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Abstract
In this article, some new results as regards complete convergence for weighted sums∑n
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1 Introduction
In this paper we are interested in the complete convergence of a sequence of random vari-
ables which satisfies the Rosenthal type inequality. First let us recall some definitions and
well-known results.

1.1 Complete convergence
The following concept of complete convergence of a sequence of random variables was
introduced first by Hsu and Robbins [], which plays an important role in limit theory of
probability. A random sequence {Xn, n ≥ } is said to converge completely to the constant
C (write Xn → C completely) if for any ε > ,

∞∑

n=

P
(|Xn – C| > ε

)
< ∞.

From the Borel-Cantelli lemma, this implies that Xn → C almost surely (a.s.). For the case
of i.i.d. random variables, Hsu and Robbins [] proved that the sequence of arithmetic
means of the random variables converges completely to the expected value if the variance
of the summands is finite. Somewhat later, Erdös [] proved the converse. These results
are summarized as follows.

Hsu-Robbins-Erdös strong law. Let {Xn, n ≥ } be a sequence of i.i.d. random variables
with mean zero and set Sn =

∑n
i= Xi, n ≥ , then EX

 < ∞ is equivalent to the condition
that

∞∑

n=

P
(|Sn| > εn

)
< ∞ for all ε > .
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The result of Hsu-Robbins-Erdös’ strong law is a fundamental theorem in probability
theory and has been intensively investigated in several directions by many authors in the
past decades. One of the most important results is Baum and Katz’ [] strong law of large
numbers.

Baum and Katz strong law. Let αp ≥ , p > , and let {Xn} be a sequence of i.i.d. random
variables and E|X|p < ∞. If 

 < α ≤ , assume that EX = . Then

∞∑

n=

nαp–P

(

max
≤i≤n

∣
∣
∣
∣
∣

j∑

i=

Xi

∣
∣
∣
∣
∣

> εnα

)

< ∞ for all ε > .

The Baum and Katz strong law bridges the integrability of summands and the rate of con-
vergence in the Marcinkiewicz-Zygmund strong law of large numbers.

It is well known that the analysis of weighted sums plays an important role in the statis-
tics, such as jackknife estimate, nonparametric regression function estimate and so on.
Many authors considered the complete convergence of the weight sums of random vari-
ables. Thrum [] studied the almost sure convergence of weighted sums of i.i.d. random
variables; Li et al. [] obtained complete convergence of weighted sums without the iden-
tically distributed assumption. Liang and Su [] extended the results of Thrum [], and
Li et al. [] showed the complete convergence of weighted sums of negatively associated
sequence. The reader can refer to further literature on complete convergence of weighted
sums, such as Xue et al. [] for the NSD sequence, Gan and Chen [] for the NOD se-
quence and so on.

1.2 Rosenthal type inequality
The Rosenthal type inequality is expressed as follows: let {Zn, n ≥ } be a sequence of
random variables, for any r ≥  and every n ≥ , there exists a positive constant C such
that

E

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

(Zi – EZi)

∣
∣
∣
∣
∣

r)

≤ C

[ n∑

i=

E|Zi – EZi|r +

( n∑

i=

E(Zi – EZi)

) r

]

. (.)

Many dependent sequences satisfy the Rosenthal type inequality. We refer to Shao [] for
a negatively associated sequence; Utev and Peligrad [] for a ρ̃-mixing sequence; Shen
[] and Stout [] for an extended negatively dependent sequence (END); Hu [] and
Wang et al. [] for a negatively superadditive dependent sequence (NSD); Asadian et al.
[] and Wu [] for a negatively orthant dependent sequence (NOD); Yuan and An []
for an asymptotically almost negatively associated sequence (AANA).

The concept of stochastic domination is presented as follows.

