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Abstract

Background: Incomplete categorical variables with more than two categories are common in public health data.
However, most of the existing missing-data methods do not use the information from nonresponse (missingness)
probabilities.

Methods: We propose a nearest-neighbour multiple imputation approach to impute a missing at random
categorical outcome and to estimate the proportion of each category. The donor set for imputation is formed by
measuring distances between each missing value with other non-missing values. The distance function is calculated
based on a predictive score, which is derived from two working models: one fits a multinomial logistic regression for
predicting the missing categorical outcome (the outcome model) and the other fits a logistic regression for predicting
missingness probabilities (the missingness model). A weighting scheme is used to accommodate contributions from
two working models when generating the predictive score. A missing value is imputed by randomly selecting one of
the non-missing values with the smallest distances. We conduct a simulation to evaluate the performance of the
proposed method and compare it with several alternative methods. A real-data application is also presented.

Results: The simulation study suggests that the proposed method performs well when missingness probabilities are
not extreme under some misspecifications of the working models. However, the calibration estimator, which is also
based on two working models, can be highly unstable when missingness probabilities for some observations are
extremely high. In this scenario, the proposed method produces more stable and better estimates. In addition, proper
weights need to be chosen to balance the contributions from the two working models and achieve optimal results for
the proposed method.

Conclusions: We conclude that the proposed multiple imputation method is a reasonable approach to dealing with
missing categorical outcome data with more than two levels for assessing the distribution of the outcome. In terms of
the choices for the working models, we suggest a multinomial logistic regression for predicting the missing outcome
and a binary logistic regression for predicting the missingness probability.
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Background
In population studies of public health, the health status
of participants is a research outcome of interest and is
commonly demonstrated using ordinal categories such
as “Excellent”, “Good”, “Fair”, and “Poor”. However, these
variables are typically subject to missing data. In prac-
tical analyses, researchers often create a specific new
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category for missing values (i.e., the missingness indica-
tor approach) or use complete-case (CC) analysis, which
excludes all missing observations. When missing values
are missing at random (MAR), except for CC used to
estimate regression coefficients, both methods are likely
to induce substantial bias as well as lack of efficiency,
e.g. to estimate the proportion of each category of the
multinomial outcome variable, and therefore are not rec-
ommended in general [5, 9, 10].
The expectation-maximization (EM) algorithm uses the

maximum likelihood approach to handle missing data
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problems. It consists of iterative expectation and maxi-
mization steps for estimating the parameter [4]. However,
this approach only relies on the information from a work-
ing model predicting the missing values/outcome, and
ignores the information embedded in missingness prob-
abilities, that is, the probabilities of being missing (or
nonresponse probabilities). Therefore the corresponding
estimates might not be robust to certain misspecifications
of the outcome model.
A more robust approach is to improve the estimation

using additional information from the missingness prob-
abilities, such as the use of calibration estimator (CE) [2],
which is an extension of the inverse probability weight-
ing method [7]. The estimator is a result of expressing the
target parameter as a sum of two components, the model-
based predictions and inverse probability-weighted pre-
diction errors. These two components have a trade-off
effect so that using their sum can achieve a doubly robust
property. That is, the estimator remain consistent as long
as one of the prediction models is correctly specified.
In addition, CE uses covariates to fit working models
for predicting missing values and missingness probabil-
ities. Additional details about CE can be found in the
“Methods” section.
Multiple imputation (MI) [13] is an attractive approach

to missing data problems. It accounts for uncertainty in
estimation due to missingness by imputing each missing
observation multiple times [13, 15]. To the best of our
knowledge, only a handful of studies have investigated
the possible MI approaches to missing categorical data,
such as MI using a loglinear model, MI using a latent
class model, and MI using chained equations, [16, 20],
and concluded that MI using a latent variable model had
the best performance among the tested methods. How-
ever, we note that all these methods are only built on the
working model predicting the missing values. An appar-
ent disadvantage is that they might be sensitive to certain
misspecifications of the working model.
To weaken the aforementioned, pure reliance on the

working model for predicting the missing outcome, we
propose a nearest neighbor-based MI (NNMI) approach
to missing categorical data. The approach uses two work-
ing models, one for predicting missing outcome values
(the outcome model) and the other for predicting the
missingness probabilities using covariate information (the
missingness model). Each working model is used to gen-
erate a predictive score. Their weighted sum is used
to measure the “distance” between a missing case and
observed cases. For each missing observation, its imput-
ing set consists of observed cases which are “near” in
terms of the distance function. The missing value can thus
be imputed (replaced) by one of the donors in its imput-
ing set. Because information from both the outcome and
missingness models are used to impute the missing data,

we surmise that the proposedmethodmight possess some
doubly-robust property.
Similar ideas have been proposed in [11] and [8]. In

those contexts, the NNMI approach is applied to impute
missing at random continuous variables and produces rea-
sonable results under a variety of model misspecifications.
However, a notable difference in our paper is that the
NNMI approach is applied to MAR categorical variables.
More specifically, if the number of categories isM,M − 1
predictive scores can then be derived from the working
model for the outcome, and a single predictive score can
be derived from the working model for the missingness
probabilities. It is of interest to investigate the optimal
weighting schemes for the M predictive scores. We also
note that there exist alternative ways of specifying models
for categorical outcomes, which further complicates the
problem. In addition, despite having a theoretical doubly
robust property, CE might produce unstable results when
missingness probabilities take some extreme values. It is
of additional interest to assess the performance of NNMI
in this scenario.
This article is organized as follows. In the “Methods”

section, we specify notations, briefly introduce the
CE method, and present the NNMI approach. In the
“Simulation study” section, we investigate the properties
of NNMI for finite samples. In the “Data example” section,
we analyze a dataset from 2013 Behavioral Risk Factor
Surveillance System (BRFSS) survey. Finally, we conclude
our study with a discussion and suggest directions for
future work.

Methods
Notation
Let Y denote the categorical outcome variable of interest
with missing values, and suppose that Y hasM categories
of which the proportions need to be estimated. Let δ

denote the missingness indicator, δ = 0 if Y is missing
and δ = 1 if Y is observed. Let X = (X1, . . . ,Xp) denote
a set of fully observed covariates that are predictive of Y
and δ. Suppose that there are n independent subjects in
the study.

