
Research Article
EmuStack: An OpenStack-Based DTN Network Emulation
Platform (Extended Version)

Haifeng Li, Huachun Zhou, Hongke Zhang, Bohao Feng, and Wenfeng Shi

School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China

Correspondence should be addressed to Haifeng Li; 13111026@bjtu.edu.cn

Received 21 August 2016; Accepted 25 October 2016

Academic Editor: Xiaohong Jiang

Copyright © 2016 Haifeng Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the advancement of computing and network virtualization technology, the networking research community shows
great interest in network emulation. Compared with network simulation, network emulation can provide more relevant and
comprehensive details. In this paper, EmuStack, a large-scale real-time emulation platform for Delay Tolerant Network (DTN),
is proposed. EmuStack aims at empowering network emulation to become as simple as network simulation. Based on OpenStack,
distributed synchronous emulation modules are developed to enable EmuStack to implement synchronous and dynamic, precise,
and real-time network emulation. Meanwhile, the lightweight approach of using Docker container technology and network
namespaces allows EmuStack to support a (up to hundreds of nodes) large-scale topology with only several physical nodes. In
addition, EmuStack integrates the Linux Traffic Control (TC) tools with OpenStack for managing and emulating the virtual link
characteristics which include variable bandwidth, delay, loss, jitter, reordering, and duplication. Finally, experiences with our initial
implementation suggest the ability to run and debug experimental network protocol in real time. EmuStack environment would
bring qualitative change in network research works.

1. Introduction

Thecurrent Internet is based on a number of key assumptions
on communication system, including a long-term and stable
end-to-end path, small packet loss probability, and short
round-trip time. However, many challenging networks (such
as sensor/actuator networks and ad hoc networks) cannot
satisfy one or more of those assumptions. Excited enough,
there have been increasing efforts to support these challeng-
ing networks on some special delay and interrupt scenes [1, 2].
In particular, in order to adapt Internet to these challenging
environments, Fall proposes Delay Tolerant Networks (DTN)
[3]. The key idea of DTN is custody transfer [4] which
adopts the hop-by-hop reliable delivery to guarantee the end-
to-end reliability. DTN was initially invented for the deep
space communication, while currently it has been gradually
applied in wireless sensor networks, ad hoc networks, and
even satellite networks.

In DTN areas, related research works such as routing and
congestion control strategies have obtained many achieve-
ments [5, 6] along with a number of DTN implementations

such as DTN2, ION, and IBRDTN [7–9]. However, many
problems [10, 11] such as security and contact plan design
have not been resolved yet.

In order to further study DTN architecture, many exper-
imental platforms have been designed. Koutsogiannis imple-
ments a testbed to evaluate space-suitable DTN architec-
tures and protocols with many deep space communication
scenarios [12]. The DTN testbed can support about ten
nodes experimental topology. Based on the generic-purpose
wireless network bench, Beuran designs a testbed named
QOMB [13]. QOMB has a good support for emulating a
large-scale mobile networks, but it wastes lots of hardware
resources since none of virtual computing technology is
employed. Thus, QOMB lacks a monitoring system; the
experimental fidelity cannot be guaranteed especially in the
large-scale scene. Komnios introduces the SPICE testbed [14]
for researching space and satellite communication. SPICE is
equipped with special hardware and it can accurately emu-
late the link characteristics between the space and ground
stations. However, due to the introduction of professional
hardware, SPICE is hard to be imitated by other researchers.

Hindawi Publishing Corporation
Mobile Information Systems
Volume 2016, Article ID 6540207, 15 pages
http://dx.doi.org/10.1155/2016/6540207

2 Mobile Information Systems

Meanwhile, without using network virtualization technology,
the emulation topology of SPICE is fixed and will be changed
difficultly.

With the advancement of network and compute vir-
tualization technology, it becomes much easier to design
and implement a scalable and flexible emulation platform
than before. In this work, EmuStack, a network emulation
platform for DTN, is introduced. Our design objective is
enabling EmuStack to support a large-scale, real-time, and
distributed network emulation and provide synchronous
and dynamical precise management for topology and link
characteristics. For example, Docker container technology
[15] is utilized as the compute virtualization technique into
efficiently virtualize several physical emulation nodes into
hundreds of virtual emulation nodes. By integrating Linux
Traffic Control (TC) utility [16] with OpenStack [17], EmuS-
tack can achieve more fine-grained control of the virtual
topology and link characteristics. Meanwhile, OpenStack is
composed of various independent modules; thus it possesses
a good support for the development of the other functionali-
ties in EmuStack. To improve the performance of EmuStack,
many OpenStack subprojects are adopted. An example is
Ceilometer [18] which is developed lightly and integrated into
EmuStack for ensuring experimental fidelity andmonitoring,
alarming, and collecting relevant data.

As we have a deeper insight into our initial work [19],
in this paper, we further present details of controlling link
characteristics and analyze the reason for link rate-limiting
difference between the Ethernet device of virtual emulation
node and the TAP device of physical emulation node.
Moreover, we further introduce EmuStack scalability and
performance and discuss their main factors. Additionally, we
provide one more DTN experiment to better evaluate and
demonstrate the performance of EmuStack.

The remainder of this paper is organized as follows.
In Section 2 we introduce the related work. In Sections 3
and 4, we present architectural design, implementation of
EmuStack and thoroughly discuss performance of EmuStack.
Then we reproduce two published classic DTN experiments
and compare and analyze the key experimental results in
Section 5. Finally, in Section 6, we conclude this paper along
with future works.

2. Related Work

Recently, with the advancement of container virtualiza-
tion technology, network researchers show their interest in
employing container to construct their experimental plat-
forms to support their large-scale topology experiments.
Emulab [20] is one of the well-known testbeds using the
container virtualization in Linux. Due to the efficiency of
container, Emulab possesses a good support for scalability.
Although these technologies introduced in Emulab are not
the latest now, the design philosophies are still helpful for
current researchers to design large-scale test bed. Addition-
ally, Lantz et al. [21] designed Mininet based on container
virtualization technique including processes and network
namespaces technique. Mininet can support SDN and run
on a single computer. Handigol et al. [22] further improved

Mininet performance with enhancements to resource provi-
sioning, isolation, and monitoring system. Besides, Handigol
replicated a number of previously published experimental
results and proved that Linux Container (LXC) [23] tech-
nology is not only lightweight but also possesses a good
fidelity and performance. In order to perform an in-depth
performance evaluation of LXC,Xavier et al. [24] conducted a
number of experiments to evaluate various compute virtuali-
zation technologies andfinally proved that LXCvirtualization
has a near-native performance on CPU, memory, disk, and
network. Therefore, in EmuStack, we employ Docker con-
tainer (based on LXC) as compute virtualization technology.

OpenStack is an open-source reference framework
mainly for developing private and public cloud, which con-
sists of loosely-coupled components that can control hard-
ware pools of compute, network, and storage resources.
OpenStack is composed of many different independent
modules, and anyone can add additional components into
OpenStack tomeet their requirements.Therefore, OpenStack
is definitely a good choice for developing emulation platform.

3. Architectural Design

This section describes the overall architecture design of
EmuStack from the perspective of hardware and software.

