∑

k:<tk<tj

∏
i:tk <ti<t

( – Ni)S(t – tk)ek + S(t – tj)ej
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≤
∏

k:<tk<t

( – Nk)S(t)B(h) +
∑

k:<tk <t

∏
i:tk≤ti<t

( – Nj)
∫ tk

tk–

S(t – s)f
(
s, v(s)

)
ds

+
∫ t

tj

S(t – s)f
(
s, v(s)

)
ds

+
∑

k:<tk<tj

∏
i:tk <ti<t

( – Ni)S(t – tk)
(
Ik

(
v(tk)

)
+ Nkv(tk)

)

+ S(t – tj)
(
Ij
(
v(tj)

)
+ Njv(tj)

)
, (.)

where

B(h) =

(
I –

p∏
k=

( – Nk)S(ω)

)–[ p∑
k=

p∏
i=k

( – Ni)
∫ tk

tk–

S(ω – s)h(s) ds

+
∫ ω

tp

S(ω – s)h(s) ds +
p–∑
k=

p∏
i=k+

( – Ni)S(ω – tk)ek + S(ω – tp)ep

]
.

Particularly,

v(ω) ≤
p∏

k=

( – Nk)S(ω)B(h) +
p∑

k=

p∏
i=k

( – Ni)
∫ tk

tk–

S(ω – s)f
(
s, v(s)

)
ds

+
∫ ω

tp

S(ω – s)f
(
s, v(s)

)
ds

+
p–∑
k=

p∏
i=k+

( – Ni)S(ω – tk)
(
Ik

(
v(tk)

)
+ Nkv(tk)

)
+ S(ω – tp)

(
Ip

(
v(tp)

)
+ Npv(tp)

)
. (.)

By (.) and (.), then v() = B(h). Combining v() ≤ v(ω) with (.), we have

B(h) ≤
(

I –
p∏

k=

( – Nk)S(ω)

)–[ p∑
k=

p∏
i=k

( – Ni)
∫ tk

tk–

S(ω – s)f
(
s, v(s)

)
ds

+
∫ ω

tp

S(ω – s)f
(
s, v(s)

)
ds +

p–∑
k=

p∏
i=k+

( – Ni)S(ω – tk)
(
Ik

(
v(tk)

)
+ Nkv(tk)

)

+ S(ω – tp)
(
Ip

(
v(tp)

)
+ Npv(tp)

)]

= B(v).

On the other hand, from (.), then

Q(v)(t) =
∏

k:<tk <t

( – Nk)S(t)B(v) +
∑

k:<tk <t

∏
i:tk≤ti<t

( – Ni)
∫ tk

tk–

S(t – s)f
(
s, v(s)

)
ds

+
∫ t

tj

S(t – s)f
(
s, v(s)

)
ds
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+
∑

k:<tk <tj

∏
i:tk <ti<t

( – Ni)S(t – tk)
(
Ik

(
v(tk)

)
+ Nkv(ti)

)

+ S(t – tj)
(
Ij
(
v(tj)

)
+ Njv(tj)

)
. (.)

By (.) and (.), we have

Q(v)(t) – v(t) ≥
∏

k:<tk<t

( – Nk)S(t)
(
B(v) – B(h)

) ≥ θ ,

namely v(t) ≤ Q(v)(t). Similarly, it can be shown that Q(w)(t) ≤ w(t). Therefore, Q :
[v, w] → [v, w] is a continuously increasing operator.

(iii) Next, we will prove that the operator Q has fixed points on [v, w].
Now, we define two sequences {vn} and {wn} by the iterative scheme

vn = Q(vn–), wn = Q(wn–), n = , , . . . . (.)

Then from the monotonicity of operator Q it follows that

v ≤ v ≤ v ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ · · · ≤ w ≤ w ≤ w. (.)

Next, we prove that {vn} and {wn} are convergent in J . Let G = {vn | n ∈ N}, G = {vn– | n ∈
N}, then G = {v} ∪ G and G = Q(G). For any vn– ∈ G, let

W (vn–)(t) =
∑

k:<tk<t

∏
i:tk≤ti<t

( – Ni)
∫ tk

tk–

S(t – s)f
(
s, vn–(s)

)
ds

+
∫ t

tj

S(t – s)f
(
s, vn–(s)

)
ds

+
∑

k:<tk <tj

∏
i:tk <ti<t

( – Ni)S(t – tk)
(
Ik

(
vn–(tk)

)
+ Nkvn–(tk)

)

+ S(t – tj)
(
Ij
(
vn–(tj)