Calibration estimator
The calibration estimator is the earliest doubly robust
method [2], which is based on two working models: one
for the variable with missing values Y, and the other for
the missingness indicator δ. For example, one can calcu-
late the estimates of mean for a continuous Y by a sum
of prediction and inverse probability-weighted prediction
errors,

μ = E[E(Y |X)]+E
[
δ
Y − E(Y |X))

π(X)

]
,

where π(X) = E(δ|X).
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For a categorical Y taking values m = 1, . . . ,M, the
estimator of probability that Y = m can be written as

P̂CE,Y=m=n−1
n∑

i=1
P̂i,Y=m+n−1

n∑
i=1

δiwi
(
Ii,Y=m−P̂i,Y=m

)
,

where P̂i,Y=m is the predicted probability of Y = m
based on, for example, a multinomial logistic regression
model for E(Y |X) using complete cases, wi = 1/π̂(Xi) is
the inverse of the estimated probabilities of having case
i being observed (computed using, for example, a logis-
tic regression model from E(δ|X)), and I represents the
indicator function of Y = m. The first term essentially
predicts/imputes Y values using amodel for E(Y |X) based
on complete cases. The second term is a sum of predic-
tion errors from the model for E(Y |X), adjusted by the
inverse-probability weights using π̂(X) based on all cases.
The doubly robust property dictates that the estimates for
the probability of each category of Y would be consistent
if at least one of the two models (E(Y |X) and E(δ|X)) is
correctly specified.

Nearest-neighbour multiple imputation
We first present the outcome model for Y. Given its
categorical-feature, we consider two alternative modeling
specifications as follows.
Specification I: In this generalized logit model (or multi-

nomial logit model), without loss of generality, let Y = 1
be the reference category. We model the ratio of each
other category for Y = 2, . . . ,M, Pr(Y = m)/Pr(Y = 1),
(m = 2, . . . ,M), via the log link function and relate it to
covariate X. That is,

log
Pr(Y = m)

Pr(Y = 1)
= αT

MLR,mXO, (m = 2, . . . ,M)

where XO ⊆ X is a set of covariates predicting Y,
and αMLR,m = (αMLR,m1, . . . ,αMLR,mp)T is a vector of
p regression coefficients for Y = m versus Y = 1.
Correspondingly, let

ZMLR,m = lm
(
XO,αMLR,1, . . . ,αMLR,M−1

)

=
exp

(
αT
MLR,mXO

)

1+exp
(
αT
MLR,1XO

)
+. . .+exp

(
αT
MLR,M−1XO

)

be the predictive score of Pr(Y = m)/Pr(Y = 1)
under this generalized logit model. Therefore, there are
M − 1 predictive scores ZMLR,m generated for Y with M
categories, and the m-th score quantifies the “distance”
between categorym and category 1.

Specification II: An alternative approach is to fit M −
1 cumulative logistic regression models. That is, models
comparing Y ∈ (m + 1, . . . ,M) versus Y ∈ (1, . . . ,m) for
m = 1, . . . ,M − 1. This model can be written as

log
Pr(Y ∈ (m + 1, . . . ,M))

Pr(Y ∈ (1, . . . ,m))
= αT

CLR,mXO,

where αCLR,m = (αCLR,m1, . . . ,αCLR,mp)T is a vector of p
regression coefficients for Y ∈ (m + 1, . . . ,M) versus Y ∈
(1, . . . ,m). Under this model, each of theM−1 predictive
scores is generated as

ZCLR,m = lm
(
XO,αCLR,m

)

=
exp

(
αT
CLR,mXO

)

1 + exp
(
αT
CLR,mXO

) .

Unlike specification I, there is no apparent constraint
among log(Pr(Y ∈ (m + 1, . . . ,M))/Pr(Y ∈ (1, . . . ,m)))

for m = 1, . . . ,M − 1. Therefore, the m-th score ZCLR,m
quantifies the “distance” between the consecutive cate-
gories Y ∈ (m + 1, . . . ,M) and Y ∈ (1, . . . ,m).
Second, we present the model for missingness probabil-

ities. It is common to use a logistic regression model for
the missingness indicator δ. That is,

logit(Pr(δ = 1)) = Xδβ ,

where Xδ ⊆ X is a set of covariates predicting δ and
β = (β1, . . . ,βp)T is a vector of regression coefficients.
The corresponding predictive score is

ZM = lM (Xδ ,β)

=
exp

(
βTXδ

)

1 + exp
(
βTXδ

) .

The aforementioned specifications do not encompass all
possible modeling choices for Y and δ. For instance, the
logit link functions can be replaced by probit or other link
functions. In general, appropriate specifications should
follow careful exploratory analysis and model diagnostics
of the real data. Here we only use these specifications for
illustrative purposes.
The general strategy of NNMI works as follows. The

aforementioned predictive scores ({ZMLR,m} or {ZCLR,Rm}
and ZM) can be calculated for each observation, missing Y
or not. They are then standardized so that the effect from
each covariate can be summarized on approximately the
same scale. A weighted sum of the standardized scores is
generated to balance the contribution from the two work-
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ing models. This (weighted) predictive score is then used
to quantify the “distance” between subjects. The scores
from cases with observed Y are used to form imput-
ing sets for subjects with missing Y. For each incomplete
subject, imputations are randomly drawn from subjects
(in the imputing set) that have smaller “distances” to the
subject with a missing Y. To ensure the “properness” of
multiple imputation [13], the estimation of scores and
formation of imputing sets are conducted on bootstrap
samples of the original data set to incorporate parameter
uncertainty.
More specifically, the procedure consists of the follow-

ing steps:

Step 1: Bootstrap – Bootstrap the original data set
(including the missing observations) {Y,X} to obtain the
bootstrap sample {Y∗,X∗}.

Step 2: Calculating the predictive scores – From the
bootstrap sample we estimate the regression coefficients
for the outcome and missingness models using the max-
imum likelihood method. For illustration suppose we use
specification I for the outcome model and denote the
corresponding regression coefficients as α∗

MLR,m,m =
1, . . .M − 1. Let β∗ be the regression coefficients for the
propensity model. We use these regression coefficients
and the original covariate X to form the scores. For exam-
ple, the M − 1 predictive scores for the outcome model
(under specification I) are

Z∗
MLR,m = lm

(
XO,α∗

MLR,1, . . . ,α
∗
MLR,M−1

)

=
exp

(
α∗T
MLR,mXO

)

1+exp
(
α∗T
MLR,1XO

)
+. . .+exp

(
α∗T
MLR,M−1XO

),
(m = 1, . . . ,M − 1).