3.1. Hardware. Figure 1 shows EmuStack hardware structure
(where gray rectangles stand for primary services installed).
EmuStack hardware can be composed of only several physical
nodes (general-purpose computer). There are two types of
physical nodes: network emulator and physical emulation
nodes. Network emulator is the core hardware which is a
physical node equipped with multiple NICs in EmuStack and
it plays multiple roles. It is not only an OpenStack controller
node which manages compute and network resources and an
OpenStack network node which manages virtual emulation
networks, but also an emulation orchestratorwhich is respon-
sible for creating emulation parameters and orchestrating the
whole resources of CPU, memory, and network. In addition,
physical emulation node is a compute node of OpenStack,
which hosts all virtual emulation nodes and executes the
emulation control commands from network emulator.

In EmuStack, there are two types of physical networks,
namely, the management network and emulation network.
Management network carries management traffic which con-
sists of lightweight control information and usually does not
become the determinant of performance. Emulation network
transfers emulation data which consumes much bandwidth
and would vary greatly with different DTN protocol exper-
iments. Therefore, the physical emulation network possibly
becomes the main limitation of EmuStack. For several physi-
cal nodes systemof EmuStack, adopting the star structure can
solve the emulation data traffic bottleneck problem, as shown
in the bottom right of Figure 1. In this structure, all emulation
NICs of physical emulation nodes are directly connected to
those of network emulator. NICs of network emulator are
attached to an Open vSwitch bridge, where the “internal”
device named after itself is assigned an IP address belonging
to the emulation network. In practice, this physical emulation

Mobile Information Systems 3

Management network

Emulation network

Emulation nodes Network emulator Emulation nodes

Switch

MYSQL server
RABBITMQ server

Nova API

Nova conductor

Neutron server
Glance API

Glance registry

Controller node

Emulation node

Network emulator

Emulation physical topology

Network node
Compute nodeCompute node

Nova-Compute

Compute node

Open vSwitch agent Open vSwitch agent

Compute node Keystone-all

Nova-scheduler

Neutron-l3 agent
Neutron-dhcp

Netem agent Netem agent

Nova-Compute Nova-Compute
Open vSwitch agent

Netem agent

Nova-Compute
Open vSwitch agent

Netem agent

· · ·
· · ·agent

Neutron-Netem
service

Figure 1: EmuStack hardware structure.

network structure can meet most requirements of our DTN
research works; however if researchers want to construct the
EmuStack system that consists of dozens of physical nodes,
this structure would become infeasible since network emu-
lator would not have enough NICs to directly connect to all
the emulation NICs of physical emulation nodes. For system
with dozens of physical nodes, physical emulation network
can employ several physical switches to carry the emulation
data as management network does. In this scheme, as the
first step, we need to determine which one of physical NICs
on network emulator (and physical emulation nodes) will
carry management traffic.Then we connect all the remaining
NICs of network emulator (and physical emulation nodes)
to those physical switches. Those physical switches ports
will need to be specially configured to allow trunked or
general traffic. Finally, for EmuStack system with hundreds
of physical nodes, as a part of the future work, we will
extend network emulator to support distributed processing
and enable multiple network emulators to exist in EmuStack.

3.2. Software. Figure 2 describes EmuStack software synopsis
involving network emulator, physical emulation node, and
virtual emulation node. As the key component of EmuStack,
network emulator carries many open-source services and
customized service extensions. Nova service and the core
plugin in Neutron service is attended to initialize virtual
emulation nodes and virtual emulation network, respectively.
Additionally, these services also have the ability to create,
modify, and delete virtual emulation nodes and virtual

emulation network. Neutron-Netem service is responsible for
generating experimental parameters and data to dynamically
control experimental program, topologies, and link charac-
teristics.Meanwhile, in order to provide sufficient fidelity and
reduce experimental complexity at the same time, we adopt
Telemetry Management (Ceilometer) [18] service to monitor
and collect hardware resources and experimental data. In
addition, Keystone [25], Horizon [26], and Glance [27] are
utilized to provide the support for managing authentication,
authorization, service catalog, web interface, and image
services. Besides, as a part of the future work, on the basis of
OpenStack Heat service, we will develop the orchestrator to
more efficiently and flexibly orchestrate the distributed hard-
ware resource management [28]. Most of those services are
open-source projects and available in OpenStack; hence we
only need to integrate them to meet most EmuStack design
requirements. In order to implement synchronous, dynamic,
precise, and real-time emulation control service, we design
and implement the Neutron-Netem service and Neutron-
Netem agent, which will be further discussed in Section 4.

As shown in the bottom left of Figure 2, physical emu-
lation node is regarded as a compute node in OpenStack
where virtual emulation nodes are hosted. Physical emulation
node runs Nova-Compute service driven by the Docker
hypervisor to manage virtual emulation nodes and Open
vSwitch agent to execute the managing emulation network
commands (including create, modify, and delete function)
from network emulator. Open vSwitch agent employs two
Open vSwitch (OVS), “OVS for emulation” and “OVS for

4 Mobile Information Systems

OVS for control

Neutron-Netem service
(dynamic topology,
link characteristics)

Core plugin
(initial topology, QoS

by open vSwitch)

Nova Glance Keystone

Ceilometer NTP

Horizon

Neutron

Orchestrator

Heat

Emulation virtual topology
VEN VEN VEN

Nova-Compute

Neutron-Netem agentOpen vSwitch agent

VEN: virtual emulation node

Network emulator

Docker

Telemetry agent

NTP

Puppet client

Protocol software

NTP

Virtual emulation node

PC

Switch

OVS for emulation

Physical emulation node

VEN VEN

VEN

Management network

Emulation network

Figure 2: Synopsis of EmuStack software.

control” to manage virtual emulation networks and virtual
management networks, respectively. Open vSwitch agents
manage virtual networks by configuring flow rules on the
above two OVS. Moreover, as the agent of Ceilometer service
in network emulator, Telemetry Agent is responsible for pub-
lishing collected data to network emulator through the man-
agement network and creating alarms once collected data
breaks the monitoring rules. Finally, Neutron-Netem agent
is designed to precisely and dynamically control emulation
topologies and link characteristics, which will be further
introduced in Section 4.

As shown in the upper left of Figure 2, virtual emulation
node (VEN) is a Docker virtual machine which is hosted in
physical emulation node. It is spawned from the operating
system image where Network Time Protocol (NTP) service,
custom network protocol software, and Puppet client service
can be installed. In particular, Puppet client service can be uti-
lized by virtual emulation nodes to receive control informa-
tion from network emulator or physical emulation nodes.

Note that time synchronization is very essential for
EmuStack. The DTN bundle protocol depends on absolute

time to determine whether received packets are expired. Fur-
thermore, EmuStack must ensure the experimental program
in different virtual emulation nodes which can be exactly syn-
chronously executed in the correct time sequences.Therefore,
Chrony [29], an implementation of NTP [30], is installed in
all nodes to provide the properly synchronizing services. In
detail, network emulator is configured to reference accurate
time servers while physical and virtual emulation nodes refer
to network emulator. In our local area network (LAN) of
EmuStack, the time synchronization precision reaches as high
as 0.1 milliseconds, which meets the requirements for most
emulation experiments.