Definition . A sequence {Xn, n ≥ } of random variables is said to be stochastically
dominated by a random variable X if there exists a positive constant C such that

P
(|Xn| > x

) ≤ CP
(|X| > x

)

for all x ≥  and n ≥ .
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In the present paper, we shall study the complete convergence of weighted sums of ran-
dom sequence under the assumption that the random variables satisfy the Rosenthal type
inequality. Our main results are stated in Section  and the proofs are given in Section .
Throughout this paper, let C denote a positive constant, which may take different values
whenever it appears in different expressions. an = O(bn) means |an/bn| ≤ C and I(·) stands
for the indicator function.

2 Main results
Theorem . Let {Xn, n ≥ } be a sequence of random variables with zero means, which
is stochastically dominated by a random variable X with E|X|p < ∞ for some p ≥ . Let
{ani,  ≤ i ≤ n, n ≥ } be an array of real numbers satisfying |ani| ≤ C for  ≤ i ≤ n and
n ≥ , where C is a positive constant. Let {bn, n ≥ } and {cn, n ≥ } be two sequences of
positive constants such that, for some r ≥ max{, p},

n
cp

n
→  and

k∑

n=

nbn = O
(
cp

k
)
,

∞∑

n=

n r
 bn

cr
n

< ∞ and
∞∑

n=k

nbn

cr
n

= O
(
cp–r

k
)
.

(.)

Suppose that Rosenthal type inequality of Zni := aniXiI(|Xi| ≤ cn) ( ≤ i ≤ n) holds for the
above r. Then we have

∞∑

n=

bnP

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

aniXi

∣
∣
∣
∣
∣

> εcn

)

< ∞ for all ε > . (.)

Remark . Under the conditions of Theorem ., if we take bn = npα–, cn = nα for / <
α ≤  and pα > , and suppose that the Rosenthal type inequality of Zni := aniXiI(|Xi| ≤ nα)
( ≤ i ≤ n) holds for

⎧
⎨

⎩

r > max{p, pα–
α–– }, if p ≥ ,

r = , if  < p < ;

then it is easy to see that the conditions in (.) hold. Hence we have

∞∑

n=

npα–P

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

aniXi

∣
∣
∣
∣
∣

> εnα

)

< ∞ for all ε > . (.)

Remark . Under the conditions of Theorem ., let bn = ns–, cn = ns/p for s > p, p > ,
and let the Rosenthal type inequality of Zni := aniXiI(|Xi| ≤ ns/p) ( ≤ i ≤ n) hold for

⎧
⎨

⎩

r > max{p, –s

 – s

p
}, if p ≥ ,

r = , if  < p < ;
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then it is clear that the conditions in (.) hold. Hence we have

∞∑

n=

ns–P

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

aniXi

∣
∣
∣
∣
∣

> εns/p

)

< ∞ for all ε > . (.)

Remark . Under the conditions of Theorem ., if we take bn = log n
n , cn = (n log n)/p

for some  ≤ p ≤ , and suppose that Rosenthal type inequality of Zni := aniXiI(|Xi| ≤
(n log n)/p) ( ≤ i ≤ n) holds for

⎧
⎨

⎩

r = , if  ≤ p < ,

r > , if p = .

It is easy to check that the conditions in (.) hold. Hence we have

∞∑

n=

log n
n

P

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

aniXi

∣
∣
∣
∣
∣

> ε(n log n)/p

)

< ∞ for all ε > . (.)

Remark . Under the conditions of Theorem ., if we take bn = 
n log n , cn = (n log log n)/p

for some  ≤ p ≤ , and suppose that Rosenthal type inequality of Zni := aniXiI(|Xi| ≤
(n log log n)/p) ( ≤ i ≤ n) holds for

⎧
⎨

⎩

r = , if  ≤ p < ,

r > , if p = .

It is easy to check that the conditions in (.) hold. Hence we have

∞∑

n=


n log n

P

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

aniXi

∣
∣
∣
∣
∣

> ε(n log log n)/p

)

< ∞ for all ε > . (.)