The predictive score for the propensity model is

Z∗
M = lM

(
Xδ ,β∗)

= exp
(
β∗TXδ

)
/
(
1 + exp

(
β∗TXδ

))
.

Each of the M predictive scores {Z∗
MLR,1,. . .,Z∗

MLR,M−1,
Z∗
M} is standardized by subtracting its mean and divid-

ing by its standard deviation. The resulting standardized
scores are denoted by S ≡ (S1, . . . , SM).

Step 3: Forming the imputing set – We calculate a dis-
tance function to define the similarity between subject
i with missing Y in the original data set and subject j
with observed Y in the bootstrap sample based on the
M predictive scores, S1, . . . , SM. Specifically, the distance
between subjects i and j is defined as

d(i, j)=
√

ω1
[
S1(i) − S1(j)

]2 + . . . + ωM
[
SM(i) − SM(j)

]2,

where ω1, . . . ,ωM are non-negative weights for the pre-
dictive scores, satisfying

∑M
i=1 ωm=1. The way to calculate

the similarity between subject i with missing Y in the
original data and subject j with observed Y in the boot-
strap sample was initiated from predictive meanmatching
and was described by Heitjan and Little [6], which was
an extension of a method by Rubin [14]. Morris and
his colleagues also studied on this nonparametric MI
method compared with other methods [12]. The imput-
ing set for subject i with a missing Y in the original
data is the NN nearest neighborhood (i.e., the number
of donors, a positive integer specified prior to impu-
tation), R(i,NN ,ω1, . . . ;ωM), consisting of NN subjects
with observed Y in the bootstrap sample and having the
smallest NN distances d(i, j).

Step 4: Imputation – From the imputing set R(i,NN ,
ω1, . . . ;ωM), an observation is randomly drawn (with
equal probability) to replace the missing Y in subject i.
This imputation is conducted for all i’s. Once all missing
observations of Y are imputed, one fully imputed data set
is obtained. Return to Step 1.

Step 5: Analyzing multiply imputed data sets – Steps
1 to 4 are independently repeated K time to obtain K
imputed data sets for estimation. For each imputed data
set, an estimate of the probability of Y = m is calculated
by P̂Ŷ=m = nm/n,m = (1, . . . ,M), where nm is the num-
ber of Ŷ = m observed in the imputed data set and n is
the sample size. Denote P̂Ŷ=m(k) as the estimate for the k-
th imputed data set. Using Rubin’s combining rules [10],
the final NNMI estimator is the average across K imputed
data sets as P̄Ŷ=m = (1/K)

∑K
k=1 P̂Ŷ=m(k). Its variance

can be estimated using the sum of a between-imputation
and within-imputation component as

SE
(
P̄Ŷ=m

)=
√√√√1
K

∑
k
s2
Ŷ=m

(k)+
(
1+ 1

K

)(
1

K−1

)∑
k

(
PŶ=m(k)−P̄Ŷ=m

)2,

where sŶ=m(k) is the standard error for the probability
of Ŷ = m in the k-th data set based on a Bernoulli
distribution for the event I(Ŷ = m).
We use R to perform all the simulations and data

analysis. Multinomial logistic regression models can be
done using the multinom function from the nnet package
of R. [17].

Results
Simulation study
Past literature [8, 11] has suggested that the use of
two working models for predicting missing values and
missingness probabilities in NNMI can induce a double
robustness property when Y is continuous. We surmise
that would hold as well when Y is categorical. This section
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presents a simulation study for assessing the perfor-
mance of the NNMI under some model misspecifications
for imputing a three-category nomial missing outcome
and evaluating the estimation of proportions of all three
categories.
For simplicity, we consider an incomplete trichoto-

mous outcome Y (i.e. M=3). The estimand of evalua-
tion is the probability P(Y = m), m = 1, 2, 3. The
methods compared include: fully observed (FO) analy-
sis, which is treated as the gold standard because the
analysis is applied before some of the Y s are removed;
complete-case (CC) analysis, which excludes cases with
missing Y ; the calibration estimator (CE); a parametric
MI (PMI), which imputes the missing values by taking
the predictive values from a multinomial logistic regres-
sion model for the missing values; and the proposed
NNMI approach. For the latter approach, the method
using multinomial logistic regressions for the outcome
model is denoted as NNMIMLR(NN ,ω1, . . . ;ωM), and
that using cumulative logistic regressions is denoted as
NNMICLR(NN ,ω1, . . . ;ωM). The previous work onNNMI
[8, 11] has demonstrated that bias increases while SD and
SE decreases whenNN increased. It is suggested that NN=
3 or 5 in general result in slightly lower MSEs. In the
simulation, NN = 5 is chosen for NNMI. Based on our
previous experience, ten-time MI is usually sufficient to
control for the uncertainty. In this article, we compared
one table using K=10 and K=50 (Table 1 and Additional
file 1: Table S12). The results shows no clear difference in
bias and slightly lower SD and SE using K=50.
Sample size n=400 and n=200 are considered for simula-

tion. For each tested scenario, the simulation is conducted
500 times. The criteria include the average estimate
(EST), the empirical standard deviation (SD), the aver-
age standard error (SE), and the coverage rate (CR) of
95% confidence intervals (CI), all of which are calcu-
lated from the 500 simulations. To assess the perfor-
mance of the simulations, Monte Carlo Errors (MCEs)
are calculated for each measure using the formulas
from White’s paper [19]. In FO and CC, the SEs are
calculated assuming a Bernoulli distribution for Ŷ =
m. In CE, the SE’s are calculated using bootstrap. In
PMI and NNMI, Rubin’s combining rules are used to
calculate SE’s.
Five observed covariates X = (X1, . . . ,X5) are inde-

pendently generated from U(−1, 1). The trichotomous
outcome, Y, is generated from a multinomial distribution
with probabilities as Pr(Y = 1|X) = g−1(X1 −X2 + 2X3 −
2X4 + 5X5),Pr(Y = 2|X) = g−1(2X1 − 2X2 + 3X3 −
3X4 + 1.5X5) and Pr(Y = 3|X) = 1 − Pr(Y = 1|X) − Pr
(Y = 2|X), where g is a link function. We consider both
the logit and probit link functions for g.
We assume that Y is independent of δ given X. That

is, the missingness probability of Y is only dependent

on X (i.e., MAR). Two models are considered for the
missingness indicator: Pr(δ = 1|X) = g−1(0.5X1 −
X2 + X3 − X4 + X5) (denoted M1); and Pr(δ = 1|X) =
g−1(0.5X1+2X2−4X3−2X4+2X5) (denotedM2). Again,
we consider both the logit and probit link functions for g.
In general, Model M1 generates missingness probabilities
that are mostly bounded away from 1 or 0 with a bell-
shape distribution, whereas Model M2 generates more
missingness probabilities that are close to 1 or 0 with a U-
shape distribution. That is, the missingness probabilities
generated from model M2 are more extreme than those
from model M1. In both schemes, the overall missingness
probability is approximately 50%.
The primary goal of the simulation is to assess the per-

formance of the NNMI various misspecifications of the
working models for Y and δ. In general, two types of
model misspecification for working models are tested: 1)
including a reduced set of predictors (i.e., X1,X2, and X3)
for working models; and 2) misspecified link functions
for working models. More specifically, we consider the
following five scenarios:

Scenario 1 Misspecified working model for Y only:
including only 3 predictors and using a correct link
function
Scenario 2 Misspecified working model for δ only:
including only 3 predictors and using a correct link
function
Scenario 3 Misspecified working model for Y only:
using an incorrect link function and including all 5
predictors
Scenario 4 Misspecified working model for δ only:
using an incorrect link function and including all 5
predictors
Scenario 5 Misspecified working models for both Y
and δ: using incorrect link functions for both and
including all 5 predictors

For example, we firstly simulate Y usingX1−X5 through
logit link and simulate δ using X1 − X5 through logit link.
The misspecification Scenario 1 fit a working model for Y
with same logit link function but using X1,X2 and X3 only,
and fit a working model for δ using same five covariates,
X1 − X5, and same logit link function.
We also assess the effects of the extremeness of miss-

ingness probabilities on the performance of the meth-
ods. This is motivated by the fact that CE, despite
being theoretically consistent if one of the working mod-
els is correctly specified, might have unstable results
when the propensity model generates extreme missing-
ness probabilities.
Another aim of the simulation is to investigate the

optimal strategy for specifying weights ωm’s. Previous
literature [8, 11] has suggested that a small, non-zero
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Table 1 Simulation results from probability estimation for Y, where Y is generated using a logit link function with five covariates, δ is
generated using a logit link function with not extreme missingness probabilities (M1) based on five covariates, N = 400

Pr(Y = 1) = 0.386 Pr(Y = 2) = 0.288

Method Est SD SE CR Est SD SE CR

FO 0.386 0.023 0.024 0.960 0.286 0.023 0.023 0.934

CC 0.439 0.034 0.035 0.674 0.340 0.034 0.033 0.670

Working models for Y : Five covariates with logit link

Working models for δ: Five covariates with logit link

CE 0.388 0.036 0.036 0.948 0.286 0.038 0.036 0.924

PMI 0.387 0.030 0.032 0.954 0.287 0.034 0.032 0.930

NNMIMLR(5,0.4,0.4;0.2) 0.387 0.032 0.033 0.952 0.288 0.036 0.033 0.936

NNMIMLR(5,0.1,0.7;0.2) 0.389 0.033 0.034 0.956 0.288 0.035 0.033 0.930

NNMIMLR(5,0.7,0.1;0.2) 0.386 0.032 0.033 0.956 0.290 0.036 0.034 0.926

NNMICLR(5,0.4,0.4;0.2) 0.385 0.032 0.033 0.948 0.294 0.036 0.034 0.916

NNMICLR(5,0.1,0.7;0.2) 0.381 0.032 0.033 0.944 0.295 0.037 0.034 0.928

NNMICLR(5,0.7,0.1;0.2) 0.390 0.032 0.033 0.950 0.294 0.037 0.034 0.936

Working models for Y : Three covariates with logit link
(misspecified scenario 1)

Working models for δ: Five covariates with logit link

CE 0.311 0.057 0.057 0.760 0.288 0.041 0.041 0.932

PMI 0.464 0.037 0.038 0.454 0.285 0.032 0.031 0.922

NNMIMLR(5,0.4,0.4;0.2) 0.410 0.036 0.039 0.932 0.290 0.035 0.033 0.926

NNMIMLR(5,0.1,0.7;0.2) 0.407 0.036 0.039 0.940 0.290 0.035 0.033 0.932

NNMIMLR(5,0.7,0.1;0.2) 0.408 0.035 0.039 0.930 0.291 0.035 0.033 0.928

NNMICLR(5,0.4,0.4;0.2) 0.415 0.036 0.038 0.896 0.292 0.034 0.033 0.940

NNMICLR(5,0.1,0.7;0.2) 0.412 0.036 0.039 0.916 0.292 0.035 0.033 0.934

NNMICLR(5,0.7,0.1;0.2) 0.413 0.035 0.039 0.926 0.291 0.035 0.034 0.954

Working models for Y : Five covariates with logit link

Working models for δ: Three covariates with logit link
(misspecified scenario 2)

CE 0.389 0.032 0.033 0.954 0.285 0.033 0.032 0.942

PMI 0.387 0.030 0.032 0.954 0.287 0.034 0.032 0.930

NNMIMLR(5,0.4,0.4;0.2) 0.393 0.032 0.033 0.962 0.292 0.035 0.033 0.936

NNMIMLR(5,0.1,0.7;0.2) 0.402 0.034 0.035 0.936 0.289 0.035 0.033 0.926

NNMIMLR(5,0.7,0.1;0.2) 0.389 0.031 0.033 0.960 0.297 0.036 0.034 0.936

NNMICLR(5,0.4,0.4;0.2) 0.387 0.031 0.032 0.958 0.298 0.035 0.033 0.936

NNMICLR(5,0.1,0.7;0.2) 0.382 0.031 0.033 0.956 0.298 0.035 0.034 0.940

NNMICLR(5,0.7,0.1;0.2) 0.392 0.031 0.033 0.954 0.302 0.035 0.034 0.920

Est: Estimates of probabilities; SD: Empirical standard deviation; SE: Estimate of standard error; CR: Coverage rate of 95% confidence intervals; FO: fully observed; CC: Complete
Cases; CE: Calibration estimator; PMI: Parametric Multiple Imputation; NNMIMLR(NN,ω1,ω2;ω3): the NNMI method using Multinomial Logistic Regressions, NN is the number
of nearest neighbors and weights are ω1,ω2, and ω3; NNMICLR : the NNMI method using Cumulative Logistic Regressions; K = 10 imputed datasets are used for PMI and NNMI
methods