4. Implementation

This section describes the details of EmuStack core modules
(Neutron-Netem service and Neutron-Netem agent). Firstly,
in order to sketch the outline of EmuStack implement, EmuS-
tack emulationworkflow is described in Section 4.1. Secondly,
Sections 4.2, 4.3, and 4.4 present the details of emulation
synchronous control, topology control, and customization of

Mobile Information Systems 5

Orchestrator Neutron server Physical emulation nodes

ML2-OVS plugin
L2-OVS driver

L2-OVS agent Storage

Storage

service
Neutron-Netem Neutron-Netem

driver

Network-create request
Initializes topology

Adds rules for interface to

Emulation-data-create request

Network-create response

Creates and stores
emulation data

Emulation-data-create response

Emulation-run request

Transmits emulation configuration
and data to each physical nodes

Stores configuration
and data

Transmits emulation configuration
to virtual emulation nodes

Generates absolute timestamp to start emulation

Runs experiment software,
controls topology and link
characteristics on virtual

emulation nodes
Emulation loop,

absolute time control
Emulation-run(finish) response

GUI/CLI

br-int and br-tun/br-ethx

←
M

ES
SA

G
E

RP
C→

←
M

ES
SA

G
E

RP
C→

←
RE

ST
FU

L
A

PI
→

Neutron-Netem
agent

Figure 3: Process flow of emulation network.

link characteristics, respectively. Finally, the scalability and
performance of EmuStack are discussed in Section 4.5.

4.1. EmulationWorkflow. Before the beginning of emulation,
we first create a virtual machine image, where special
software and shell scripts should be installed to fulfill the
specific experimental requirements. For example, you must
install an SSH server (or Puppet client) into the image and
ensure that it starts up on boot with the correct configuration,
or you may install shell scripts to collect some experiment
results. Next, we create virtual networks before launching
virtual emulation nodes. Virtual networks are composed of
two types of networks, namely, management network and
emulation network. Management network is Neutron flat
network in OpenStack, where all nodes (including virtual,
physical emulation nodes, and network emulator) reside on
the same network and no VLAN tags are created. Emulation
network involves one or more private virtual networks.
Moreover, one virtual emulation node could belong to either
one or more virtual emulation networks. After creating

virtual network, we launch a sufficient number of virtual
emulation nodes and initialize virtual networks, right before
running the emulation.

Unlike a simulator running in virtual time based on
discrete event, EmuStack runs in real time and cannot pause
a node’s clock to pend for events. For a distributed real-time
emulation platform, it is difficult to ensure that every control
command can be executed synchronously in the different
physical nodes due to the stochastic communication delay
and background system load. In order to avoid communi-
cation delay, especially the control information transmission
delay, EmuStack stores the control information in the local-
storage before emulation starts to run.

We can now introduce the process flow of emulation
network described in Figure 3. Note that the ML2-OVS
plugin, L2-OVS agent, and L2-OVS driver are components
of the core plugin in Neutron service. As with OpenStack,
EmuStack firstly initializes emulation topology by launching
instances together. Secondly, after a successful initialization,
the orchestrator requests Neutron-Netem service to run

6 Mobile Information Systems

mobility module to create topology and link characteristics
data. Meanwhile, in order to support the requirements of
those who evaluate the same experimental protocol with
different protocol parameters and the same model data,
Neutron-Netem service stores the generated model data in
the persistent storage. Thirdly, Neutron-Netem service dis-
patches the emulation data to each agent residing in every
physical emulation node. The emulation data is split into dif-
ferent parts for each agent and every agent just only receives
its own part and stores it. Relatively, every agent can trans-
mit experimental configuring parameters to virtual emula-
tion nodes by invoking Puppet server API. In each virtual
emulation node, Puppet client works in kick-mode and starts
to receive configuration (or command) once triggered by
Neutron-Netem agent. Finally, after dispatching the emula-
tion data, the orchestrator sends a request to Neutron-Netem
service to start emulation; then Neutron-Netem service
delivers an absolute timestamp to every agent. Once the
staring time is up, agents will start to emulate the experiment,
and therefore, the starting timestamp has to be a little (such as
sixty seconds) larger than current timestamp, and that extra
time is left for Neutron-Netem agents receiving the starting
timestamp.

In EmuStack, Neutron-Netem service is organized into
separate submodules such as storage and mobility modules.
In particular, Neutron-Netem service provides a simple plu-
gin mechanism to enable users to extend different mobility
modules. Thus mobility modules can be individually built as
researchers’ own experimental purposes. The various mobil-
ity modules are intended to provide required realistic net-
work emulation environment for different experimental net-
work protocol development. Besides, Neutron-Netem service
provides the inheritance mechanism that a mobility module
can be developed based on the others. The primary func-
tionality of amobilitymodule is to create data for dynamically
controlling emulation topology and link characteristics. In
Section 5, we will employ two mobility modules for DTN
large file transmission experiment and the DTN routing
protocol comparison experiment of Probabilistic Routing
with Epidemic, respectively.

4.2. Synchronous Control. Algorithm 1 describes the syn-
chronous control of Neutron-Netem agent. As shown in
lines (2) to (4), Neutron-Netem agents all are asleep and
synchronously start emulation once the starting time comes.
The time synchronization accuracy depends on the sleeping
time SLEEP TIME and the NTP synchronization precision.
Since the NTP synchronization precision is as high as 0.1
milliseconds in our platform environment, the synchro-
nization accuracy is only up to SLEEP TIME. In fact, the
SLEEP TIME is a trade-off between synchronization preci-
sion and system load. In practice, we set SLEEP TIME to 100
(milliseconds) to satisfy the requirements ofmost experiment
with lightweight CPU load.

With the coming of starting time, Algorithm 1 goes into
the outer loop as shown in lines (11) to (23). This outer loop
takes advantage of absolute time to control its cycles. As
shown in line (13), LOOP CYCLE (loop cycle) is an import-
ant parameter for this loop system. The topology and link

(1) INIT protocol software
(2) WHILE current time < starting time
(3) sleep SLEEP TIME miliseconds
(4) ENDWHILE
(5)
(6) INIT topology control
(7) INIT link characteristics control
(8) START state collection
(9)
(10) SET counter to 0
(11) WHILE counter < CONTROL PERIOD
(12) increment counter
(13) next time = start time + \

LOOP CYCLE ∗ counter
(14) control topology
(15) control link characteristics
(16) control protocol software
(17) IF current time – next time > THRESHOLD
(18) collect error log
(19) END IF
(20) WHILE current time < next time
(21) sleep SLEEP TIME miliseconds
(22) ENDWHILE
(23) ENDWHILE
(22) KILL all experiment processes

Algorithm 1: Synchronous control on Neutron-Netem agent.

characteristics are updated every LOOP CYCLE.The control
operation delay (lines (14) to (16)) plus sleeping time (lines
(20) to (22)) is around equal to LOOP CYCLE. However,
due to system load and other unknown factors, the control
operation delay may be larger than LOOP CYCLE by acci-
dent; this will lead to synchronous control failure. To help
users evaluate the fidelity of the experiments, this failure
information all is logged (lines (17) to (19)). Besides, the
exceeded time will force future cycles of the loop to reduce
the sleeping time; this will enable platform to synchronize
again. After the end of outer loop, Neutron-Netem agents kill
all experiment processes to get ready for next experiment.

4.3. Controlling Topology. Figure 4 provides details on the
controlling topology and link characteristics. As shown in the
right of Figure 4, Neutron-Netem service delivers the control
information toNeutron-Netem agents in advance. According
to the received control information, Neutron-Netem agents
invoke their driver to dynamically control the emulation
experiment once the starting time is coming. In particular,
as a part of this control information, the topology control
information is described by connection matrix in EmuStack,
as shown in Figure 5. In fact, a network topology, no matter
how complex it is, can be represented by a connecting
relationship between any two nodes. An example for a three
nodes topology is shown in Figure 5, where “1” corresponds to
connection between two nodes and “0”means disconnection.