)
+ Njvn–(tj)

)
, (.)

then Q(vn–)(t) =
∏

k:<tk <t( – Nk)S(t)B(vn–) + W (vn–)(t). First, we will prove that for

any  < t < ω, Y (t) def= {W (vn–)(t) | vn– ∈ G} is relatively compact in X. Let  < ε < t,
j = max{k |  < tk < t – ε} and

Wε(vn–)(t) =
∑

k:<tk <t–ε

∏
i:tk≤ti<t–ε

( – Ni)
∫ tk

tk–

S(t – s)f
(
s, vn–(s)

)
ds

+
∫ t–ε

tj

S(t – s)f
(
s, vn–(s)

)
ds

+
∑

k:<tk <tj

∏
i:tk <ti<t–ε

( – Ni)S(t – tk)
(
Ik

(
vn–(tk)

)
+ Nkvn–(tk)

)

+ S(t – tj)
(
Ij
(
vn–(tj)

)
+ Njvn–(tj)

)
= S(ε)

[ ∑
k:<tk <t–ε

∏
i:tk≤ti<t–ε

( – Ni)
∫ tk

tk–

S(t – ε – s)f
(
s, vn–(s)

)
ds
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+
∫ t–ε

tj

S(t – ε – s)f
(
s, vn–(s)

)
ds

+
∑

k:<tk <tj

∏
i:tk <ti<t–ε

( – Ni)S(t – ε – tk)
(
Ik

(
vn–(tk)

)
+ Nkvn–(tk)

)

+ S(t – ε – tj)
(
Ij
(
vn–(tj)

)
+ Njvn–(tj)

)]
. (.)

By assumption (P) we know that

f
(
t, v(t)

)
+ Cv(t) ≤ f

(
t, vn–(t)

)
+ Cvn–(t) ≤ f

(
t, w(t)

)
+ Cw(t).

Since f (t, v(t)) and f (t, w(t)) are continuous in the compact set [,ω], so their image
sets are compact sets in X, namely image sets are bounded. Combining this fact with the
normality of cone K in X, we have ∃M > , ∀vn– ∈ G,

∥∥f
(
t, vn–(t)

)∥∥ ≤ ∥∥f
(
t, v(t)

)∥∥ + N
∥∥f

(
t, w(t)

)
– f

(
t, v(t)

)∥∥ ≤ M.

By assumption (P) we know that

Ik
(
v(tk)

)
+ Nkv(tk) ≤ Ik

(
vn–(tk)

)
+ Nkvn–(tk)

≤ Ik
(
w(tk)

)
+ Nkw(tk), k = , , . . . , p.

By the normality of cone K in X, there exists M >  such that

∥∥Ik
(
vn–(tk)

)
+ Nkvn–(tk)

∥∥
≤ ∥∥Ik

(
v(tk)

)
+ Nkv(tk)

∥∥ + N
∥∥Ik

(
w(tk)

)
– Ik

(
v(tk)

)
+ Nkw(tk) – Nkv(tk)

∥∥
≤ M.

Combining (.) with the compactness of S(ε), then Yε(t) = {Wε(vn–)(t) | vn– ∈ G} is
a relatively compact set in X. Let J = [t, t], Jk = (tk–, tk], k = , , . . . , p + , where t = ,
tp+ = ω. For sufficiently small ε and t, t – ε ∈ Jk (k = , , . . . , p + ), then j = j and

∥∥W (vn–)(t) – Wε(vn–)(t)
∥∥

=
∥∥∥∥
∫ t

tj

S(t – s)f
(
s, vn–(s)

)
ds –

∫ t–ε

tj

S(t – s)f
(
s, vn–(s)

)
ds

∥∥∥∥
≤

∫ t

t–ε

∥∥S(t – s)
∥∥∥∥f

(
s, vn–(s)

)∥∥ds ≤ MMε,

hence Y (t) is a totally bounded set in X, thus it is a relatively compact set. Especially,
by the compactness of Y (ω) and the relative compactness of {B(vn–) | vn– ∈ G} = (I –∏p

k=( – Nk)S(ω))–Y (ω) in X, we know that {(∏k:<tk <t( – Nk))S(t)B(vn–) | vn– ∈ G} is
a relatively compact set.