weight is often necessary for the score from the miss-
ingness probability model if Y is continuous. Because
M = 3 here in our setting, we consider several combina-
tions for (ω1,ω2;ω3) because these weights might reflect

the applicant’s belief on the validity of the three work-
ing models. Our investigation results (not shown) indicate
that NNMI performs well when the weight for the score
from the missingness probability model (ω3) is non-zero,
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consistent with conclusions from [8, 11]. In addition, pos-
itive weight(s) for the scores from the working model(s)
for predicting missing values (ω1 and ω2) are necessary
when only the working model for the missingness proba-
bility is misspecified. Therefore, the following simulation
results present the results from fixing ω3 = 0.2 and differ-
ent combinations for ω1 and ω2: (0.4,0.4;0.2), (0.7,0.1;0.2),
and (0.1,0.7;0.2).
For brevity, we only present and illustrate the results

from n = 400. With smaller sample size of 200 observa-
tions (See Additional file 1), SEs from all methods slightly
increase as expected, and the major comparative pattern
does not vary dramatically. Most of the MCEs are less
than 5%.
Table 1 summarizes the results when logit link functions

are used to generate Y and δ. In addition, the missing-
ness probabilities are generated by Model M1 and do not
have many extreme values. As expected, CC estimates
have substantial biases and the coverage rates are low.
When the working models for Y and δ are both correctly
specified, the bias is negligible for CE. PMI yields a good
performance as well. NNMIMLR produces slightly larger
biases yet smaller SD compared with CE. NNMICLR pro-
duce slightly worse yet comparable results. When only the
working model for Y is misspecified with 3 covariates,
both NNMI methods are superior to other methods in
term of bias and coverage rate, apparently for estimating
Pr(Y = 1). In this case, CE estimates have much larger
biases and variations, as well as low CRs. PMI breaks
down dramatically due to its sole reliance on the working
model predicting Y. The methods are more or less similar
for estimating Pr(Y = 2). When only the working model
for δ is misspecified with 3 covariates, CE performs well.
Both NNMI produce mostly comparable results with CE.
Table 2 presents the results when logit link functions are

used to generate Y and δ. Here more extreme missing-
ness probabilities are generated by Model M2. Compared
with Table 1, the performances of estimators degrade in
general due to the fact that these extreme missingness
probabilities are more difficult to estimate and thus ren-
der more instability to the estimates. When both working
models are correctly specified, CE produces little bias yet
extremely large SD and SE. Both NNMI methods have
small biases which lead to lower-than-nominal CRs. How-
ever, their variations (SD) and the estimates (SE) are much
smaller and more reasonable compared with CE. Between
the two approaches, NNMICLR is somewhat inferior to
NNMIMLR. When only the working model for Y is mis-
specified with 3 covariates, CE estimates become largely
biased for estimating Pr(Y = 1). In this case, however,
both NNMI methods produce smaller biases and much
lower SDs and SEs. When only the working model for δ

is misspecified with 3 covariates, interestingly CE works
better than NNMI methods. We surmise this is due to

the fact that, although misspecified, the working propen-
sity model for CE avoids most of the extreme missingness
probabilities. In other words, a correctly specified working
propensity model might do more harm (i.e., brings more
variation to the estimates) to CE compared with NNMI if
the missingness probabilities are more extreme.
Tables 3, 4 and 5 include results when the working mod-

els use misspecified link functions, when the missingness
probabilities are not extreme. In Table 3, a probit link
function is used to generate Y and a logit link is used to
generate δ. When the link function for the working out-
come model is misspecified as a logit function, NNMI
performs slightly better than CE and PMI (more appar-
ently for estimating Pr(Y = 2) with smaller biases and
SDs. In Table 4, a logit link function is used to generate
Y and a probit link function is used to generate δ. When
the link function for the working propensity model is mis-
specified as a probit function, NNMI methods produce
slightly larger biases than CE and PMI, yet with smaller
SDs and SEs, compared with CE and PMI. In Table 5, pro-
bit link functions are used to generate both Y and δ. When
both working models employ logit link functions, CE pro-
duces good CRs yet relatively large SDs and SEs. PMI
degrades with larger biases and low CRs, more apparently
for estimating Pr(Y = 2). NNMI produces more robust
results with smaller biases, lower SDs and SEs, and good
CRs. For data with more extreme missingness probabili-
ties (See Additional file 1), the comparative pattern remain
similar but all methods perform worse.
In summary, the NNMI strategy can well accommodate

misspecified working models when missingness probabil-
ities are not extreme. PMI can break down if its working
outcome model is misspecified. When missingness prob-
abilities for some observations are extreme, CE estimates
tend to have considerably higher SDs and SEs, while
those from NNMI tend to be more stable. Between the
two NNMI strategies, NNMI using multinomial logis-
tic/probit regression models performs better than NNMI
using cumulative logistic/probit regressions. This might
be due to the fact that the data-generating models for Y in
the simulation follow the multinomial regression scheme.
In addition, there exists no apparent effect of specifying
different weights for ω1 and ω2, as long as ω3 > 0.

Data example
We illustrate the proposed approach using an analysis of
2013 Behavioral Risk Factor Surveillance System (BRFSS)
survey sample data [3]. Established in 1984, BRFSS is
a nation-wide system of health-related telephone sur-
veys that annually collects state data about U.S. residents
regarding their health-related risk and preventive behav-
iors, health conditions, and information about health
services. In this analysis, we are interested in the satis-
faction level with health care received for the Hispanic
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Table 2 Simulation results from probability estimation for Y, where Y is generated using a logit link function with five covariates, δ is
generated using a logit link function with extreme missingness probabilities (M2) based on five covariates, N = 400