In EmuStack, the connection matrix along with time
sequences is generated by mobility module. According
to connection matrix, Neutron-Netem agents periodically

Mobile Information Systems 7

OVS for control OVS for emulation

VEN

eth0 eth1

TAP TAP

Physical emulation node

eth0 eth1

1:

1:1

1:10 1:11 1:19

HTB HTB HTB

Netem Netem Netem

HTB

Root

Neutron-Netem agent

Filter Filter Filter

TC structure diagram
configured by Neutron-Netem agent

A named network namespace,
corresponding to a virtual emulation

node, is configured by Neutron-Netem agent

Configures flow tables

110: 200: 1000:

Namespace

Neutron API

Modular layer 2

Network emulator

Delivers the control information

Storage

Docker

First location

Second location

Storage

Neutron-Netem service

Figure 4: Topology and link characteristics control.

N1

N2
N3

N1 N2 N3

N1

N2

N3

1

1

1

1

1

0

0

0

1

Figure 5: Simple topology and connection matrix.

invoke their drivers to dynamically change emulation topol-
ogy during the emulation. There are two ways to dynami-
cally controlling emulation topology: one is based on Open
vSwitch and the other is to depend on iptables. Neutron-
Netem agents can control virtual emulation topology by
configuring flow tables on “OVS for emulation.” Managing
virtual emulation topology in this way is similar to how
Neutron-Open vSwitch agent manages virtual topology in
OpenStack, but Neutron-Netem agents can do these more
efficiently and quickly. Meanwhile, Neutron-Netem agents
can achieve higher synchronous precision since they have
already store the emulation control information into local-
storage, while Neutron-Open vSwitch needs to get this con-
trol information by Remote Procedure Call (RPC) services

which take a long-term delay. Additionally, Neutron-Netem
agents can dynamically control virtual emulation topology
by configuring iptables entries in the special named network
namespace. This namespace is corresponding to the virtual
emulation node as shown in the top right of Figure 4. In the
initial implement of EmuStack, the second way to control
topology is implemented in Neutron-Netem agent driver,
whose performance will be discussed in Section 4.5. As to the
first method, we would take it into consideration in the future
work.

4.4. Controlling Link Characteristics. In Linux, system offers
a very rich set of tools for traffic control. The Traffic Control,
TC, utility is one of the most famous tools. TC is good
at shaping link characteristics which include link band-
width, latency, jitter, packet loss, duplication, and reordering.
Besides, it allows users to set queuing disciplines (QDiscs)
within network namespace. There are two types of QDiscs
in TC: one is classful queuing disciplines which have filters
attached to them and allow traffic to be directed to particular
classed queues or subqueues; the other is classless queuing
disciplines which can be used as primary QDiscs or inside
a leaf class of a classful QDiscs. As shown in the bottom
right of Figure 4, Hierarchical Token Bucket (HTB) [31] is
classful QDiscs, and Netem [32] is classless. In EmuStack,

8 Mobile Information Systems

TC

NIC driver

dev_queue_xmit

hard_start_xmit

Netfilter(iptables)

Socket buffer

Buffer

Socket API

Traffic control

User space

Kernel space

Overflow

Forward

X Y

Y

Switch BHost A

}

Sending program in host A

X

Details of sending program

Simple physical topology

×

Sen
d(buffer)

bzero(buffer, MAXSIZE);
while (fread(buffer) >0) {

send(buffer);
bzero(buffer, MAXSIZE);

Feedback
Feedback

Figure 6: Rate-limiting difference between two locations.

Neutron-Netem agents use HTB to control link rate, attach-
ing filters to HTB QDiscs to distinguish different virtual
emulation links. Meanwhile, Netem is used inside HTB
leaf classes to emulate variable delay, loss, reordering, and
duplication.

In telecommunications, a link is a communication chan-
nel that connects two communicating devices (such as
network interfaces); a media access control address (MAC
address) is a unique identifier assigned to network interface
for communications. Hence, in EmuStack, we can use source-
destination MAC addresses to configure filter rules to dis-
tinguish different virtual emulation links. In particular, due
to the high link asymmetry in most DTN experiments,
EmuStack adopts the source-destination ordered pairs to dis-
tinguish the difference between uplink and downlink. Mean-
while, we elaborately design control policies since TCQDiscs
are only good at shaping outgoing traffic. For example, assum-
ing a link between node A and node B, for A, EmuStack
handles A’s uplink at one end of the link (on A) and con-
trols A’s downlink at the other end of the link (on B); then
emulation data can be shaped bilaterally. In addition, EmuS-
tack also can create one or more special intermediate vir-
tual nodes for all virtual emulation nodes of the same physical
emulation node to shape their downlink traffic.

We can limit link rate at both locations as shown at
the middle of Figure 4. The two locations marked with red
circles stand for two different network devices. The first
location stands for network interfaces in virtual emulation
nodes. All network interfaces are corresponding to those of
named network namespaces. The second location represents
TAP devices which are paired with those network interfaces
mentioned above and attached to Open vSwitch (“OVS for
emulation”). Limiting link rate at both locations is feasible,
but there are some notable differences. Assuming experi-
mental network protocols (such as UDP) do not have any
congestion control algorithms, then any rate-limiting at
the second location will lead to a large number of packet
loss, but this will not happen at the first location. In most
DTN experiments, rate-limiting leading to much packet loss
probably is not what we want, and wemostly expect that rate-
limiting and packet loss do not interfere with each other.

Figure 6 describes the rate-limiting difference between
the two locations with a simple topology and a sending pro-
gram. In this simple topology,𝑋 device is at the first location
and 𝑌 device is at the second location. Assume that the
sending program calls UDP socket API. When sending pro-
gram sends application data, Linux kernel copies application
data from user space buffer to socket buffer. If socket buffer

Mobile Information Systems 9

Zoom to rectangle

Limited link rate

Pa
ck

et
 lo

ss
 ra

te
 (%

)

1kbps
10kbps
100 kbps

1Mbps
10Mbps

90

80

70

60

50

40

30

20

10

0

Sending rate (times of limiting rate)
9876543210

Figure 7: Feature of rate-limiting at the second location.

ever gets full, the blocking socket will put the program
in sleep state until the socket buffer has enough space, or
the nonblocking socket will return the error “Operation
Would Block” immediately.Therefore, nomatter whichmode
(blocking or nonblocking) the socket works in, sending
program always receives a “feedback,” and this prevents the
socket buffer from overflowing as shown in Figure 6. These
packets are delivered to QDiscs buffer to shape them and
finally transmitted to link by NIC driver. In brief, TC QDiscs
consume packets in socket buffer and clear socket buffer, and
then sending program can send application data to socket
buffer again.As a result, TC indirectly affects the transmission
of sending program; a sufficient TC buffer and the feedback
mechanism ensure packet loss does not to happen. As to rate-
limiting at𝑌 (the second location), since there is not feedback
between 𝑌 and sending program, 𝑌 ingress buffer will
overflow anddropmost application data as shown in Figure 7.