Theorem . Let {Xn, n ≥ } be a sequence of random variables with zero means and
{ani,  ≤ i ≤ n, n ≥ } be an array of real numbers satisfying |ani| ≤ C for  ≤ i ≤ n and n ≥ ,
where C is a positive constant. Let {cn, n ≥ } be sequences of positive constants with cn ↑ ∞
and {�n(t), n ≥ } be a sequence of nonnegative and even functions such that for each n ≥ ,
�n(t) >  as t > . Suppose that the Rosenthal type inequality of Zni := aniXiI(|Xi| ≤ cn)
( ≤ i ≤ n) holds for r = . In addition, assume that

�n(|t|)
|t| ↑,

�n(|t|)
t ↓ as |t| ↑ (.)

and

∞∑

n=

n∑

i=

E
�i(Xi)
�i(cn)

< ∞. (.)

Then we have

∞∑

n=

P

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

aniXi

∣
∣
∣
∣
∣

> εcn

)

< ∞ for all ε > . (.)
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Theorem . Let {Xn, n ≥ } be a sequence of random variables with zero means and
{ani,  ≤ i ≤ n, n ≥ } be an array of real numbers satisfying |ani| ≤ C for  ≤ i ≤ n and n ≥ ,
where C is a positive constant. Let {cn, n ≥ } be sequences of positive constants with cn ↑ ∞
and {�n(t), n ≥ } be a sequence of nonnegative and even functions such that for each n ≥ ,
�n(t) >  as t > . Suppose that the Rosenthal type inequality of Zni := aniXiI(|Xi| ≤ cn)
( ≤ i ≤ n) holds for r = . In addition, assume that for some  ≤ p < q ≤  and each
n ≥ ,

�n(|t|)
|t|p ↑ and

�n(|t|)
tq ↓ as |t| ↑ (.)

and

∞∑

n=

n∑

i=

E
�i(Xi)
�i(cn)

< ∞. (.)

Then we have

∞∑

n=

P

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

aniXi

∣
∣
∣
∣
∣

> εcn

)

< ∞ for all ε > . (.)

Corollary . Let �n(t) be a positive even function satisfying (.) for some  ≤ p < q and
q > . Under the conditions in Theorem ., suppose that the Rosenthal type inequality of
Zni := aniXiI(|Xi| ≤ cn) ( ≤ i ≤ n) holds for r = q and

∞∑

n=

c–r
n

( n∑

i=

EX
i

)r/

< ∞ for r = q, (.)

we can obtain (.).

3 Proofs of main results
In order to prove the main theorems, we need the following lemma which includes the
basic properties for stochastic domination. One can refer to Shen [], Wang et al. [],
Wu [], or Shen and Wu [] for the proof.

Lemma . Let {Xn, n ≥ } be a sequence of random variables which is stochastically dom-
inated by a random variable X. Then for any α >  and b > ,

E|Xn|αI
(|Xn| ≤ b

) ≤ C
[
E|X|αI

(|X| ≤ b
)

+ bαP
(|X| > b

)]
(.)

and

E|Xn|αI
(|Xn| ≥ b

) ≤ CE|X|αI
(|X| ≥ b

)
. (.)

Consequently, E|Xn|α ≤ CE|X|α .
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Proof of Theorem . For  ≤ i ≤ n and n ≥ , denote X ′
ni = XiI(|Xi| ≤ cn). Noting that

EXi =  and by the conditions nc–p
n →  and |ani| ≤ C, we have

c–
n max

≤j≤n

∣
∣
∣
∣
∣

j∑

i=

aniEX ′
ni

∣
∣
∣
∣
∣

= c–
n max

≤j≤n

∣
∣
∣
∣
∣

j∑

i=

aniEXiI
(|Xi| > cn

)
∣
∣
∣
∣
∣

≤ c–
n max

≤j≤n

j∑

i=

∣
∣aniEXiI

(|Xi| > cn
)∣
∣

≤ c–
n

n∑

i=

|ani|E|Xi|I
(|Xi| > cn

)

≤ Cc–
n

n∑

i=

|ani|E|X|I(|X| > cn
)

≤ Cnc–
n E|X|I(|X| > cn

)

≤ Cnc–p
n E|X|p →  as n → ∞.

