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We study the ship speed optimization problem with the objective of minimizing the total fuel consumption. We consider multiple
time windows for each port call as constraints and formulate the problem as a nonlinearmixed integer program.We derive intrinsic
properties of the problem and develop an exact algorithm based on the properties. Computational experiments show that the
suggested algorithm is very efficient in finding an optimal solution.

1. Introduction

According to the report of World Shipping Council in 2008,
fuel cost represents asmuch as 50–60%of total ship operating
cost. Since fuel consumption is known to be the third power
function of ship speed [1], many global shipping companies
are trying to reduce fuel consumption by slowing down
ship speed (called slow steaming). In this study, we consider
the ship speed optimization problem with the objective of
minimizing total fuel consumption of a (tramp or liner) ship
operated on a given route. For a tramp ship, the ship speed
optimization problem is a tactical problem which should be
solved for every sailing, while it is a strategic problem to
be solved just one time when designing a shipping route
for a liner ship [2]. We determine ship speed on each leg
under time window restrictions related with port calls. Time
window sizes are narrow for congested ports, while they are
wide for noncongested ones.

There are two kinds of time windows: hard time window
and soft one [3, 4]. A hard time window should be kept at
all costs while the soft one can be violated with appropriate
penalties. There usually exist multiple time windows for each
port call depending on the available service time of the port.

Most ports have restricted operating hours since they are
closed for service at night and during weekends. In this case,
the wide time windows can be regarded as multiple time
windows [5]. Also, ports have restrictions on the draft of ships
that may safely enter [6, 7]. Many ports have time-dependent
draft restrictions due to the tide that leads to multiple time
windows at each port. Therefore, our aim in this study is to
develop a mathematical model and an exact algorithm for
the ship speed optimization problem with multiple hard time
windows.

There are some previous studies on the ship speed
optimization problem which are related to our problem
although they consider different objective functions, decision
variables, and constraints. Ronen [1] performs pioneering
research on determining optimal ship speed by considering
the tradeoff between fuel savings by slow steaming and the
loss of revenues due to the resulting voyage extension on
the other hand. Ting and Tzeng [8] propose a dynamic
programming model for the ship scheduling problem with
both soft andhard timewindow constraintswith the objective
of meeting the time window constraints as closely as possible.
Brown et al. [9] suggest a linear programming model for
optimizing operation modes of a naval ship to minimize
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the fuel consumption when the ship transit time is given.
Corbett et al. [10] evaluate the effect of the speed reduction
on mitigation of CO2 emissions quantitatively. Ronen [11]
determines the optimal speed and fleet size (the number of
deployed ships) for containerships on a single route with a
weekly service cycle. Wang and Meng [12] propose a model
and an algorithm to determine an optimal sailing speed of
container ships on each leg of each ship route in a liner
shipping network while considering transshipment and con-
tainer routing. Previous literature on the speed optimization
problem can also be found in the airline industry such as
Lovegren and Hansman [13], Jensen et al. [14], and Aktürk
et al. [15].

Our study stems from the ship speed optimization prob-
lem to minimize total fuel consumption with hard time
windows studied by Fagerholt et al. [16], Norstad et al. [17],
Hvattum et al. [18], Kim et al. [2], and Zhang et al. [19].
Fagerholt et al. [16] formulate the problem as a nonlinear
programming model and propose a heuristic algorithm by
discretizing the time window and reformulating the problem
as the shortest path model. Norstad et al. [17] develop a
recursive smoothing algorithm (RSA) for speed optimization
and present a multistart local search heuristic for the tramp
ship routing and scheduling problem with speed optimiza-
tion. Hvattum et al. [18] prove that the RSA of Norstad et
al. [17] guarantees optimality. Kim et al. [2] also propose
an exact algorithm for the ship speed optimization problem.
Zhang et al. [19] establish the optimality properties for the
problem. Although the suggested algorithms and properties
are very efficient for the problem with a single time window
constraint, they cannot handle multiple time windows which
are common in maritime transportation.

In this study, we extend the studies of Hvattum et al. [18]
and Kim et al. [2] to solve a more general ship speed opti-
mization problem with multiple time window constraints.
The remainder of this paper is organized as follows: the next
section presents a mathematical formulation of the problem
with a small example problem. In Section 3, we derive
optimality properties of the problem. We present an exact
algorithm based on the optimality properties in Section 4.
Section 5 reports the computational test results on randomly
generated test instances followed by concluding remarks in
the last section.