Figure 7 presents the relationship between packet loss rate
and sending rate for rate-limiting at the second location. As
expected, when rate-limiting is fixed, the larger the sending
rate (times), the more packets the link drops. Meanwhile,
setting the sending rate as constant and HTB buffer as
default, the larger the rate-limiting, the smaller the packet
loss rate. For most DTN scenarios, this is not what we want
to see except for testing congestion control algorithms. For
example, assuming NIC bandwidth is 90Mbps and rate-
limiting is 10Mbps, packet loss rate will be up to 80 percent.

In current EmuStack version, we implement all link
characteristics control at the first location but only achieve
rate-limiting function at the second location by configuring
ingress policing rules in Open vSwitch (OVS for emulation).
Although rate-limiting at the second location has been imple-
mented in QoS (Quality of Service) plugin of OpenStack
Neutron service, it is implemented in centralized model and
the synchronous precision is too low. Hence we reimplement

the function with the distributed model and obtain that
higher synchronous precision is achieved.

4.5. Scalability and Performance. We deploy EmuStack in
our experimental platform consisting of nine physical nodes.
Each physical node is an identical Dell� PowerEdge� R720
2U rack server with one 2.4GHz Intel Xeon E5-2609 pro-
cessor (with 4 cores), 10M of L3 cache per core, 32GB
RAM, and Broadcom 5720 Quad Port 1 GbE BASE-T. In
particular, network emulator is integrated with four more
Intel EXPI9402PTDual Port NICs. All management network
interfaces of nine physical nodes are interconnected by TP-
LINK TL-SF1024D Ethernet switch. All emulation network
interfaces of eight physical emulation nodes are linked to
those of network emulator. The Ubuntu 14.04 LTS Linux
distribution is installed on the all physical nodes and the
NetworkManager service is not allowed to start up upon boot,
since NetworkManager always repeatedly invokes the useless
dhclient program and occupies an amazing number of CPU
resources whenever EmuStack launches Docker containers.
In addition, operating system kernel version is 3.19.0-31, ipta-
bles version is 1.4.21, iprouter2 version is ss131122, andDocker
version is 1.10.1. Based on these platform environments, we
analyze the emulation scalability and performance as fol-
lows.

Compute (CPU), memory (RAM), and network (NIC)
are the three chief factors of EmuStack scalability. To make
efficient use of CPU and RAM, EmuStack adopts Docker
container as virtualization technology instead of kernel-
based full virtualization solutions. Docker containers share
the same operating system kernel so that they can consume
fewer CPU and RAM resources. For example, our platform
launches sixty containers on a single machine with about
nine percent of CPU usage and ten percent of RAM usage,
which serve as virtual emulation nodes which are installed
withUbuntu 14.04 LTS and start upwithOpenSSH server and
Puppet client. Additionally, in order to ensure that emulation
network does not hit network bottleneck easily, EmuStack
dispatches compute requests to as few as possible physical
emulation nodes for the same experiment, so most virtual
emulation nodes are interconnected by the internal bridge
(OVS for emulation) and communications between them can
consume the least bandwidth of physical emulation network.
Meanwhile, all emulation network interfaces on the network
emulator are attached to a Linux bridge to improve the
bandwidth of physical emulation network. All of these enable
EmuStack to support hundreds of nodes with nine physical
nodes.

The major factor of EmuStack performance is the
updating delay, the time consumed by changing experi-
mental emulation topology or link characteristics for one
time. In Algorithm 1, the updating delay determines the
LOOP CYCLE parameter presented on line (13). The mini-
mum LOOP CYCLE should be no less than the maximum
updating delay; otherwise EmuStack will fails to synchronize.
In addition, current EmuStack version employs iptables and
TC utility to dynamically control the virtual emulation net-
work, respectively. Hence the iptables and TC performance
directly impact EmuStack performance and their processing

10 Mobile Information Systems

800

2500

700

2000

600

1500

500

1000

400

500

300
0

1200

1000

600

800

400

200

0
2001000

8007006005004003002001000

9000

8000

7000

6000

5000

4000

3000

2000

1000

80706050403020100

403020100

Pr
oc

es
sin

g
de

lay
 (m

s)
Pr

oc
es

sin
g

de
lay

 (m
s)

Pr
oc

es
sin

g
de

lay
 (m

s)

1000

600

800

400

200

0

Pr
oc

es
sin

g
de

lay
 (m

s)

Inserted iptables entries number
on a single network interface

Inserted TC-HTB class number
on a single network interface

Operated virtual nodes number
on a single physical node

Inserted TC-HTB class number = 4

Inserted TC-HTB class number = 15

Inserted TC-HTB class number = 25

0

Operated virtual nodes number
on a single physical node

y = ax2 + bx y = ax + b

y = ax + b
y = ax + bx

Inserted iptables entries number = 4

Inserted iptables entries number = 20

Inserted iptables entries number = 40

Figure 8: The average performance of iptables and TC.

delay has direct impact on the updating delay. The perfor-
mance of iptables and TC is analyzed as follows.

Figure 8 shows the average performance of iptables and
TC, where average performance stands for updating delay
trend. The left of Figure 8 describes the performance for
operating at a single network interface. Interesting enough,
for iptables, the average processing delay can be represented

by quadratic function of inserted entries number; for TC-
HTB, the relationship between average processing delay and
inserted entries number can be well described by a linear
function. Hence EmuStack can estimate processing delay
with both functions of law. The right shows the performance
of concurrently operating multiple virtual nodes in a single
physical node. The processing delay of iptables and TC all

Mobile Information Systems 11

800 10006004002000

250
300
350

200
150
100

50
0

2000

1500

1000

500

0

Pr
oc

es
sin

g
de

lay
 (m

s)

Pr
oc

es
sin

g
de

lay
 (m

s)

40 virtual nodes

30 virtual nodes
20 virtual nodes
10 virtual nodes

50 virtual nodes
60 virtual nodes

800 10006004002000

40 virtual nodes

30 virtual nodes
20 virtual nodes
10 virtual nodes

50 virtual nodes
60 virtual nodes

Number of trials on TC performanceNumber of trials on iptables performance

Figure 9: The real-time performance of iptables and TC.

grow linearly when the inserted iptables entries (or TC-HTB
class) number is fixed, and this is influenced by serialization,
contention, and system load.

Figure 9 shows the real-time performance where the
processing delay is the time it takes to insert ten iptables
entries (or TC-HTB classes) into a single network interface.
The processing delay starts to fluctuate violently with the
increasing number of virtual nodes in a single physical node
(each virtual node has a network interface which is paired
with TAP device in host namespace and linked to Open
vSwitch). For example, when there are less than thirty virtual
nodes in a single physical node, the processing delay remains
stable throughout one thousand trials. However, when the
number of virtual nodes increases up to sixty, the fluctuation
scope gets wider, with an iptables maximum scope that
reaches about 350 milliseconds. TC maximum scope is up
to 1800 milliseconds which is five times more than that of
iptables. Hence the updating delay of link characteristics (TC
processing delay) is probably the most serious limitation in
EmuStack.

By analyzing the feature of the real-time performance,
we can estimate the maximum updating delay and obtain
the minimum LOOP CYCLE for a specific scale experiment
in simple experimental environment (single user). However,
it is hard to do that in complex experimental environment
(multiuser), and this will raise a lot of complex problems such
as virtual nodes orchestration. Because of the limited space,
we do not get into details and have a deeper insight into such
topic here, leaving this part to be discussed in the futurework.