Pr(Y = 1)=0.386 Pr(Y = 2)=0.288

Method Est SD SE CR Est SD SE CR

FO 0.386 0.023 0.024 0.960 0.286 0.023 0.023 0.934

CC 0.425 0.031 0.033 0.802 0.374 0.033 0.033 0.250

Working models for Y : Five covariates with logit link

Working models for δ: Five covariates with logit link

CE 0.378 0.102 0.080 0.946 0.288 0.108 0.076 0.902

PMI 0.385 0.034 0.036 0.950 0.288 0.036 0.033 0.922

NNMIMLR(5,0.4,0.4;0.2) 0.389 0.039 0.040 0.946 0.297 0.043 0.040 0.906

NNMIMLR(5,0.1,0.7;0.2) 0.399 0.042 0.045 0.942 0.292 0.041 0.039 0.918

NNMIMLR(5,0.7,0.1;0.2) 0.385 0.038 0.039 0.936 0.302 0.044 0.042 0.916

NNMICLR(5,0.4,0.4;0.2) 0.384 0.037 0.038 0.938 0.304 0.042 0.040 0.918

NNMICLR(5,0.1,0.7;0.2) 0.372 0.038 0.039 0.926 0.307 0.043 0.042 0.918

NNMICLR(5,0.7,0.1;0.2) 0.395 0.038 0.039 0.944 0.305 0.043 0.041 0.908

Working models for Y : Three covariates with logit link
(misspecified scenario 1)

Working models for δ: Five covariates with logit link

CE 0.302 0.234 0.184 0.946 0.287 0.117 0.084 0.910

PMI 0.495 0.039 0.042 0.258 0.288 0.032 0.031 0.932

NNMIMLR(5,0.4,0.4;0.2) 0.436 0.051 0.053 0.852 0.295 0.042 0.040 0.914

NNMIMLR(5,0.1,0.7;0.2) 0.431 0.052 0.054 0.878 0.293 0.041 0.040 0.932

NNMIMLR(5,0.7,0.1;0.2) 0.433 0.050 0.053 0.858 0.296 0.042 0.041 0.924

NNMICLR(5,0.4,0.4;0.2) 0.440 0.047 0.049 0.806 0.297 0.040 0.039 0.924

NNMICLR(5,0.1,0.7;0.2) 0.429 0.046 0.048 0.852 0.299 0.042 0.039 0.926

NNMICLR(5,0.7,0.1;0.2) 0.441 0.050 0.051 0.806 0.297 0.041 0.040 0.920

Working models for Y : Five covariates with logit link

Working models for δ: Three covariates with logit link
(misspecified scenario 2)

CE 0.386 0.050 0.048 0.960 0.286 0.043 0.040 0.894

PMI 0.385 0.034 0.036 0.950 0.288 0.036 0.033 0.922

NNMIMLR(5,0.4,0.4;0.2) 0.398 0.038 0.040 0.952 0.301 0.041 0.039 0.906

NNMIMLR(5,0.1,0.7;0.2) 0.426 0.042 0.045 0.858 0.294 0.039 0.037 0.922

NNMIMLR(5,0.7,0.1;0.2) 0.392 0.037 0.038 0.942 0.312 0.043 0.040 0.882

NNMICLR(5,0.4,0.4;0.2) 0.390 0.035 0.038 0.954 0.307 0.040 0.039 0.912

NNMICLR(5,0.1,0.7;0.2) 0.377 0.037 0.039 0.940 0.307 0.041 0.040 0.924

NNMICLR(5,0.7,0.1;0.2) 0.401 0.036 0.037 0.938 0.313 0.041 0.039 0.912

Est: Estimates of probabilities; SD: Empirical standard deviation; SE: Estimate of standard error; CR: Coverage rate of 95% confidence intervals; FO: fully observed; CC: Complete
Cases; CE: Calibration estimator; PMI: Parametric Multiple Imputation; NNMIMLR(NN,ω1,ω2;ω3): the NNMI method using Multinomial Logistic Regressions, NN is the number
of nearest neighbors and weights are ω1,ω2, and ω3; NNMICLR : the NNMI method using Cumulative Logistic Regressions; K = 10 imputed datasets are used for PMI and NNMI
methods

population who were unable to work and had annual
household income less than 15000 dollars. From the
public-use BRFSS data system, a subset of 1430 partici-
pants are selected with fully-observed data of potentially

associated covariates. More specifically, this question, the
outcome of interest Y, consists of 3 categories: 1, Very
satisfied (n=624); 2, Somewhat satisfied (n=357); and 3,
Not at all satisfied (n=86). To demonstrated the method,
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Table 3 Simulation results from probability estimation for Y, where Y is generated using a probit link function with five covariates, δ is
generated using a logit link function with not extreme missingness probabilities (M1) based on five covariates, N = 400

Pr(Y = 1)=0.297 Pr(Y = 2)=0.250

Method Est SD SE CR Est SD SE CR

FO 0.298 0.023 0.023 0.952 0.249 0.021 0.022 0.974

CC 0.322 0.032 0.033 0.910 0.303 0.033 0.032 0.606

Working models for Y : Five covariates with logit link
(misspecified scenario 3)

Working models for δ: Five covariates with logit link

CE 0.291 0.036 0.037 0.954 0.230 0.031 0.032 0.900

PMI 0.307 0.033 0.033 0.942 0.271 0.034 0.033 0.902

NNMIMLR(5,0.4,0.4;0.2) 0.301 0.033 0.033 0.940 0.260 0.031 0.032 0.942

NNMIMLR(5,0.1,0.7;0.2) 0.302 0.034 0.034 0.946 0.259 0.032 0.032 0.936

NNMIMLR(5,0.7,0.1;0.2) 0.301 0.032 0.033 0.944 0.260 0.033 0.032 0.930

NNMICLR(5,0.4,0.4;0.2) 0.299 0.033 0.033 0.936 0.263 0.032 0.033 0.936

NNMICLR(5,0.1,0.7;0.2) 0.297 0.033 0.033 0.930 0.263 0.033 0.033 0.926

NNMICLR(5,0.7,0.1;0.2) 0.302 0.032 0.034 0.948 0.261 0.032 0.032 0.942

Est: Estimates of probabilities; SD: Empirical standard deviation; SE: Estimate of standard error; CR: Coverage rate of 95% confidence intervals; FO: fully observed; CC: Complete
Cases; CE: Calibration estimator; PMI: Parametric Multiple Imputation; NNMIMLR(NN,ω1,ω2;ω3): the NNMI method using Multinomial Logistic Regressions, NN is the number
of nearest neighbors and weights are ω1,ω2, and ω3; NNMICLR : the NNMI method using Cumulative Logistic Regressions; K = 10 imputed datasets are used for PMI and NNMI
methods

we considered to treat those participants who answered
“Don’t know/not sure”, “Not applicable”, “Refused”, and
those not asked or missing as missing data (δ=0, n =
363). In reality those who answered “Don’t know/not
sure”, “Not applicable”, “Refused” are not necessary to

be missing. In this example, the overall missingness rate
is 25.4%.
We conduct some exploratory analyses to select predic-

tors for this outcome and the missingness indicator (δ)
using a multinomial logistic regression model and binary