2. Problem Description

The notations used throughout the paper are shown in the
Notations.

The daily fuel consumption function 𝑓(V) can be approx-
imated by a well-known cubic function of speed as 𝑓(V) =
𝑐 ⋅ V3, where 𝑐 is a factor of converting speed to the fuel
consumption [1].Then, the total amount of fuel consumption
of a vessel sailing from port 𝑖 to port 𝑖 + 1 can be expressed as

𝑓 (V𝑖,𝑖+1) ⋅
𝑑𝑖,𝑖+1
V𝑖,𝑖+1

= 𝑐 ⋅ 𝑑𝑖,𝑖+1 ⋅ V2𝑖,𝑖+1. (1)

Using (1), the considered problem can be formulated as
the following nonlinear mixed integer programming model.
We set 𝑡1 = 0 since port 1 is the start port.

[P] minimize 𝑍 = 𝑐 ⋅
𝑛−1

∑
𝑖=1

𝑑𝑖,𝑖+1 ⋅ V2𝑖,𝑖+1 (2)

subject to 𝑡𝑖 + 𝑝𝑖 +
𝑑𝑖,𝑖+1
V𝑖,𝑖+1

≤ 𝑡𝑖+1

for 𝑖 = 1, 2, . . . , 𝑛 − 1
(3)

𝑚𝑖

∑
𝑗=1

𝑧𝑖𝑗 = 1 for 𝑖 = 2, . . . , 𝑛 (4)

𝑚𝑖

∑
𝑗=1

𝑧𝑖𝑗 ⋅ 𝑠𝑗𝑖 ≤ 𝑡𝑖 ≤
𝑚𝑖

∑
𝑗=1

𝑧𝑖𝑗 ⋅ 𝑒𝑗𝑖

for 𝑖 = 2, . . . , 𝑛
(5)

Vmin ≤ V𝑖,𝑖+1 ≤ Vmax

for 𝑖 = 1, 2, . . . , 𝑛 − 1
(6)

𝑡𝑖 ≥ 0 for 𝑖 = 1, . . . , 𝑛 (7)

𝑧𝑖𝑗 ∈ {0, 1}

for 𝑖 = 2, . . . , 𝑛, 𝑗 = 1, . . . , 𝑚𝑖.
(8)

Objective function (2) expresses the total amount of fuel
consumption of the ship. Constraint (3) ensures that cargo
service at each port starts after the ship arrives at the port.
Constraints (4) and (5) ensure that the start time of cargo
services lies in exactly one of the time windows at each port.
Constraint (6) represents that the ship speed on a leg is
bounded by its allowable minimum and maximum speeds.
Constraints (7) and (8) specify feasible ranges of decision
variables.

A small example with four ports is used throughout the
paper to help readers understand the problem and suggested
properties and algorithm. In the example, 𝑐 = 0.01, Vmin = 10,
Vmax = 20, and cargo service time is assumed to be zero at
all ports. Figure 1 depicts time windows at ports, distances
between ports, and a feasible solution of the example. In the
feasible solution, V1,2 = 13.33, V2,3 = 20.00, and V3,4 = 13.33.

3. Optimality Properties

We define an outer time window at a port as a single
time window that covers all time windows at the port. Let
[𝑠𝑖, 𝑒𝑖] be the outer time window at port 𝑖. Then, we have
[𝑠𝑖, 𝑒𝑖] = [𝑠1𝑖 , 𝑒𝑚𝑖𝑖 ]. Using the time window reduction method
of Kim et al. [2], we can reduce the size of the outer time
window at each port as much as possible without affecting
the feasible region of the problem. In the method, the size of
the outer time window at a port is reduced by increasing the
start time of the outer time window to the earliest possible
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Figure 1: Multiple time windows, distance between ports, and feasible arrival time of the ship at each port for the four-port example.

time at which the ship can arrive at the port, while decreasing
the end time of the outer time window to the latest possible
time at which the ship can arrive. In the remainder of this
paper, we assume that [𝑠𝑖, 𝑒𝑖] was already reduced using the
time window reduction method of Kim et al. [2]. Then, the
𝑗th time window at port 𝑖, [𝑠𝑗𝑖 , 𝑒

𝑗
𝑖 ], can be updated as follows

for 𝑖 = 2, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑚𝑖.