5. Experimental Evaluation

To evaluate and demonstrate EmuStack, this section repro-
duces key results from two published DTN experiments.
One is the DTN large file transmission experiment that
applies Low Earth Orbit (LEO) [33, 34] and the other one
is the DTN routing protocol comparison experiment of
Probabilistic Routing with Epidemic [35, 36]. The goal of the
first experiment is to prove that results obtained on EmuStack
can match with the results measured on hardware. The goal
of the second experiment is to demonstrate that EmuStack
can dynamically change a large-scale topology and precisely
support a large-scale experiment.

5.1. Large File Transmission Using LEO Satellite. One type
of LEO satellite is the remote sensing satellite. Generally,
remote sensing satellite transfers a lot of sensing data to the
ground station, and these data are usually in a large scale. For
example, a single raw picture created by earth observation
satellite is usually in a room of hundreds of megabytes (MB)
or even more. Unfortunately, only about 10 minutes contact
time is allowed for LEOwhen passing over a ground station in
one orbital cycle. Additionally, the LEO transmission rate is
low; taking the UK-DMC satellite [34] as an example, there is
a downlink of 8.134Mbps and uplink of 9600 bps. Therefore,
it is almost impossible that LEO can transfer a large file to
the ground during the period that it passes over a single
ground station. Actually, three passes are needed to transfer
the complete file to the ground as shown in Figure 10. During
each pass, LEO transfers one segment of the total file to Earth
Control Center via one Earth Gateway (GW), and once the
job of transferring the complete image file is finished, it has
been reassembled at the Earth Control Center.

To test whether the results obtained by EmuStack can
match those of hardware, we created the experimental
topology both in EmuStack and in real hardware as shown
in Figure 10. The real hardware environment is built by
seven physical nodes, where we utilize TC shell scripts to
dynamically control the topology and link characteristics. All
the parameters of real hardware that are related to the large
file transmission are the same as those of EmuStack, which is
described in the following passage.

To ensure reality of experiment process and data, firstly
we use Satellite Tool Kit (STK) [37] to model the LEO link
characteristics and topology as described in the Table 1.
Based on the parameters generated by STK, we write this
experimental mobility module in Neutron-Netem service.
The mobility module can create the emulation topology and
link control information according to the requirements of
the large file transmission. Secondly, the OpenStack virtual
machine image equipped with the DTN network protocol
software ION-3.3.1 [38] is built. ION-3.3.1 uses CFDP [39]
program to fragment and reassemble the 258MB image file
from LEO to Earth Control Center. CFDP is configured with
32 kilobytes (kB) bundle [40], 128 kB block of Licklider Trans-
mission Protocol (LTP) [41], and Contact Graph Routing
(CGR) [42] protocol. Additionally, it is worth noting that TC

12 Mobile Information Systems

Earth GW1 Earth GW3

Earth GW2

Earth Control Center

Internet

LEO

LEO
LEO

Time

Earth GW1 GW3Earth GG

Earth GW2
Internet

LEO

LEO
LEO

Figure 10: LEO block transmission scenario.

250

200

150

100

50

0
425 48454805 5280 11640 12428

Time (s)

Ra
te

 (k
B/

s)

188 kB/s

0.12 kB/s

Downlink-EmuStack
Uplink-EmuStack

Downlink-hardware
Uplink-hardware

Figure 11: Downlink rate and uplink rate in the Earth Control
Center.

Table 1: LEO block transmission scenario contact plan.

Contact or idle Duration Rate Delay Jitter Packet loss
rate

LEO→ GW1 425 s 200 kB/s 15ms 2ms 0.3%
Idle period 73min
LEO→ GW2 475 s 200 kB/s 16ms 4ms 1.1%
Idle period 106min
LEO→ GW3 788 s 200 kB/s 13ms 3ms 0.8%

Netem delay is limited by the frequency (HZ) of the Linux
system clock (the tick rate), and the system clock should
run at 1000HZ to allow Netem delays in increment of 1
millisecond.

Figure 11 shows the downlink rate and uplink rate in
the Earth Control Center. Due to the effectiveness of ION
scheduled, LTP starts a transmission as soon as the link is
available. During the whole transmission, LEO first transmits
about 79MB block of image file to Earth Control Center
via earth GW1. After about 73 minutes’ disconnection, LEO
secondly establishes the connection with earth GW2 and
transmits another 79MB block to Earth Control Center.

Finally, with 106 minutes’ break, LEO transmits the rest
of image file to Earth Control Center via earth GW3. In
this experiment, experimental results show that downlink
unitization is high (about 94%), and the ratio between
downlink rate and uplink rate is 1600 : 1. These results prove
that DTN protocol family has a good support for intermittent
and asymmetric links. Thus EmuStack can be employed to
achieve significant results in advance of (or possibly without)
setting up a hardware testbed. Meanwhile, since the results
of EmuStack closely match with those of the hardware, it
indicates that EmuStack has good support for experimental
fidelity.

5.2. Comparison of PROPHET Routing with Epidemic. Vah-
dat and Becker present a routing protocol for DTN called
Epidemic routing [36]. This routing protocol allows nodes to
exchange summary vectors (an index of their own messages)
and request messages which were not owned once they
encounter each other. This means messages will spread
through the network like an Epidemic, as long as buffer
is large enough and the possibility exists. Lindgren et al.
propose PROPHET, a Probabilistic Routing Protocol using
History of Encounters and Transitivity [35]. The operation
of PROPHET is similar to that of Epidemic routing. When
two hosts meet, they exchange summary vectors which also
contain delivery possibility. Relying on this predictability
data, each node calculates the new delivery possibility, which
is used to decide which messages to request from the other
node.

To evaluate the ability of EmuStack precise control in
large-scale experiment, we emulate the simulation experi-
ment described in the PROPHET paper [35] and compare
PROPHET with Epidemic in the community scenario. The
community scenario consists of a 3000∗1500marea andfifty-
six virtual emulation nodes as shown in Figure 12. The area
is split into twelve subareas: eleven communities (C1–C11)
and one “gathering place (G).” Every community contains
five nodes (the same color circles as shown in Figure 12): one
fixed node acting as the gateway of the community and four
mobile nodes; all nodes treat the community as their home
community. The four mobile nodes of every community
select a destination, move there with a speed between ten and
thirty miles per second, pause there for a moment, and select
a new destination and speed. The probabilities of different
destinations are chosen according to the current location
of mobile nodes. In the experiment, a warm-up period of
500 seconds is used to initialize protocols, and 3000 seconds
is used to create and delivery massages, and another 8000
seconds is used for allowing more messages to be delivered.

In order to emulate the above community mobility scene
in EmuStack, we develop the communitymobilitymodel into
a mobility module. Before the beginning of experiment, we
first create the experimental virtual image which is equipped
with IBRDTN [9]. IBRDTN supports the Epidemic rout-
ing and PROPHET routing whose “link request interval”
parameter is set as 1000 milliseconds since the community
model is updated every second. The other model parameters
are configured the same as those in PROPHET paper [35].

Mobile Information Systems 13

1500

1000

500

0

0 750 1500 2250 3000

15
00

m

3000m

C1 C2 C3 C4

C5 C6 C7 C8

C9 C10 C11 G

Figure 12: Community mobility model.

600

300

500

200

400

900

800

700

100

Re
ce

iv
ed

 m
es

sa
ge

Epidemic_EmuStack, range 50m
Prophet_EmuStack, range 50m
Epidemic_simulator, range 50m
Prophet_simulator, range 50 m

20 40 60 80 100 120 140 160 180 200

Queue size (kB = 1,000 bytes)

Figure 13: The average delivery rates in community scenario.