Noticing

{
Q(t) | vn– ∈ G

}
=

{ ∏
k:<tk<t

( – Nk)S(t)B(vn–) + W (vn–)(t)
∣∣∣ vn– ∈ G

}
,



Zhang et al. Advances in Difference Equations  (2015) 2015:323 Page 13 of 18

and Q(vn–)() = B(vn–), considering

Q(vn–)(ω) =

[ p∏
k=

( – Nk)S(ω)

(
I –

p∏
k=

( – Nk)S(ω)

)–

+ I

]

×
[ p∑

k=

p∏
i=k

( – Ni)
∫ tk

tk–

S(ω – s)f
(
s, vn–(s)

)
ds

+
∫ ω

tp

S(ω – s)f
(
s, vn–(s)

)
ds

+
p–∑
k=

p∏
i=k+

( – Ni)S(ω – tk)
(
Ik

(
vn–(tk)

)
+ Nkvn–(tk)

)

+ S(ω – tp)
(
Ip

(
vn–(tp)

)
+ Npvn–(tp)

)]

= B(vn–),

then Q(vn–)() = Q(vn–)(ω) = B(vn–), namely {Q(vn–)() | vn– ∈ G} = B(G) is rel-
atively compact.

Therefore, {vn(t)} = {Q(vn–)(t) | vn– ∈ G, t ∈ J} is relatively compact in X. Combin-
ing this fact with the monotonicity of {vn}, we easily prove that {vn(t)} is convergent. Let
{vn(t)} → u(t) in t ∈ J .

The same idea can be used to prove that {wn(t)} → u(t) in t ∈ J .
Evidently {vn(t)}, {wn(t)} ∈ PC(J , X), so u(t) and u(t) are bounded integrable in Jk (k =

, , . . . , p). Since for any t ∈ Jk , vn(t) = Q(vn–)(t), wn(t) = Q(wn–)(t), letting n → ∞, by
the Lebesgue dominated convergence theorem, we have u(t) = Q(u)(t), u(t) = Q(u)(t)
and u(t), u(t) ∈ PC(J , X). Combining this with monotonicity (.), we have v(t) ≤ u(t) ≤
u(t) ≤ w(t).

Next, we prove that u(t) and u(t) are the minimal and maximal fixed points of Q in
[v, w], respectively. In fact, for any u∗ ∈ [v, w], Q(u∗) = u∗, we have v ≤ u∗ ≤ w, and
v = Q(v) ≤ Q(u∗) = u∗ ≤ Q(w) = w. Continuing such progress, we get vn ≤ u∗ ≤ wn.
Letting n → ∞, we get u(t) ≤ u∗ ≤ u(t). Therefore, u(t) and u(t) are the minimal and max-
imal ω-periodic mild solutions of IPBVP (.) between v and w, which can be obtained
by monotone iterative sequences starting from v and w, respectively. This completes the
proof of Theorem .. �

Remark . In [], the impulsive functions are required to be ordered increasing; there-
fore, Theorem . in this paper extensively generalizes the main results in [].

Theorem . Let X be an ordered Banach space whose positive cone K is regular, A :
D(A) ⊂ X → X be a closed linear operator and –A generate a positive C-semigroup T(t)
(t ≥ ) in X. f ∈ C(J ×X, X) and f is ω-periodic about t, Ik ∈ C(X, X), k = , , . . . , p. Assume
that IPBVP (.) has coupled lower and upper solutions v and w with v(t) ≤ w(t) (t ∈ J),
and conditions (P) and (P) are satisfied, then IPBVP (.) has minimal and maximal
ω-periodic mild solutions u and u between v and w, which can be obtained by monotone
iterative sequences starting from v and w.
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Proof From Theorem . we know that Q : [v, w] → [v, w] is a continuously increas-
ing operator. Similarly, the two sequences {vn(t)} and {wn(t)} are defined in [v, w] by the
iterative scheme (.). By conditions (P), then {vn(t)} and {wn(t)} are ordered-monotonic
and ordered-bounded sequences in X.

Using the regularity of the cone K , any ordered-monotonic and ordered-bounded se-
quence in X is convergent. So, {vn(t)} and {wn(t)} are convergent, namely ∃v∗(t), w∗(t),
vn(t) → v∗(t), wn(t) → w∗(t) in t ∈ J ′, where v∗(t), w∗(t) are bounded and strongly mea-
surable. Combining (.) with vn = Q(vn–), let C > ν, noticing S(t) = e–CtT(t) (t ≥ ) is
an exponentially stable and positive C-semigroup in X, letting n → ∞, by the Lebesgue
dominated convergence theorem, we have v∗(t) = Q(v∗)(t) ∈ PC(J , X).