(i) If 𝑠𝑖 > 𝑒𝑗𝑖 or 𝑒𝑖 < 𝑠
𝑗
𝑖 , the 𝑗th time widow of port 𝑖 is no

longer valid; thus it is eliminated.

(ii) If 𝑠𝑗𝑖 < 𝑠𝑖 ≤ 𝑒
𝑗
𝑖 , let 𝑠

𝑗
𝑖 ← 𝑠𝑖.

(iii) If 𝑠𝑗𝑖 < 𝑒𝑖 ≤ 𝑒
𝑗
𝑖 , let 𝑒

𝑗
𝑖 ← 𝑒𝑖.

In the remainder of this paper, we assume that [𝑠𝑗𝑖 , 𝑒
𝑗
𝑖 ] and

𝑚𝑖 were already updated. In the four-port example, time
windows at each port cannot be reduced any longer.

Proposition 1. An optimal value of 𝑡𝑛, 𝑡∗𝑛 = 𝑒𝑛.

Proof. We refer readers to Proposition 4 of Kim et al. [2].

Proposition 2. If the time window constraints and the ship
speed limits are relaxed, the optimal ship speed, V𝑅, is a constant
along the entire route and obtained as V𝑅 = ∑𝑛−1𝑖=1 𝑑𝑖,𝑖+1/(𝑡∗𝑛 −
∑𝑛−1𝑖=1 𝑝𝑖).

Proof. We refer readers to Proposition 1 of Hvattum et al. [18]
and Proposition 5 of Kim et al. [2].

Let 𝑡𝑅𝑖 be the time at which service starts at port 𝑖 andΨ be
a set of ports at which start time of service is not within any
of the ports’ time windows, when the ship sails at a constant
speed V𝑅. If 𝑖 ∈ Ψ, then 𝑡𝑅𝑖 < 𝑠1𝑖 or 𝑒

𝑗
𝑖 < 𝑡𝑅𝑖 < 𝑠

𝑗+1
𝑖 for 1 ≤ 𝑗 < 𝑚𝑖

or 𝑡𝑅𝑖 > 𝑒𝑚𝑖𝑖 . For 𝑖 ∈ Ψ, we define left and right time gaps of
infeasibility at port 𝑖, denoted by Δ𝐿𝑖 and Δ𝑅𝑖 , respectively, as
follows.

If 𝑡𝑅𝑖 < 𝑠1𝑖 , Δ𝑅𝑖 = 𝑠1𝑖 − 𝑡𝑅𝑖 and Δ𝐿𝑖 does not exist.
If 𝑒𝑗𝑖 < 𝑡𝑅𝑖 < 𝑠

𝑗+1
𝑖 for 1 ≤ 𝑗 < 𝑚𝑖, Δ𝐿𝑖 = 𝑡𝑅𝑖 − 𝑒

𝑗
𝑖 and

Δ𝑅𝑖 = 𝑠
𝑗+1
𝑖 − 𝑡𝑅𝑖 .

If 𝑡𝑅𝑖 > 𝑒𝑚𝑖𝑖 , Δ𝐿𝑖 = 𝑡𝑅𝑖 − 𝑒
𝑚𝑖
𝑖 and Δ𝑅𝑖 does not exist.

Proposition 3. IfΨ = ⌀, V𝑅 is an optimal ship speed through-
out the entire route.

Proof. According to Proposition 2, it is obvious.

Proposition4. IfΨ ̸= ⌀, there exists at least one port (say port
𝑘) inΨ for whichmax(Δ𝐿𝑘, Δ𝑅𝑘) ≥ min(Δ𝐿𝑖 , Δ𝑅𝑖 ) for all 𝑖 ∈ Ψ and
an optimal value of 𝑡𝑘, denoted by 𝑡∗𝑘 , is obtained as follows:

𝑡∗𝑘

=
{{{{
{{{{
{

𝑠1𝑘, 𝑖𝑓 𝑡𝑅𝑘 < 𝑠1𝑘,
𝑒𝑗
𝑘
𝑜𝑟 𝑠𝑗+1
𝑘
, 𝑖𝑓 𝑒𝑗

𝑘
< 𝑡𝑅𝑘 < 𝑠

𝑗+1

𝑘
, 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑗 < 𝑚𝑘,

𝑒𝑚𝑘
𝑘
, 𝑖𝑓 𝑡𝑅𝑘 > 𝑒𝑚𝑘𝑘 .