Note that LOOP CYCLE is set as one second in the
experiment.We attempt to dispatch the fifty-six virtual nodes
to different numbers of physical nodes; then EmuStack per-
forms the above experiment for several times with the differ-
ent configurations of the IBRDTN “limit storage” parameter
(namely, the queue size). At the end of experiments, we
check Neutron-Netem agents logs for synchronizing errors.
We find that even though all the fifty-six virtual nodes are
orchestrated into a single physical node, no synchronizing
errors were thrown in EmuStack. This indicates the ability
to precisely control large-scale experiment in EmuStack. We
further discuss the details of experimental results in the
following passage.

Figure 13 shows the average delivery rates in both EmuS-
tack and the simulator described in the PROPHET paper
(Hop count = 11). The Epidemic and PROPHET routing
protocol show the similar performance in both EmuStack
and the simulator. For example, with the increasing size of
the queue, the number of messages which eventually reach
destination goes up. It is obvious that they can be buffered
for longer time and get more opportunities to be delivered
successfully, since the larger queue size would enable more
messages to be cached and less be dropped. Meanwhile, as

600

500

400

700

To
ta

l e
gr

es
s t

ra
ffi

c (
m

eg
ab

yt
es

)

Epidemic_EmuStack, range 50m
Prophet_EmuStack, range 50m
Epidemic_simulator, range 50m
Prophet_simulator, range 50m

20 80 100 120 140 160 180 200

Queue size (kB = 1,000 bytes)

300

200

0

100

40 60

fo

rw
ar

de
d

m
es

sa
ge

s

60000

30000

50000

20000

40000

70000

10000

0

Figure 14: The consumption of the network resources in the
community scenario. In the simulator, Lindgren utilizes the number
of forwarded messages to indirectly evaluate the consumption; in
EmuStack, we employ the value of the total egress traffic to directly
measure the consumption.

shown in Figure 13, the PROPHET routing protocol has
a much better performance compared with the Epidemic
routing protocol in terms of the delivery rate, and the results
of EmuStack matches with those of the simulator. All these
results can demonstrate that both PROPHET and Epidemic
routing protocols run normally in EmuStack. EmuStack can
emulate the large-scale experiments.

Figure 14 presents the consumption of the network
resources in the community scenario. In the simulator [35],
Lindgren utilizes the number of forwarded messages that
occur when nodes encounter each other to indirectly evaluate
the consumption; in EmuStack, we employ the value of the
total egress traffic to directly measure the consumption. The
egress traffic is composed of the forwarded messages and
routing overhead; hence it can achieve the more comprehen-
sive evaluation for the consumption of network resources. As
described in Figure 14, in EmuStack, PROPHET has a much
higher network overhead than Epidemic, as opposed to that
in the simulator. This is because the Epidemic routing pro-
tocol has been optimized by IBRDTN [9]. IBRDTN already
has replaced the summary vectors of the basic Epidemic
with the efficient Bloom-Filter mechanism and manages a
purge vector as an extension of the Epidemic routing protocol
which ensures the bundles delivered successfully to be deleted
throughout the network. Therefore Epidemic can consume
fewer network traffic than the origin PROPHET described in
[35].

Finally, Figure 15 describes the average delivery delay in
both EmuStack and the simulator. There are two ways of
calculating the average delay. One way is by dividing the
sum of the delay of the messages successfully delivered by
the number of those (delay 1). The other way is by dividing
the sum of the delay of all the messages successfully and
unsuccessfully delivered by the number of those (delay 2).The
delay of those unsuccessfully delivered messages is defined as

14 Mobile Information Systems

Epidemic_EmuStack, range 50m
Prophet_EmuStack, range 50m
Epidemic_simulator, range 50m
Prophet_simulator, range 50 m

Epidemic_EmuStack, range 50m
Prophet_EmuStack, range 50m

Queue size (kB = 1,000 bytes)
20 80 100 120 140 160 180 20040 60

Queue size (kB = 1,000 bytes)
20 80 100 120 140 160 180 20040 60

D
el

ay
 1

 (s
)

6000

3000

5000

2000

4000

1000
0

D
el

ay
 2

 (s
)

8000
9000

7000
6000

3000

5000

2000

4000

1000
0

Figure 15: The average delivery delay in community scenario.

the value of subtracting the messages’ sending time from the
experimental ending time.

The delay 1 is utilized to evaluate the average delay of
massages in [35]. As shown in the left of Figure 15, the value
of the delay 1 fluctuates back and forth with the increase of
queue size. As we all know, the larger queue can shorten the
delivery delay of the messages which would be successfully
delivered even if the queue is relatively small, and it can also
enable messages which would be unsuccessfully delivered to
reach their destination nodes, while the value of the delivery
delay of these messages become larger compared with the
origin zero. Therefore, there are increases and decreases in
the delivery delay value, which result in the value of delay 1
fluctuating in small scope.

Due to the above phenomenon, we argue that the first
way of calculating delivery delay may be unreasonable.
Hence we attempt to evaluate the average delivery delay of
the forwarded massages by the second way where we take
the delivery delay of unsuccessfully delivered messages into
consideration when calculating the average delivery delay. As
shown in the right of Figure 15, with the increasing size of the
queue, there is an obvious decrease in the average delivery
delay (delay 2) for both routing protocols. It is intuitive that
the value of delay 2 decreases since larger queue leads to
more messages delivered successfully and quickly. In short,
no matter which method is used to calculate the average
delivery delay, PROPHET always has shorter delivery delay
than Epidemic in both EmuStack and the simulator.

As we expected, all the above results demonstrate that
EmuStack can reproduce the key results of the large-scale
DTN experiment described in [35] and achieve more details
of the experimental network protocols than the simulator,
which is helpful for us to further improve the design of the
experimental network protocol.

6. Conclusion

In this work, we present a real-time, distributed, and scalable
emulation platform based on OpenStack for DTN. Firstly, we
discuss hardware, software deployment, the design architec-
ture, and implementation. Specially, we present the details
of control of link characteristics and topology. Secondly, we

analyze the platform scalability and performance. Finally, we
evaluate and demonstrate the emulation platform with two
classical DTN experiments.

In order to have a thorough evaluation, as a part of the
future work, we will create more realistic mobility and link
characteristic models to emulate more complex DTN exper-
iments. Meanwhile, we will also evaluate these effects with
different virtual computing, virtual network technologies
and complex experimental environment (multiuser orches-
tration).

Competing Interests

The authors declare that there are no competing interests
regarding the publication of this paper.

Acknowledgments

This work was supported in part by NSFC of China under
Grant no. 61271202, NSAF of China under Grant no.
U1530118, National High Technology of China (“863 pro-
gram”) under Grant no. 2015AA015702, and National Basic
Research Program of China (“973 program”) under Grant no.
2013CB329101.

References

[1] H. Zhang, P. Dong, W. Quan, and B. Hu, “Promoting efficient
communications for high-speed railway using smart collabora-
tive networking,” IEEEWireless Communications, vol. 22, no. 6,
pp. 92–97, 2015.

[2] W. Quan, C. Xu, J. Guan et al., “Social cooperation for informa-
tion-centric multimedia streaming in highway VANETs,” in
Proceedings of the IEEE 15th International Symposium on World
of Wireless, Mobile and Multimedia Networks (WoWMoM ’14),
pp. 1–6, IEEE, Sydney, Australia, June 2014.