Similarly, we prove that w∗(t) ∈ PC(J , X) and w∗(t) = Q(w∗)(t).
By (.), we know v(t) ≤ v∗(t) ≤ w∗(t) ≤ w(t).
Similar to the proof of Theorem ., we know that u(t) and u(t) are the minimal and max-

imal ω-periodic mild solutions of IPBVP (.) between v and w, which can be obtained
by monotone iterative sequences starting from v and w, respectively. This completes the
proof of Theorem .. �

Corollary . Let X be an ordered and weakly sequentially complete Banach space, whose
positive cone K is normal, A : D(A) ⊂ X → X be a closed linear operator and –A generate
a positive C-semigroup T(t) (t ≥ ) in X. f ∈ C(J × X, X) and f is ω-periodic about t,
Ik ∈ C(X, X), k = , , . . . , p. Assume that IPBVP (.) has lower and upper solutions v and
w with v(t) ≤ w(t) (t ∈ J), and conditions (P) and (P) are satisfied, then IPBVP (.)
has minimal and maximal ω-periodic mild solutions u and u between v and w, which
can be obtained by monotone iterative sequences starting from v and w.

Proof In an ordered and weakly sequentially complete Banach space, the normal cone K
is regular. Then the proof is complete. �

Next, we discuss the existence of the ω-periodic mild solutions of IPBVP (.), when the
lower and upper solutions of IPBVP (.) do not exist.

Theorem . Let X be an ordered Banach space, whose positive cone K is normal, A :
D(A) ⊂ X → X be a closed linear operator and –A generate an exponentially stable, com-
pact and positive C-semigroup T(t) (t ≥ ) in X. f ∈ C(J ×X, X) and f is ω-periodic about
t, Ik ∈ C(X, X), k = , , . . . , p satisfy (P) and (P) and the following conditions:

(P) ∃ < a < –ν (ν is the growth index of T(t)), h ∈ PC(J , X), h ≥ θ , such that

–ax – h(t) ≤ f (t, –x), f (t, x) ≤ ax + h(t).

(P) Let ak < , 
ω

∑p
k= ln( – ak) < –a – ν, ek ≥ θ , such that

akx – ek ≤ Ik(–x), Ik(x) ≤ –akx + ek .

Then IPBVP (.) has minimal and maximal ω-periodic mild solutions, which can be ob-
tained by monotone iterative sequences.
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Proof For  < a < –ν, then –(A – aI) generates an exponentially stable and positive
C-semigroup eatT(t) (t ≥ ), whose growth index is a +ν. For 

ω

∑p
k= ln( – ak) < –a –ν,

h(t) ≥ θ , ek ≥ θ , by Theorem ., then the periodic boundary value problem of linear im-
pulsive evolution equation (LIPBVP) in X,

⎧⎪⎨
⎪⎩

u′(t) + Au(t) – au(t) = h(t), t ∈ J , t �= tk ,
�u|t=tk + aku(tk) = ek , k = , , . . . , p,
u() = u(ω)

has a unique positive solution u∗ ≥ θ . Let v = –u∗, w = u∗, by conditions (P), (P), (P)
and (P), we get

⎧⎪⎨
⎪⎩

v′
(t) + Av(t) = av(t) – h(t) ≤ f (t, v(t)), t ∈ J , t �= tk ,

�v|t=tk = –akv(tk) – ek ≤ Ik(v(tk)), k = , , . . . , p,
u() ≤ u(ω)

and

⎧⎪⎨
⎪⎩

w′
(t) + Aw(t) = aw(t) + h(t) ≥ f (t, w(t)), t ∈ J , t �= tk ,

�w|t=tk = –akw(tk) + ek ≥ Ik(w(tk)), k = , , . . . , p,
u() ≥ u(ω).

So, we showed that v and w are a lower solution and an upper solution of IPBVP (.).
By Theorem ., our conclusion holds. Then the proof is complete. �

Corollary . Let X be an ordered Banach space, whose positive cone K is regular, A :
D(A) ⊂ X → X be a closed linear operator and –A generate a positive C-semigroup T(t)
(t ≥ ) in X. f ∈ C(J × X, X) and f is ω-periodic about t, Ik ∈ C(X, X), k = , , . . . , p. If
conditions (P), (P), (P) and (P) are satisfied, then IPBVP (.) has minimal and maximal
ω-periodic mild solutions, which can be obtained by monotone iterative sequences.