Hence for any ε > , it follows that for all n large enough

c–
n max

≤j≤n

∣
∣
∣
∣
∣

j∑

i=

aniEX ′
ni

∣
∣
∣
∣
∣

<
ε


. (.)

From (.), it is easy to see that

∞∑

n=

bnP

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

aniXi

∣
∣
∣
∣
∣

> εcn

)

≤ C
∞∑

n=

bn

n∑

i=

P
(|Xi| > cn

)
+ C

∞∑

n=

bnP

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

aniX ′
ni

∣
∣
∣
∣
∣

> εcn

)

≤ C
∞∑

n=

nbnP
(|X| > cn

)
+ C

∞∑

n=

bnP

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

ani
(
X ′

ni – EX ′
ni
)
∣
∣
∣
∣
∣

>
εcn



)

=: CI + CJ . (.)

In order to prove (.), it suffices to prove that I < ∞ and J < ∞. First, for I , by the condition
(.), it is easy to check that

I =
∞∑

n=

nbnP
(|X| > cn

)

≤ C
∞∑

n=

nbn

∞∑

k=n

P
(
ck < |X| ≤ ck+

)

≤ C
∞∑

k=

P
(
ck < |X| ≤ ck+

) k∑

n=

nbn
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≤ C
∞∑

k=

cp
kP

(
ck < |X| ≤ ck+

)

≤ CE|X|p < ∞. (.)

Second, we will show J < ∞. It follows by the Markov inequality and the Rosenthal type
inequality that, for r ≥ ,

J ≤
(


ε

)r ∞∑

n=

bnc–r
n E

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

ani
(
X ′

ni – EX ′
ni
)
∣
∣
∣
∣
∣

r)

≤ C
∞∑

n=

bnc–r
n

{( n∑

i=

a
niE

(
X ′

ni – EX ′
ni
)

) r


+
n∑

i=

ar
niE

∣
∣X ′

ni – EX ′
ni
∣
∣r
}

≤ C
∞∑

n=

bnc–r
n

{( n∑

i=

a
niE

(
X ′

ni
)

) r


+
n∑

i=

ar
niE

∣
∣X ′

ni
∣
∣r
}

≤ C
∞∑

n=

bnc–r
n

( n∑

i=

E|Xi|I
(|Xi| ≤ cn

)
) r



+ C
∞∑

n=

bnc–r
n

n∑

i=

E|Xi|rI
(|Xi| ≤ cn

)

=: CJ + CJ. (.)

For the case p ≥ , from Lemma ., Markov’s inequality, and the condition (.), we have

J ≤ C
∞∑

n=

bnc–r
n

( n∑

i=

(
E|X|I

(|X| ≤ cn
)

+ c
nP

(|X| > cn
))

) r


≤ C
∞∑

n=

bnc–r
n

( n∑

i=

(
E|X|I

(|X| ≤ cn
)

+ E|X|I
(|X| > cn

))
) r



≤ C
∞∑

n=

bnc–r
n n

r
 < ∞. (.)

Since r ≥ p, it follows by Lemma . again, (.), and the condition (.) that

J =
∞∑

n=

bnc–r
n

n∑

i=

E|Xi|rI
(|Xi| ≤ cn

)

≤ C
∞∑

n=

bnc–r
n

n∑

i=

[
E|X|rI

(|X| ≤ cn
)

+ cr
nP

(|X| > cn
)]

= C
∞∑

n=

nbnc–r
n E|X|rI

(|X| ≤ cn
)

+ C
∞∑

n=

nbnP
(|X| > cn

)

≤ C
∞∑

n=

nbnc–r
n

n∑

k=

E|X|rI
(
ck– < |X| ≤ ck

)
+ C
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= C
∞∑

k=

E|X|rI
(
ck– < |X| ≤ ck

) ∞∑

n=k

nbnc–r
n + C

≤ C
∞∑

k=

E|X|pI
(
ck– < |X| ≤ ck

)
+ C

≤ CE|X|p + C < ∞. (.)