[3] K. Fall, “A delay-tolerant network architecture for challenged
internets,” in Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer Commu-
nications, pp. 27–34, ACM, August 2003.

[4] K. Fall, W. Hong, and S. Madden, “Custody transfer for reliable
delivery in delay tolerant networks,” IRB-TR 03-030, 2003.

Mobile Information Systems 15

[5] A. P. Silva, S. Burleigh, C. M. Hirata, and K. Obraczka, “A sur-
vey on congestion control for delay and disruption tolerant net-
works,” Ad Hoc Networks, vol. 25, pp. 480–494, 2015.

[6] M. Liu, Y. Yang, and Z. Qin, “A survey of routing protocols and
simulations in delay-tolerant networks,” inWireless Algorithms,
Systems, and Applications, vol. 6843 of Lecture Notes in Com-
puter Science, pp. 243–253, Springer, Berlin, Germany, 2011.

[7] Delay Tolerant Networking Research Group, DTNReference
Implementation, March 2016, https://sites.google.com/site/
dtnres-group/home/code.

[8] S. Burleigh, “Interplanetary overlay network an implementation
of the DTN bundle protocol,” in Proceedings of the 2007
4th Annual IEEE Consumer Communications and Networking
Conference (CCNC ’07), pp. 222–226, IEEE, Las Vegas, Nev,
USA, January 2007.

[9] S. Schildt, J. Morgenroth, W. B. Pöttner et al., “IBRDTN:
a lightweight, modular and highly portable Bundle Protocol
implementation,” Electronic Communications of the EASST, vol.
37, 2011.

[10] M. J. Khabbaz, C.M.Assi, andW. F. Fawaz, “Disruption-tolerant
networking: a comprehensive survey on recent developments
and persisting challenges,” IEEE Communications Surveys &
Tutorials, vol. 14, no. 2, pp. 607–640, 2012.

[11] J. A. Fraire and J. M. Finochietto, “Design challenges in contact
plans for disruption-tolerant satellite networks,” IEEE Commu-
nications Magazine, vol. 53, no. 5, pp. 163–169, 2015.

[12] E. Koutsogiannis, S. Diamantopoulos, and V. Tsaoussidis, “A
DTN testbed architecture,” in Proceedings of the International
Conference on Ultra Modern Telecommunications & Workshops
(ICUMT ’09), pp. 1–2, St. Petersburg, Russia, October 2009.

[13] R. Beuran, S. Miwa, and Y. Shinoda, “Network emulation test-
bed for DTN applications and protocols,” in Proceedings of the
32nd IEEE Conference on Computer Communications (INFO-
COM ’13), pp. 3441–3446, Turin, Italy, April 2013.

[14] I. Komnios, I. Alexiadis, N. Bezirgiannidis et al., “SPICE
testbed: a DTN testbed for satellite and space communications,”
in Testbeds and Research Infrastructure: Development of Net-
works and Communities: 9th International ICSTConference, Tri-
dentCom 2014, Guangzhou, China, May 5–7, 2014, Revised Sel-
ected Papers, vol. 137 of Lecture Notes of the Institute for Com-
puter Sciences, Social Informatics and Telecommunications Engi-
neering, pp. 205–215, Springer, Berlin, Germany, 2014.

[15] Docker, https://www.Docker.com/.
[16] “TC,” http://www.lartc.org/lartc.html.
[17] OpenStack, http://www.openstack.org/.
[18] “Ceilometer,” https://launchpad.net/ceilometer.
[19] H. Li, H. Zhou, H. Zhang et al., “EmuStack: an openstack-based

DTN network emulation platform,” in Proceedings of the IEEE
International Conference on Networking and Network Appli-
cations (NaNA ’16), pp. 387–392, Hakodate, Japan, July 2016.

[20] M. Hibler, R. Ricci, L. Stoller et al., “Large-scale virtualization
in the emulab network testbed,” in Proceedings of the USENIX
Annual Technical Conference (USENIX ’08), pp. 113–128, Boston,
Mass, USA, June 2008.

[21] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
rapid prototyping for software-defined networks,” in Proceed-
ings of the 9th ACM SIGCOMMWorkshop on Hot Topics in Net-
works, Monterey, Calif, USA, October 2010.

[22] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McK-
eown, “Reproducible network experiments using container-
based emulation,” in Proceedings of the 8th ACM International

Conference on Emerging Networking Experiments and Technolo-
gies (CoNEXT ’12), pp. 253–264, ACM, Nice, France, December
2012.

[23] “LXC,” https://linuxcontainers.org/.
[24] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange,

and C. A. F. De Rose, “Performance evaluation of container-
based virtualization for high performance computing environ-
ments,” in Proceedings of the 21st Euromicro International Con-
ference on Parallel, Distributed, and Network-Based Processing
(PDP ’13), pp. 233–240, March 2013.

[25] “Keystone,” https://wiki.openstack.org/wiki/Keystone.
[26] “Horizon,” https://wiki.openstack.org/wiki/Horizon.
[27] “Glance,” https://wiki.openstack.org/wiki/Glance.
[28] F. Song, D. Huang, H. Zhou, H. Zhang, and I. You, “An

optimization-based scheme for efficient virtual machine place-
ment,” International Journal of Parallel Programming, vol. 42, no.
5, pp. 853–872, 2014.

[29] “Chrony,” http://chrony.tuxfamily.org/.
[30] “NTP,” http://www.ntp.org/.
[31] “HTB,” http://luxik.cdi.cz/∼devik/qos/htb/manual/userg.htm.
[32] NetEm, http://www.linuxfoundation.org/collaborate/workgroups/

networking/netem.
[33] W. Ivancic, W. M. Eddy, L. Wood et al., “Delay/disruption-

tolerant network testing using a LEO satellite,” in Proceedings
of the NASA Earth Science Technology Conference (ESTC ’08),
University of Maryland, June 2008.

[34] C. Caini andR. Firrincieli, “Application of contact graph routing
to LEO satellite DTN communications,” in Proceedings of the
IEEE International Conference onCommunications (ICC ’12), pp.
3301–3305, IEEE, Ottawa, Canada, June 2012.

[35] A. Lindgren, A. Doria, and O. Schelén, “Probabilistic routing in
intermittently connected networks,” ACM SIGMOBILE Mobile
Computing and Communications Review, vol. 7, no. 3, pp. 19–20,
2003.

[36] A. Vahdat and D. Becker, “Epidemic routing for partially-con-
nected ad hoc networks,” Tech. Rep. CS-20000, Duke Univer-
sity, 2000.

[37] “STK,” http://www.agi.com/products/stk/.
[38] “ION-DTN,” http://sourceforge.net/projects/ion-dtn/.
[39] S. C. Burleigh, “CFDP for interplanetary overlay network,”

NASA. Tech Briefs, vol. 35, no. 3, p. 36, 2011.
[40] K. L. Scott and S. Burleigh, Bundle protocol specification, 2007.
[41] R. Wang, S. C. Burleigh, P. Parikh, C.-J. Lin, and B. Sun, “Lick-

lider transmission protocol (LTP)-basedDTN for cislunar com-
munications,” IEEE/ACM Transactions on Networking, vol. 19,
no. 2, pp. 359–368, 2011.

[42] S. Burleigh, Contact graph routing, 2010.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