Corollary . Let X be an ordered and weakly sequentially complete Banach space, whose
positive cone K is normal, A : D(A) ⊂ X → X be a closed linear operator and –A generate
a positive C-semigroup T(t) (t ≥ ) in X. f ∈ C(J × X, X) and f is ω-periodic about t, Ik ∈
C(X, X), k = , , . . . , p. If conditions (P), (P), (P) and (P) are satisfied, then IPBVP (.)
has minimal and maximal ω-periodic mild solutions, which can be obtained by monotone
iterative sequences.

5 Example
Example . In order to apply our results, we consider the following impulsive parabolic
partial differential equation:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂
∂t u(x, t) + A(x, D)u(x, t) = f (x, t, u(x, t)), x ∈ �, t ∈ J , t �= tk ,
�u|t=tk = Ik(u(x, tk)), x ∈ �, k = , , . . . , m,
Bu = , (x, t) ∈ ∂� × J ,
u(x, ) = u(x,ω),

(.)
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where J = [,ω],  < t < t < · · · < tm < ω, J ′ = J \ {t, t, . . . , tm}, J ′′ = J \ {, t, t, . . . , tm},
integer N > , � ∈ RN is a bounded domain with a sufficiently smooth boundary ∂�,

A(x, D) = –
N∑

i=

N∑
j=

aij(x)
∂

∂xi ∂yj
+

N∑
i=

ai(x)
∂

∂xi
+ a(x)

is a strongly elliptic operator of second order, coefficient functions aij(x), ai(x) and a(x)
are Hölder continuous in �, Bu = b(x)u + δ ∂u

∂n is a regular boundary operator on ∂�,
f : � × J × R → R is continuous, Ik : R → R are also continuous, k = , , . . . , m.

Let X = Lp(�) with p > N + , K = {u ∈ Lp(�) | u(x) ≥  a.e. x ∈ �}, and define the oper-
ator A as follows:

D(A) =
{

u ∈ W ,p(�) | Bu = 
}

, Au = A(x, D)u.

We know that X is a Banach space, K is a regular cone of X, and –A generates a positive
and analytic C-semigroup T(t) (t ≥ ) in X (see []). Define u(t) = u(·, t), f (t, u(t)) =
f (·, t, u(·, t)), Ik(u(tk)) = Ik(u(·, tk)), then system (.) can be reformulated as IPBVP (.)
in X. We assume that the following conditions hold:

(i) Let f (x, t, , ) ≥ , Ik() ≥ , u(x,ω) ≥ u(x, ) ≥ , x ∈ �.
(ii) There exist w = w(x, t) ∈ PC(J , X) ∩ C, and w(x, t) ≥ , x ∈ �, t ∈ Jk such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂w
∂t + A(x, D)w ≥ f (x, t, w), x ∈ �, t ∈ J , t �= tk ,
�w|t=tk ≥ Ik(w(x, tk)), x ∈ �, k = , , . . . , m,
Bw = , (x, t) ∈ ∂� × J ,
w(x, ) ≥ w(x,ω).

(iii) The partial derivative f ′
u(x, t, u) is continuous on any bounded domain.

(iv) For any u, u ∈ [, w(x, t)] with u ≤ u, there exists  < Nk < ; for any x ∈ �,
k = , , . . . , m, we have

Ik
(
u(x, tk)

)
– Ik

(
u(x, tk)

) ≥ –Nk
(
u(x, tk) – u(x, tk)

)
.

Theorem . If assumptions (i), (ii), (iii) and (iv) are satisfied, then the impulsive parabolic
partial differential equation (.) has minimal and maximal mild solutions between  and
w(x, t), which can be obtained by a monotone iterative procedure starting from  and w(x, t),
respectively.

Proof From assumptions (i) and (ii) we know that  and w(x, t) are lower and upper solu-
tions of IBPVP (.), respectively. (iii) implies that condition (P) is satisfied. (iv) implies
that condition (P) is satisfied. So, by Theorem ., we have the result. Then the proof is
complete. �

6 Conclusions
In this paper, we have discussed the existence of ω-periodic mild solutions for the impul-
sive evolution equation by means of the perturbation method and the mixed monotone
iterative technique under the impulsive functions satisfying quasimonotonicity. The main
result (Theorem .) is new and the following results appear as its special cases:



Zhang et al. Advances in Difference Equations  (2015) 2015:323 Page 17 of 18

(i) If we take A =  in (.), we obtain the results for first-order periodic boundary
problem for impulsive ordinary differential equations.

(ii) If Ik(u(tk)) = , k = , , . . . , p, in (.), then Theorem . in this paper is Theorem .
in [].

(iii) If Nk =  in condition (P), then Theorem . in this paper is Theorem  in [].
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