Table 4 Simulation results from probability estimation for Y, where Y is generated using a logit link function with five covariates, δ is
generated using a probit link function with not extreme missingness probabilities (M1) based on five covariates, N = 400

Pr(Y = 1)=0.386 Pr(Y = 2)=0.288

Method Est SD SE CR Est SD SE CR

FO 0.386 0.023 0.024 0.960 0.286 0.023 0.023 0.934

CC 0.456 0.033 0.035 0.512 0.357 0.033 0.034 0.472

Working models for Y : Five covariates with logit link

Working models for δ: Five covariates with logit link
(misspecified scenario 4)

CE 0.386 0.056 0.051 0.944 0.287 0.060 0.051 0.910

PMI 0.388 0.033 0.034 0.950 0.288 0.035 0.034 0.926

NNMIMLR(5,0.4,0.4;0.2) 0.391 0.036 0.038 0.954 0.294 0.040 0.039 0.942

NNMIMLR(5,0.1,0.7;0.2) 0.397 0.038 0.041 0.948 0.291 0.039 0.038 0.928

NNMIMLR(5,0.7,0.1;0.2) 0.388 0.035 0.037 0.966 0.299 0.042 0.041 0.928

NNMICLR(5,0.4,0.4;0.2) 0.387 0.035 0.036 0.948 0.303 0.040 0.041 0.928

NNMICLR(5,0.1,0.7;0.2) 0.379 0.035 0.036 0.938 0.304 0.040 0.041 0.930

NNMICLR(5,0.7,0.1;0.2) 0.395 0.036 0.037 0.956 0.302 0.041 0.040 0.924

Est: Estimates of probabilities; SD: Empirical standard deviation; SE: Estimate of standard error; CR: Coverage rate of 95% confidence intervals; FO: fully observed; CC: Complete
Cases; CE: Calibration estimator; PMI: Parametric Multiple Imputation; NNMIMLR(NN,ω1,ω2;ω3): the NNMI method using Multinomial Logistic Regressions, NN is the number
of nearest neighbors and weights are ω1,ω2, and ω3; NNMICLR : the NNMI method using Cumulative Logistic Regressions; K = 10 imputed datasets are used for PMI and NNMI
methods
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Table 5 Simulation results from probability estimation for Y, where Y is generated using a probit link function with five covariates, δ is
generated using a probit link function with not extreme missingness probabilities (M1) based on five covariates, N = 400

Pr(Y = 1)=0.297 Pr(Y = 2)=0.250

Method Est SD SE CR Est SD SE CR

FO 0.298 0.023 0.023 0.952 0.249 0.021 0.022 0.974

CC 0.328 0.032 0.033 0.862 0.323 0.033 0.033 0.406

Working models for Y : Five covariates with logit link
(misspecified scenario 5)

Working models for δ: Five covariates with logit link
(misspecified scenario 5)

CE 0.295 0.068 0.058 0.956 0.218 0.049 0.051 0.926

PMI 0.316 0.038 0.038 0.912 0.294 0.038 0.038 0.800

NNMIMLR(5,0.4,0.4;0.2) 0.310 0.039 0.040 0.940 0.275 0.036 0.039 0.930

NNMIMLR(5,0.1,0.7;0.2) 0.314 0.041 0.041 0.934 0.274 0.037 0.038 0.924

NNMIMLR(5,0.7,0.1;0.2) 0.309 0.040 0.040 0.924 0.276 0.038 0.038 0.914

NNMICLR(5,0.4,0.4;0.2) 0.308 0.040 0.040 0.936 0.279 0.037 0.038 0.924

NNMICLR(5,0.1,0.7;0.2) 0.305 0.039 0.040 0.930 0.279 0.037 0.039 0.914

NNMICLR(5,0.7,0.1;0.2) 0.310 0.040 0.040 0.920 0.276 0.037 0.038 0.924

Est: Estimates of probabilities; SD: Empirical standard deviation; SE: Estimate of standard error; CR: Coverage rate of 95% confidence intervals; FO: fully observed; CC: Complete
Cases; CE: Calibration estimator; PMI: Parametric Multiple Imputation; NNMIMLR(NN,ω1,ω2;ω3): the NNMI method using Multinomial Logistic Regressions, NN is the number
of nearest neighbors and weights are ω1,ω2, and ω3; NNMICLR : the NNMI method using Cumulative Logistic Regressions; K = 10 imputed datasets are used for PMI and NNMI
methods

logistic regression model, respectively. From these analy-
ses, the satisfaction levels of health care received is shown
to be significantly associated with gender, general health,
education level, having health care coverage, and having
delayed getting medical care. These five covariates are
used to fit a multinomial logistic regressionmodel for pre-
dicting the satisfaction levels of health care. On the other
hand, the missingness indicator is significantly associated
with general health, education level, having health care
coverage, and having delayed getting medical care. The
four variables are included in a logistic regression model
for predicting the missingness probability.
Table 6 shows the results by applying different missing

data methods for estimating the marginal distribution of
Y. For simplicity, we only list the estimates for the cate-
gory of “Very satisfied” and “Somewhat satisfied”. Com-
pared with CC, the estimates of CE, PMI and NNMI all
give lower probabilities for “Very satisfied” and higher
probabilities for “Somewhat satisfied”. It is probable that
participants who received excellent health care are more
likely to respond to this question, and thus CC overesti-
mates the probability for “Very satisfied” and underesti-
mates those for the remaining groups. The estimates from
CE, PMI, and NNMI are largely similar, and thus they
provide some robustness check against potential model
misspecifications.
Note that this simple example is merely used to illus-

trate the proposed statistical methodology, and the results

should not be considered for subject-matter interests.
More in-depth analyses targeted for the latter purpose
should follow the guidelines provided in [3].