(9)

Proof. If 𝑡𝑅𝑖 < 𝑠1𝑖 or 𝑡𝑅𝑖 > 𝑒𝑚𝑖𝑖 (i.e., the outer time window
is violated at port 𝑖), it is clear that the time window
violation should be adjusted by moving 𝑡𝑖 to the right or
left, respectively. On the other hand, if 𝑒𝑗𝑖 < 𝑡𝑅𝑖 < 𝑠𝑗+1𝑖
(i.e., the inner time window is violated at port 𝑖), there exist
two possible directions of violation adjustment, that is, left
or right. If 𝑒𝑗𝑖 < 𝑡𝑅𝑖 < 𝑠𝑗+1𝑖 , we assume that 𝑡∗𝑖 ≤ 𝑒𝑗𝑖 or
𝑡∗𝑖 ≥ 𝑠

𝑗+1
𝑖 arbitrarily. Let 𝑌 be the total number of ports at

which inner timewindows are violated.Then, there exist total
2𝑌 possible cases to consider. For each case, we define a time
gap of infeasibility at port 𝑖, denoted by Δ 𝑖, for all 𝑖 ∈ Ψ as
follows.

If 𝑡𝑅𝑖 < 𝑠1𝑖 , Δ 𝑖 = Δ𝑅𝑖 = 𝑠1𝑖 − 𝑡𝑅𝑖 .
If 𝑒𝑗𝑖 < 𝑡𝑅𝑖 < 𝑠

𝑗+1
𝑖 and 𝑡∗𝑖 ≤ 𝑒

𝑗
𝑖 , Δ 𝑖 = Δ𝐿𝑖 = 𝑡𝑅𝑖 − 𝑒

𝑗
𝑖 , where

1 ≤ 𝑗 < 𝑚𝑖.
If 𝑒𝑗𝑖 < 𝑡𝑅𝑖 < 𝑠

𝑗+1
𝑖 and 𝑡∗𝑖 ≥ 𝑠

𝑗+1
𝑖 , Δ 𝑖 = Δ𝑅𝑖 = 𝑠

𝑗+1
𝑖 − 𝑡𝑅𝑖 ,

where 1 ≤ 𝑗 < 𝑚𝑖.
If 𝑡𝑅𝑖 > 𝑒𝑚𝑖𝑖 , Δ 𝑖 = Δ𝐿𝑖 = 𝑡𝑅𝑖 − 𝑒

𝑚𝑖
𝑖 .

If 𝑡∗𝑖 ≤ 𝑒
𝑗
𝑖 and 𝑒

𝑗
𝑖 < 𝑡𝑅𝑖 < 𝑠

𝑗+1
𝑖 , itmeans that the violation should

be adjusted to the left, while the violation should be adjusted
to the right if 𝑡∗𝑖 ≥ 𝑠

𝑗+1
𝑖 . Since it is known whether 𝑡∗𝑖 ≤ 𝑒

𝑗
𝑖 or

𝑡∗𝑖 ≥ 𝑠
𝑗+1
𝑖 if 𝑒𝑗𝑖 < 𝑡𝑅𝑖 < 𝑠

𝑗+1
𝑖 in each of the 2𝑌 cases, violation

adjustment direction is also determined for all violations in
each case. This means that the inner time window violation
can be treated as the outer time window violation in each of
the 2𝑌 cases. According to Propositions 2 and 3 of Hvattum
et al. [18], the (outer) time window constraint with the largest
violation should be binding. Let 𝑘 = argmax𝑖∈Ψ(Δ 𝑖). Then,
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Figure 2: Occurrence of left and right time gaps of infeasibility at
port 2 resulting from the constant ship speed V𝑅 in the four-port
example.

