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Assimilating observations to a land surface model can further improve soil moisture estimation accuracy. However, assimilation
results largely rely on forecast error and generally cannot maintain a water budget balance. In this study, shallow soil moisture
observations are assimilated intoCommonLandModel (CoLM) to estimate the soilmoisture in different layers. A proposed forecast
error inflation and water balance constraint are adopted in the Ensemble Transform Kalman Filter to reduce the analysis error and
water budget residuals.The assimilation results indicate that the analysis error is reduced and the water imbalance is mitigated with
this approach.

1. Introduction

As a key component of land underlying surface, soil plays an
essential role in the exchange of energy, heat, water vapor and
carbon dioxide between the land surface and atmosphere [1].
Soil moisture is an important land surface variable that can
directly affect vegetation respiration, transpiration, and vari-
ous chemical reactions.These actions will ultimately result in
the redistribution of surface energy and water by changing
the surface albedo, soil heat capacity, surface evaporation, and
vegetation growth [2, 3].

Many studies have investigated soil moisture assimila-
tion in different locations and on different time scales. For
instance, a study assimilating the near-surface observations
focused on the effect of ensemble size and observation depth
[4]. The dual-based data assimilation system for assimilating
satellite observations of soil moisture reproduces the tempo-
ral evolution of daily soil moisture, especially under freezing
conditions [5]. The assimilation of satellite data to a land
surface model can further improve soil moisture estimation

accuracy [6–9], which can also interactively or simultane-
ously estimate model parameters and surface variables [10,
11].

Generally speaking, soil moisture estimation is mainly
from land surface model simulation and observation. Land
surface models (e.g., Common Land Model, CoLM) [12–15],
which use observations of surface meteorological conditions
and precipitation, can characterize the exchange of energy
and water within the surface layer. Soil moisture simulations
from land surface models can provide temporally and spa-
tially continuous series, but limited to the specification of
the forcing variables, uncertain model parameters describing
the exchange of energy and water with the atmosphere and
models, and imperfect model physical processes [16].

The advantage of observation is that it can obtain the
value of the observed variable on the represented time and
space [17]. However, in situ soil moisture observations can
only represent a very spatially limited range and cannot meet
the needs of regional studies due to the heterogeneity of
surface variables [18, 19]. Satellite remote sensing data are
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only roughly available at shallow layers and cannot provide
complete soil moisture profiles [20, 21].

Based on observations and model simulations, land sur-
face data assimilation can provide an analysis of soil moisture
with less uncertainty and better coverage. The assimilation
results are largely limited to meteorological forcing error,
which is one of the error sources in model simulation.
Therefore, forcing data with long term and high precision
are very important for improving the simulation capability
of land surface models [22–24]. Many studies use reanalysis
data directly or corrected reanalysis data withmonthly obser-
vations [25]. However, observations from approximately
200 stations were only offered by China for international
exchange to construct such datasets. Therefore, their quality
over China mainland is questionable. Recently, a new China
mainland forcing field (including near-surface air tempera-
ture, relative humidity, surface pressure, wind speed, precip-
itation, downward shortwave radiation, and longwave radia-
tion) is constructed by fusing hourly observation, reanalysis,
and remote sensing data [26], which is evaluated in this study.

On the other hand, the assimilation results crucially rely
on the estimation accuracy of the forecast and observation
error covariance matrices for any assimilation methods [27,
28].TheEnsemble TransformKalman Filter (ETKF) is a com-
monly used assimilation method, that has been widely stud-
ied and applied in atmospheric science research [29, 30]. In
ETKF, the forecast perturbations are transformed into analy-
sis perturbations by multiplying a transformation matrix and
the eigenvector decomposition of a matrix of the ensemble
size is used to construct the transform matrix [31, 32]. Past
research on ensemble based land data assimilation methods
have found that the ensemble spread decreases during model
integration because the ensemble forecasts use the same
boundary and meteorological forcing. In ETKF, the forecast
error is initially estimated as the perturbed forecast states
minus their ensemble mean. The sampling errors in such
estimations, resulting from the limited ensemble size as well
as the poor initial perturbations and model error, can gener-
ally lead to an underestimate of the forecast error covariance
matrix and can eventually result in filter divergence [33, 34].
Therefore, using inflation techniques to address the under-
estimation of forecast error becomes increasingly important
[35].

Basically, there are two approaches for estimating the
multiplicative inflation factors based on the innovation
statistic: the moment estimation [36, 37] and the maximum
likelihood estimation [38–40] which is applied in this study.
Liang et al. [38] compared the two methods using Lorenz-
96 model as a test bed and found out that the maximum
likelihood approach leads to a smaller analysis error than the
moment estimation approach (in their Figure 3). This is a
reason for us to use maximum likelihood estimation in this
study. Moreover, the −2 log-likelihood can be used as the
cost function to estimate both inflation factor and threshold
layer, while this cannot be done if the moment estimation is
applied.The effect of forecast error inflation is investigated for
reducing the analysis error.