Discussion
In this article, we investigate a nearest-neighbour mul-
tiple imputation procedure for missing categorical data.
The method applies predictive working models to identify
observed cases in the neighbors for each missing obser-
vation. The use of information from two working models,
one for Y and one for δ, might result in a double robust-
ness property, which induces consistent estimates even if
one of the two working models is misspecified. We use
two types of modeling strategies for Y with more than
two categories, one multinomial logistic/probit regres-
sion model and the other is based on m − 1 cumulative
logistic/probit regression models. The results show some
but not significant differences between the two strate-
gies, indicating the flexibility of NNMI in terms of the
modeling choices. The simulation results also suggest that
the proposed approach in general yield satisfactory per-
formances. The setup of the weighted sum of predictive
scores would facilitate some sensitivity analyses.
In simulation, we observe that the correctness of the

working model for predicting missingness probabilities
might bemore important than that for the outcomemodel
for categorical Y. This implies that a non-zero weight
(ω3) should be applied to the predictive scores from the
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Table 6 2013 BRFSS Survey Data: Estimation for the probabilities of satisfaction with health care received for the Hispanic participants
who were unable to work with annual household income less than 15000 dollars, N=1430 (overall missing rate=25.4%)

Pr(Y =Very Satisfied) Pr(Y =Somewhat Satisfied)

Method Est (SE) 95% CI Est (SE) 95% CI

CC 0.585 (0.015) (0.555, 0.614) 0.335 (0.014) (0.306, 0.363)

CE 0.553 (0.016) (0.521, 0.584) 0.349 (0.016) (0.319, 0.380)

PMI 0.552 (0.014) (0.524, 0.581) 0.345 (0.014) (0.318, 0.372)

NNMIMLR(5,0.4,0.4;0.2) 0.560 (0.019) (0.522, 0.598) 0.353 (0.020) (0.314, 0.392)

NNMIMLR(5,0.1,0.7;0.2) 0.556 (0.019) (0.519, 0.592) 0.351 (0.021) (0.310, 0.391)

NNMIMLR(5,0.7,0.1;0.2) 0.550 (0.022) (0.507, 0.594) 0.359 (0.019) (0.322, 0.396)

NNMICLR(5,0.4,0.4;0.2) 0.547 (0.021) (0.506, 0.588) 0.358 (0.017) (0.324, 0.392)

NNMICLR(5,0.1,0.7;0.2) 0.559 (0.016) (0.528, 0.590) 0.352 (0.016) (0.320, 0.383)

NNMICLR(5,0.7,0.1;0.2) 0.555 (0.018) (0.520, 0.590) 0.350 (0.019) (0.314, 0.387)

Est: Estimates of probabilities; SE: Estimate of standard error; 95%CI: 95% confidence interval
X: covariates as gender, general health, education level, having health care coverage, and having delayed getting medical care, that are used in working models
CC: Complete Cases; CE: Calibration estimator; PMI: Parametric Multiple Imputation; NNMIMLR(NN,ω1,ω2;ω3): denotes the NNMI method using Multinomial Logistic
Regressions, NN is the number of nearest neighbors and weights are ω1,ω2, and ω3; NNMICLR : the NNMI method using Cumulative Logistic Regressions; K = 10 imputed
datasets are used for PMI and NNMI methods

working model for missingness probabilities. Therefore, it
might bemore important to seek goodmodels for predict-
ing missingness probabilities for categorical Y, compared
with continuous Y.
The CE results can be unstable with high SEs when

missingness rates are relatively high. This is because when
the number of complete cases is small, the working model
fitted for Y might not be accurate and so would negatively
affect CE. In contrast, the NNMI estimates tend to be
more robust, possibly due to less reliance on the working
models for Y than CE and instead using the nearest-
neighbour approach. In addition, CE performs badly with
high SDs when the missingness probabilities were close to
0 or 1, while NNMI suffers less from this problem.
Furthermore, whether the working models, especially

the one for the outcome, are correctly specified does not
substantially impact NNMI if proper weights are speci-
fied. However, CE is more sensitive to the specification
of the working model for the categorical variable with
missing values. Among all tested specifications, the sim-
ulation results suggest that a multinomial logistic/probit
regression for predicting missing values and a non-zero
weight on the missingness probability predictive score,
e.g.NNMIMLR(0.4, 0.4; 0.2), are preferred to impute cate-
gorical data with three or more levels in the absence of
prior knowledge on the working models.
This study does not compare results using different NN

(number of donors). Further research can be conducted
for selecting the optimal size of the nearest neighborhood.
Another extension is to apply NNMI to impute missing
continuous and categorical data simultaneously. Also, the
next step can assess the estimation of regression coeffi-
cients as well as the performance on imputing missing
categorical covariates.

We have demonstrated that the proposed NNMI
approach can be applied on missing at random categorical
outcome variables with more than two levels for esti-
mating the marginal mean, which broadly exist in public
health studies, e.g., health status, health disparity and
quality of life. For example, in a study of caries-risk [1],
97 out of 577 subjects dropped out during the recruiting
procedure. Among the dropouts, 82 did not attend the
examination and 15 did not completely fill out the ques-
tionnaire. It was doubtful that the missing mechanism for
the 82 subjects was Missing Complete at Random, since
subjects with caries were less likely to attend the exami-
nation. If the missingness was MAR, then CC would be
valid for estimating the association with caries risk in
their Table 3 but invalid for estimating the proportions of
caries risk levels in their Table 2. Instead of using complete
cases, the proposed NNMI approach could be applied to
impute the caries risk level for the 82 subjects. Therefore,
after the imputed data is obtained, the sample size could
increase to 562, and it could help estimate the distribution
of the caries risk level (low, medium, or high). Considering
that the missing rate is not high (14.6%), 10-timeMI could
be sufficient to perform the imputation– according to a
rule of thumb by Rubin [13]– with a multinomial logistic
regression for predicting the missing values and a logistic
regression model for predicting the missingness probabil-
ity with non-zero weights, e.g., (0.4,0.4;0.2). The number
of donor could be chosen as 5, based on previous studies
[8, 11]. For studies with a higher missing rate, the num-
ber of multiple imputations might need to increase to the
missing rate in order to achieve both reliable point esi-
mates and reliable standard errors, according to a rule of
thumb described by Hippel [18]. Therefore, the proposed
approach is applicable for researchers with an interest in
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assessing the distribution of a categorical outcome with
MAR values.

Conclusions
In conclusion, the proposed multiple imputation method
is a reasonable approach to dealing with missing cate-
gorical outcome with more than two levels for evaluating
the distribution of the outcome. The NNMI approach can
work better than PMI when the working model for miss-
ing outcome is wrong. When the missing probabilities
are extreme, NNMI performs more stably than CE, which
results in relatively larger SE.

Additional file

Additional file 1: Supplementary materials for ‘A Nonparametric Multiple
Imputation Approach for Missing Categorical Data’. Tables with the
additional simulation results. (PDF 103 kb)
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