Δ 𝑘 ≥ min(Δ𝐿𝑖 , Δ𝑅𝑖 ) for all 𝑖 ∈ Ψ. By applying Propositions 2
and 3 of Hvattum et al. [18] to each of the 2𝑌 cases, we have
𝑡∗𝑘

=

{{{{{{{
{{{{{{{
{

𝑠1𝑘, if 𝑡𝑅𝑘 < 𝑠1𝑘,
𝑒𝑗
𝑘
, if 𝑒𝑗

𝑘
< 𝑡𝑅𝑘 < 𝑠

𝑗+1

𝑘
, 𝑡∗𝑘 ≤ 𝑒

𝑗

𝑘
, where 1 ≤ 𝑗 < 𝑚𝑘,

𝑠𝑗+1
𝑘
, if 𝑒𝑗

𝑘
< 𝑡𝑅𝑘 < 𝑠

𝑗+1

𝑘
, 𝑡∗𝑘 ≥ 𝑠

𝑗+1

𝑘
, where 1 ≤ 𝑗 < 𝑚𝑘,

𝑒𝑚𝑘
𝑘
, if 𝑡𝑅𝑘 > 𝑒𝑚𝑘𝑘 .

(10)

An optimal solution belongs to one of the 2𝑌 cases and
max(Δ𝐿𝑘, Δ𝑅𝑘) ≥ Δ 𝑘 in any case. Therefore, there exists at least
one port 𝑘 for whichmax(Δ𝐿𝑘, Δ𝑅𝑘) ≥ min(Δ𝐿𝑖 , Δ𝑅𝑖 ) for all 𝑖 ∈ Ψ
and

𝑡∗𝑘

=
{{{{
{{{{
{

𝑠1𝑘, if 𝑡𝑅𝑘 < 𝑠1𝑘,
𝑒𝑗
𝑘
or 𝑠𝑗+1
𝑘
, if 𝑒𝑗

𝑘
< 𝑡𝑅𝑘 < 𝑠

𝑗+1

𝑘
, where 1 ≤ 𝑗 < 𝑚𝑘,

𝑒𝑚𝑘
𝑘
, if 𝑡𝑅𝑘 > 𝑒𝑚𝑘𝑘 .

(11)

In the four-port example, 𝑡∗4 = 1000 and V𝑅 = 15. Since
𝑡𝑅2 = 266.7, 𝑡𝑅3 = 600, and 𝑡𝑅4 = 1000, we have Ψ = {2, 3} and
Δ𝐿2 = 16.7, Δ𝑅2 = 33.3 (as shown in Figure 2), Δ𝐿3 = 50, and
Δ𝑅3 = 100. According to Proposition 4, 𝑡∗3 = 550 or 700. Note
that 𝑡∗2 = 250 or 300 is not ensured because max(Δ𝐿2, Δ𝑅2) <
min(Δ𝐿3, Δ𝑅3).

4. An Exact Algorithm

Based on the proposed propositions, we develop a recursive
partitioning algorithm (RPA) to find an optimal solution for
[P]. The RPA is an extension of the RSA of Norstad et al.
[17] and Hvattum et al. [18]. The basic idea of the algorithm
is to maintain a constant ship speed throughout the entire
route as best as possible and divide the ship route into two
subroutes recursively if start time of service is not within any
of the ports’ time windows by fixing start time of service at
one of its optimal candidates obtained by Proposition 4. In
the algorithm, all possible optimal partitions are evaluated
and the best one is selected. Pseudocode of the RPA is given
as shown in Algorithm 1.

The RPA can be seen as a tree search algorithm as the
RSA of Norstad et al. [17] in that it recursively partitions the
problem into two subproblems at each node. In the RSA, the
way of optimally partitioning the problem is unique in each

node; that is, the problem is divided into two subproblems
by binding the largest violation, while possible candidates of
optimal partitioning are up to 2|Ψ| for the RPA in each node.
Since |Ψ| ≤ 𝑛 − 2 − 𝑖 in level 𝑖, where 𝑖 = 0, 1, . . . , 𝑛 − 2,
the total number of possible ways of partitioning is up to
2𝑛−2(𝑛 − 2)!. According to Hvattum et al. [18], the RSA, a
one-way partitioning algorithm, has the worst-case running
time of 𝑂(𝑛2). The worst-case running time of the RPA is
2𝑛−2(𝑛 − 2)! times that of the RSA. Therefore, the RPA has
the worst-case running time of 𝑂(𝑛!). Although the RPA
has a very bad worst-case performance, it is expected to
perform well in practice because |Ψ| is usually much less
than 𝑛 in each level (especially in high levels) and further-
more we only need to consider 𝑘 ∈ Ψ, where max(Δ𝐿𝑘, Δ𝑅𝑘) ≥
min(Δ𝐿𝑖 , Δ𝑅𝑖 ) according to Proposition 4, which is validated
through computational experiments in the next section.