In addition to reducing the analysis error in land surface
data assimilation, obtaining a balanced or closed water

budget is extremely important for analyzing the terrestrial
hydrological cycle. The terrestrial water budget simulated
by land surface models (LSMs) is a key process of the
global hydrologic cycle and an important part of the physical
consistency [41]. The physical consistency (i.e., closure of
the water budgets) can be maintained by constructing water
balance constraint in land surface models [42]. A balanced
or closed water budget is important for estimating runoff,
developing and validating hydrological models, and better
understanding land-atmosphere water exchange processes
[43]. However, state updating in land surface data assimila-
tion generally degrades the water budget balance, because the
analysis increment compensates for system biases or errors
but does not conserve water. If the degree of water imbalance
is excessive, it is reasonable to develop a data assimilation sys-
tem that can remove or reduce the imbalance of water.There-
fore, the water balance constraint technique is often adopted
in the assimilation procedure to compensate for this defect.
Pan and Wood [42] derived a two-stage constrained Kalman
filter solution in which the first stage is a traditional Kalman
filter and the second stage imposes a water balance constraint
in an optimal manner. Yilmaz et al. [43, 44] introduced a
weak constraint solution to the conventional data assimila-
tion systems to reduce the water budget imbalance. In this
study, the water balance constraint is adopted for the ETKF
assimilation schemewith forecast error inflation.The effect of
the water balance constraint is investigated for reducing the
water budget residual.

As a case study, the ETKF assimilation scheme with a
water balance constraint is applied to the AutomaticWeather
Station (AWS) located in the Daxing district of Beijing
(39∘37N, 116∘25E). The new forcing data are interpolated to
the in situ observation station and the corresponding accu-
racy is evaluated.Then, the interpolated forcing data are used
to driveCoLM, and the shallow soilmoisture observations are
assimilated to estimate the soil moisture in different layers.
The analysis errors and water budget residuals are com-
pared among the different schemes. The assimilation results
can provide some experiences for satellite data assimilation
for future research.

The rest of the paper is organized as follows. The model
and data are introduced in Section 2. The modified ETKF
schemes with forecast error inflation and a water balance
constraint are described in Section 3.The assimilation results
of the observation station are presented in Section 4. Lastly,
Section 5 provides discussions and the conclusions are in
Section 6.

2. Model and Data

2.1. Model. The development of Common Land Model
(CoLM) dates back to the mid-1990s, and it is based on
land surface model (LSM) [45]. The biosphere-atmosphere
transfer scheme (BATS) [46] and the Institute ofAtmospheric
Physics land surface model (IAP 94) [47] also account for
different physical processes, such as glaciers, lakes, wetlands,
and dynamic vegetation. It can be described as a community
effort and that has been widely adopted by multiple climate
models. Many researchers have studied land state simulation
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Table 1: The node depths (cm) of 10 soil layers in the CoLMmodel.

Layer 1 2 3 4 5 6 7 8 9 10
Depth (cm) 0.7 2.8 6.2 11.9 21.2 36.6 62.0 103.8 172.8 286.5
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Figure 1: The blue circle is the location of the observation site
in Daxing district of Beijing (39∘37N, 116∘25E). The dominant
vegetation type in the area is corn/wheat.

and assimilation based on this generally used model. For
instance, assimilating the MODIS-based albedo and snow
cover fraction can improve snow depth simulation [48], and
the estimation of water and energy fluxes during the growing
season is useful for data-limited heterogeneous farmland
[49].

Themodel performance has been validated in very exten-
sive field data, including sites adopted by the Project for the
Intercomparison of Land-Surface Parameterization Schemes
and others [13]. There are 10 unevenly spaced soil layers (see
Table 1), one vegetation layer, and 5 snow layers (depending
on snow depth) in CoLM. The model parameters, including
global terrain, elevation, land use/vegetation, a land-water
mask, and soil types are available from the United States
Geological Survey (USGS) at 30-arc-second resolution. The
CoLM is set as the forecast model to simulate soil moisture in
this study.

2.2. SiteData. TheAutomaticWeather Station (AWS) studied
in this paper is located in the Daxing district of Beijing
(39∘37N, 116∘25E; see Figure 1) and the dominant vegeta-
tion type in the area is corn/wheat. The observation items
conclude air temperature/humidity/pressure, wind speed/
direction, precipitation, radiation, soil temperature/moisture,
and so on, and the collection frequency is every 10 minutes
from 2008 to 2010. The depths of the soil moisture sensor
are 5, 10, 20, 40, 60, and 100 cm. The data that are obviously
beyond the range of physical possibility are rejected, and
the gaps are filled using interpolation [50]. The shallow soil
moisture observations (at 5 cm) are assimilated to CoLM in
this study and the other soil moisture observations are used
for validation.