For the case  ≤ p < , we have r ≥  and we can take r =  in the Rosenthal type inequality.
From a proof similar to (.), we get

J ≤ C
∞∑

n=

bnc–
n

n∑

i=

E|Xi|I
(|Xi| ≤ cn

)

≤ CE|X|p + C < ∞.

Hence from the above discussions the claim (.) holds. �

Proof of Theorem . For  ≤ i ≤ n and n ≥ , define X ′
ni = XiI(|Xi| ≤ cn). From the condi-

tions (.), EXi = , and |ani| ≤ C, we have

c–
n max

≤j≤n

∣
∣
∣
∣
∣

j∑

i=

aniEX ′
ni

∣
∣
∣
∣
∣

= c–
n max

≤j≤n

∣
∣
∣
∣
∣

j∑

i=

aniEXiI
(|Xi| > cn

)
∣
∣
∣
∣
∣

≤ c–
n max

≤j≤n

j∑

i=

∣
∣aniEXiI

(|Xi| > cn
)∣
∣

≤
n∑

i=

c–
n |ani|E|Xi|I

(|Xi| > cn
)

≤ C
n∑

i=

E
�i(|Xi|)
�i(cn)

I
(|Xi| > cn

)

≤ C
n∑

i=

E
�i(Xi)
�i(cn)

→  as n → ∞.

Hence, for any ε > , we have for all n large enough,

c–
n max

≤j≤n

∣
∣
∣
∣
∣

j∑

i=

aniEX ′
ni

∣
∣
∣
∣
∣

<
ε


. (.)

From (.), it follows that

∞∑

n=

P

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

aniXi

∣
∣
∣
∣
∣

> εcn

)

≤ C
∞∑

n=

n∑

i=

P
(|Xi| > cn

)
+ C

∞∑

n=

P

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

aniX ′
ni

∣
∣
∣
∣
∣

> εcn

)
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≤ C
∞∑

n=

n∑

i=

P
(|Xi| > cn

)
+ C

∞∑

n=

P

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

ani
(
X ′

ni – EX ′
ni
)
∣
∣
∣
∣
∣

>
εcn



)

=: CI + CJ . (.)

Now it suffices to control the terms I and J . For the term I , by the condition (.), we can
get

∞∑

n=

n∑

i=

P
(|Xi| > cn

)

≤
∞∑

n=

n∑

i=

E
�i(|Xi|)
�i(cn)

=
∞∑

n=

n∑

i=

E
�i(Xi)
�i(cn)

< ∞. (.)

For the term J , using the Markov inequality and the Rosenthal type inequality for r = 
and the condition (.), (.), we have

J ≤
(


ε

) ∞∑

n=

c–
n E

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

ani
(
X ′

ni – EX ′
ni
)
∣
∣
∣
∣
∣

)

≤ C
∞∑

n=

c–
n

n∑

i=

a
niE

(
X ′

ni – EX ′
ni
)

≤ C
∞∑

n=

c–
n

n∑

i=

|ani|E
∣
∣X ′

ni
∣
∣

≤ C
∞∑

n=

c–
n

n∑

i=

E|Xi|I
(|Xi| ≤ cn

)

≤ C
∞∑

n=

n∑

i=

E
�i(|Xi|)
�i(cn)

I
(|Xi| ≤ cn

)

≤ C
∞∑

n=

n∑

i=

E
�i(Xi)
�i(cn)

< ∞. (.)