For the four-port example, RPA(1, 4, 0, 1000) is executed
at first to obtain V𝑅 = 15 in line (1), 𝑡2 = 266.7, 𝑡3 =
600, and 𝑡4 = 1000 in lines (4)∼(5). Since 𝑒12 (=250) <
𝑡2 < 𝑠22 (=300) and 𝑒13 (=550) < 𝑡3 < 𝑠23 (=700), we
obtain Ψ = {2, 3} in lines (7)∼(9), and Δ𝐿2 = 16.7, Δ𝑅2 =
33.3, Δ𝐿3 = 50, and Δ𝑅3 = 100 in lines (17)∼(23). Since
max(Δ𝐿2, Δ𝑅2) < min(Δ𝐿3, Δ𝑅3), Partition(⋅) is not executed for
𝑘 = 2 in line (25). For 𝑘 = 3, Partition(1, 3, 4, 550) is executed
in line (33) and RPA(1, 3, 0, 550) and RPA(3, 4, 550, 1000)
are recursively called in line (41). In RPA(1, 3, 0, 550), V𝑅 =
V1,2 = V2,3 = 16.36, 𝑡2 = 266.7, 𝑡3 = 550, and
Ψ = ⌀. RPA(1, 3, 0, 550) returns 24,099.2 in line (14). In
RPA(3, 4, 550, 1000), V𝑅 = V3,4 = 13.33, 𝑡3 = 550, 𝑡4 =
1000, and Ψ = ⌀. RPA(3, 4, 550, 1000) returns 10,666.6.
Then, Partition(1, 3, 4, 550) has 𝑍 of 34,765.8 in line (41) and
the variables min and Vmin

𝑖,𝑖+1s are updated in lines (42)∼(45).
On the other hand, Partition(1, 3, 4, 700) is executed in line
(35) and has 𝑍 of 38,877.6 after executing RPA(1, 3, 0, 700)
and RPA(3, 4, 700, 1000). In Partition(1, 3, 4, 700), min and
Vmin
𝑖,𝑖+1 are not updated since 𝑍 (=38,877.6) is greater than
min (=34,765.8). Lastly, RPA(1, 4, 0, 1000) obtains an optimal
solution in which V1,2 = 16.36, V2,3 = 16.36, V3,4 = 13.33,
𝑡2 = 244.50, 𝑡3 = 550, and 𝑡4 = 1000 in lines (36)∼(39) and
returns the objective function value of the optimal solution
(=34,765.8) in line (40).

5. Computational Experiments

To test performance of the RPA, 25 test instances were
randomly generated. We modified the problem generation
method of Kim et al. [2] to generate the test instances. In our
method, parameters of the test instances were set as follows:

(1) The number of ports in the route, 𝑛, is set to five
levels: 10, 20, 30, 40, and 50. (Very large-sized problem
instances are included in the test set to gain deeper
insights into the performance of the suggested algo-
rithm although the number of port calls is usually less
than 20 in the maritime industry.)

(2) Themaximum number of time windows (MNTW) at
each port is set to five levels: 2, 4, 6, 8, and 10. (At each
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RPA(𝑠, 𝑒, 𝑠𝑠, 𝑒𝑒)
(1) V𝑅 ← ∑𝑒−1𝑖=𝑠 𝑑𝑖,𝑖+1/(𝑒𝑒 − 𝑠𝑠 − ∑𝑒−1𝑖=1 𝑝𝑖)
(2) for 𝑖 ← 𝑠 to 𝑒 − 1
(3) V𝑖,𝑖+1 ← V𝑅
(4) for 𝑖 ← 𝑠 + 1 to 𝑒
(5) 𝑡𝑖 ← 𝑡𝑖−1 + 𝑝𝑖−1 + 𝑑𝑖−1,𝑖/V𝑖−1,𝑖
(6) Ψ ← ⌀
(7) for 𝑖 ← 𝑠 to 𝑒
(8) if there does not exist any 𝑗 such that 𝑠𝑗𝑖 ≤ 𝑡𝑖 ≤ 𝑒𝑗𝑖 for all 𝑗
(9) Ψ ← Ψ ∪ {𝑖}
(10) if Ψ = ⌀
(11) total fuel consumption← 0
(12) for 𝑖 ← 𝑠 to 𝑒 − 1
(13) 𝑍 ← 𝑍 + 𝑐 ⋅ 𝑑𝑖,𝑖+1 ⋅ V2𝑖,𝑖+1
(14) return(𝑍)
(15) if Ψ ̸= ⌀
(16) min←∞
(17) for 𝑖 ∈ Ψ
(18) if 𝑡𝑖 < 𝑠1𝑖
(19) Δ𝐿𝑖 ← 0 and Δ𝑅𝑖 ← 𝑠1𝑖 − 𝑡𝑖
(20) else if 𝑡𝑖 > 𝑒𝑚𝑖𝑖
(21) Δ𝐿𝑖 ← 𝑡𝑖 − 𝑒𝑚𝑖𝑖 and Δ𝑅𝑖 ← 0
(22) else
(23) Δ𝐿𝑖 ← 𝑡𝑖 − 𝑒𝑗𝑖 and Δ𝑅𝑖 ← 𝑠𝑗+1𝑖 − 𝑡𝑖
(24) for 𝑘 ∈ Ψ
(25) if max(Δ𝐿𝑘, Δ𝑅𝑘) ≥ min(Δ𝐿𝑖 , Δ𝑅𝑖 ) for all 𝑖 ∈ Ψ
(26) if 𝑡𝑘 < 𝑠1𝑘
(27) 𝑡𝑘 ← 𝑠1𝑘 and Partition(𝑠, 𝑘, 𝑒, 𝑡𝑘)
(28) else if 𝑡𝑘 > 𝑒𝑚𝑘𝑘
(29) 𝑡𝑘 ← 𝑒𝑚𝑘𝑘 and Partition(𝑠, 𝑘, 𝑒, 𝑡𝑘)
(30) else
(31) for ℎ ← 1 to 2
(32) if ℎ = 1
(33) 𝑡𝑘 ← 𝑒𝑗𝑘 and Partition(𝑠, 𝑘, 𝑒, 𝑡𝑘)
(34) else
(35) 𝑡𝑘 ← 𝑠𝑗+1𝑘 and Partition(𝑠, 𝑘, 𝑒, 𝑡𝑘)
(36) for 𝑖 ← 𝑠 to 𝑒 − 1
(37) V𝑖,𝑖+1 ← Vmin

𝑖,𝑖+1

(38) for 𝑖 ← 𝑠 + 1 to 𝑒
(39) 𝑡𝑖 ← 𝑡𝑖−1 + 𝑝𝑖−1 + 𝑑𝑖−1,𝑖/V𝑖−1,𝑖
(40) return(min)

Partition(𝑠, 𝑘, 𝑒, 𝑡𝑘)
(41) 𝑍 ← RPA(𝑠, 𝑘, 𝑠𝑠, 𝑡𝑘) + RPA(𝑘, 𝑒, 𝑡𝑘, 𝑒𝑒)
(42) if (𝑍 < min)
(43) min← 𝑍
(44) for 𝑖 ← 𝑠 to 𝑒 − 1
(45) Vmin

𝑖,𝑖+1 = V𝑖,𝑖+1

Algorithm 1

port, the number of time windows is between 1 and
MNTW.)

(3) Vmin and Vmax are set to 12 knots and 25 knots, respec-
tively.

(4) 𝑑𝑖,𝑖+1 is randomly generated between 500 and 2,000
nautical miles for 1 ≤ 𝑖 ≤ 𝑛 − 1, corresponding to
about 1∼11 sailing days when sailing at 18.5 knots.

(5) The factor of converting speed to the fuel consump-
tion, 𝑐, is set to 0.02.