Hence the proof of Theorem . is completed. �

Proof of Theorem . For  ≤ i ≤ n and n ≥ , define X ′
ni = XiI(|Xi| ≤ cn). Similar to the

proof of Theorem ., it suffices to show that, for any ε > ,

c–
n max

≤j≤n

∣
∣
∣
∣
∣

j∑

i=

aniEX ′
ni

∣
∣
∣
∣
∣
→  as n → ∞, (.)

∞∑

n=

n∑

i=

P
(|Xi| > cn

)
< ∞, (.)
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and

∞∑

n=

P

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

ani
(
X ′

ni – EX ′
ni
)
∣
∣
∣
∣
∣

>
εcn



)

< ∞. (.)

First, it follows from the conditions (.), (.), EXi = , and |ani| ≤ C that

c–
n max

≤j≤n

∣
∣
∣
∣
∣

j∑

i=

aniEX ′
ni

∣
∣
∣
∣
∣

= c–
n max

≤j≤n

∣
∣
∣
∣
∣

j∑

i=

aniEXiI
(|Xi| > cn

)
∣
∣
∣
∣
∣

≤ c–
n max

≤j≤n

j∑

i=

∣
∣aniEXiI

(|Xi| > cn
)∣
∣

≤
n∑

i=

c–
n |ani|E|Xi|I

(|Xi| > cn
)

≤ C
n∑

i=

E|Xi|pI(|Xi| > cn)
cp

n

≤ C
n∑

i=

E
�i(|Xi|)
�i(cn)

I
(|Xi| > cn

)

≤ C
n∑

i=

E
�i(Xi)
�i(cn)

→  as n → ∞. (.)

Second, by the condition (.), we know �n(t) is an increasing function as t > . There-
fore, by the condition (.)

∞∑

n=

n∑

i=

P
(|Xi| > cn

)

≤
∞∑

n=

n∑

i=

E
�i(|Xi|)
�i(cn)

=
∞∑

n=

n∑

i=

E
�i(Xi)
�i(cn)

< ∞. (.)

Finally, for  ≤ p < q ≤ , by the Markov inequality and the Rosenthal type inequality for
r =  and the conditions (.), (.), we have

∞∑

n=

P

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

ani
(
X ′

ni – EX ′
ni
)
∣
∣
∣
∣
∣

>
εcn



)

≤ C
∞∑

n=

c–
n

n∑

i=

E|Xi|I
(|Xi| ≤ cn

)

≤
∞∑

n=

n∑

i=

E|Xi|qI(|Xi| ≤ cn)
cq

n
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≤
∞∑

n=

n∑

i=

E
�i(|Xi|)
�i(cn)

I
(|Xi| ≤ cn

)

≤
∞∑

n=

n∑

i=

E
�i(Xi)
�i(cn)

< ∞. (.)

The proof of this theorem is completed. �

Proof of Corollary . From (.), (.) in the proof of Theorem ., and the condition
(.) holding for some  ≤ p < q and q > , we only need to show (.) holds. By Markov’s
inequality, the Rosenthal type inequality and the conditions (.), (.), (.), we have,
for r = q > ,

∞∑

n=

P

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

ani
(
X ′

ni – EX ′
ni
)
∣
∣
∣
∣
∣

>
εcn



)

≤ C
∞∑

n=

c–r
n

( n∑

i=

E|Xi|I
(|Xi| ≤ cn

)
) r



+ C
∞∑

n=

c–r
n

n∑

i=

E|Xi|rI
(|Xi| ≤ cn

)

≤ C + C
∞∑

n=

c–q
n

n∑

i=

E|Xi|qI
(|Xi| ≤ cn

)

≤ C + C
∞∑

n=

n∑

i=

E
�i(|Xi|)
�i(cn)

I
(|Xi| ≤ cn

)

≤ C + C
∞∑

n=

n∑

i=

E
�i(Xi)
�i(cn)

< ∞, (.)

which completes the proof. �

4 Conclusions
The present work is meant to establish some new results as regards complete convergence
for weighted sums of random variables which satisfy the Rosenthal type inequality. These
results extend some known results.
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