(6) The outer time window size of port 𝑖, 𝑒𝑚𝑖𝑖 − 𝑠1𝑖 , is set to
120 hours for all 𝑖.

(7) 𝑝𝑖 ∼ 𝑈(24, 48), where𝑈(𝑎, 𝑏) is a randomly generated
real value using a uniform distribution from 𝑎 to 𝑏.
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Table 1: CPU time and the total number of recursive calls required for the RPA to find optimal solutions.

MNTW 𝑛 = 10 𝑛 = 20 𝑛 = 30 𝑛 = 40 𝑛 = 50
2 0.000† (5)‡ 0.000 (155) 0.015 (3861) 0.047 (24374) 0.670 (410026)
4 0.000 (86) 0.000 (575) 0.016 (9728) 0.063 (51727) 3.994 (2584703)
6 0.000 (37) 0.000 (186) 0.000 (2464) 0.063 (49175) 0.156 (101315)
8 0.000 (13) 0.000 (456) 0.000 (707) 0.047 (20931) 0.047 (21799)
10 0.000 (15) 0.000 (302) 0.015 (9255) 0.016 (7344) 0.031 (15801)
†: the CPU time (seconds).
‡: the total number of recursive calls.

(8) 𝑠𝑖 = 𝑠𝑖−1 + 𝑝𝑖−1 + 𝑑𝑖−1,𝑖/Vmax and 𝑒𝑖 = 𝑠𝑖 + 120 for all
𝑖 ≥ 2, where 𝑠1 = 𝑒1 = 1.

(9) 𝑠1𝑖 = 𝑠𝑖 and 𝑠
𝑗
𝑖 = 𝑒
𝑗−1
𝑖 + 𝑎𝑖/(𝑚𝑖 − 1) for all 𝑖 and 𝑗 ≥ 2,

where 𝑎𝑖 = 120/(𝑚𝑖 + 1).

(10) If 𝑚𝑖 = 1, 𝑒1𝑖 = 𝑒𝑖. Otherwise, 𝑒𝑗𝑖 = 𝑠
𝑗
𝑖 + 𝑎𝑖 for all 𝑖 and

𝑗.

TheRPAwas run on a PCwith an Intel i5 CPU at 3.3 GHz.
Table 1 shows CPU time required by the algorithm and the
total number of recursive calls in the algorithm to find an
optimal solution for each instance. The RPA was very fast; it
required only 0.98 seconds on the average even for the largest-
sized instances. The CPU time was affected by the number of
ports but not by the MNTW. This is because the CPU time
is directly related to the total number of recursive calls of
RPA(⋅) which is again related to |Ψ|, the number of ports at
which start time of service is not within any of the ports’ time
windows when the ship sails at a constant speed V𝑅.

6. Concluding Remarks

In this study, we suggest a nonlinear mixed integer pro-
gramming model for the ship speed optimization problem
with multiple time windows. We extend existing literature to
derive optimality properties and develop an exact algorithm
for the problem. Computational experiments show that the
suggested algorithm is very fast in finding optimal solutions
even for very large-sized problem instances. The suggested
algorithm itself can be used to determine the economic ship
speed and as a subroutine in the ship routing and scheduling
algorithms in the shipping industry.

Notations

Parameters

𝑛: Number of ports on the route
𝑑𝑖,𝑖+1: Nautical distance between port 𝑖 and

port 𝑖 + 1 [nautical miles]
𝑓(V): Daily fuel consumption of a ship

navigating in speed V [tons/day]
𝑚𝑖: Number of time windows at port 𝑖

𝑠𝑗𝑖 : Start time of the 𝑗th time window at port 𝑖
𝑒𝑗𝑖 : End time of the 𝑗th time window at port 𝑖
𝑝𝑖: Cargo service time at port 𝑖
Vmin: Minimum allowable speed of the ship

[knots]
Vmax: Maximum allowable speed of the ship

[knots].

Decision Variables

V𝑖,𝑖+1: Speed of the ship sailing from port 𝑖
to port 𝑖 + 1 [knots]

𝑡𝑖: Time at which service starts at port 𝑖
𝑧𝑖,𝑗: Equalling 1 if service starts at port 𝑖

within the 𝑗th time window and 0
otherwise.
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