2.3. Forcing Data. The atmospheric forcing data used to run
CoLM mainly included the near-surface air temperature,

relative humidity, surface pressure, wind speed, precipitation,
downward shortwave radiation, and longwave radiation.The
accuracy of atmospheric forcing data is very important to the
simulation of the land surface model [22, 23, 51]. In many
studies, global atmospheric forcing datasets have beenmainly
derived from reanalysis datasets, such as the ERA-interim
dataset [52], the Climate Forecast System Reanalysis (CFSR)
dataset [25], and the Princeton forcing dataset [53]. However,
only observations from approximately 200 stations in China
have been used in the international exchanges to construct
such datasets. Therefore, their quality over China mainland
is questionable. To compensate for this defect, a method of
applying monthly observations to correct the reanalysis data
is widely used, which may lead to insufficient accuracy at
hourly scale and low spatial resolution.

Recently, a new technique is applied to construct an atmo-
spheric forcing dataset for China mainland with a resolution
of 1 × 1 km [26]. Firstly, a partial thin-plate smoothing spline
with orography and reanalysis data as explanatory variables
to ground-based observations is used to estimate the trend
surface. Secondly, a simple kriging procedure is used to
correct the residual. In Section 4, this dataset is accessed
through realistic meteorological observation data.

3. Methodology

3.1. Forecast andObservation System. Using notations similar
to those of Ide et al. [54], a nonlinear discrete-time forecast
system is written as

yf
𝑖

= 𝑀
𝑖−1
(ya
𝑖−1

) , (1)

where 𝑖 is the time step index; y is the n-dimensional state
vector (𝑛 = 126 inCoLM); the superscripts “f” and “a” specify
forecast and analysis respectively; and 𝑀

𝑖
is the nonlinear

forecast operator (CoLM in this study). The major objective
of this study is to assimilate the shallow soil moisture obser-
vations to improve the estimation of the variables related
to the water budget; that is, the 22-dimensional vector x =
(SMT

, SICT
,CWC, SWE)T in which SM and SIC are the 10-

dimensional vectors specifying the soil moisture and the soil
ice, respectively, at the 10 vertical levels shown in Table 1, and
the units are volume percentage % (1% = 0.01m3/m3); the
scalars CWC and SWE specify the canopy water content and
the snow water equivalent, respectively.

The observation system can be written as

𝑜
𝑖
= H
𝑖
xt
𝑖

+ 𝜀
𝑖
, (2)

where 𝑜
𝑖
is the soil moisture observations that are only

available at the depth of 5 cm at 0000 UTC every day; H
𝑖

is a 22-dimensional vector that linearly interpolates the soil
moisture at depths of 2.8 cm and 6.2 cm to the depth of
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5 cm; and 𝜀
𝑖
is the observation error which is assumed to

be statistically independent from the forecast error, is time-
uncorrelated, and has mean zero and covariance 𝑅

𝑖
.

3.2. ETKF with Forecast Error Inflation and Water Bal-
ance Constraint. To improve the assimilation efficiency, the
forecast error inflation technique is usually applied to the
assimilation procedure. In addition to reducing analysis error,
land data assimilation of soil moisture generally degrades the
water balance as a result of state updates. Following Yilmaz
et al. [43, 44], the water budget balance residual at time 𝑖 can
be expressed as

𝑟
𝑖
≡ 𝛽
𝑖
− cTx
𝑖
,

𝛽
𝑖
= cTx

𝑖−1
+ Pr
𝑖
− Ev
𝑖
− Rn
𝑖
,

(3)

where c is the 22-dimensional unit vector weighted by
1/3600 to unify the dimensions, Pr

𝑖
specifies precipitation

from atmospheric forcing data, and Ev
𝑖
and Rn

𝑖
specify

the diagnostic states of evapotranspiration and runoff. The
water budget balance residual 𝑟

𝑖
represents the difference

of the soil moistures at the current time step and previous
time step, considering precipitation, evapotranspiration, and
runoff.The detailed procedure of ETKF assimilation with the
proposed forecast error inflation andwater balance constraint
scheme is described as follows:

3.2.1. Forecast Step. Calculate the 𝑗th perturbed forecast state
at time 𝑖 as

yf
𝑖,𝑗

= 𝑀
𝑖−1,𝑗
(ya
𝑖−1,𝑗

) , (4)

where yf
𝑖,𝑗

is the 𝑗th perturbed forecast state at time 𝑖 and
ya
𝑖−1,𝑗

is the 𝑗th perturbed analysis state at time 𝑖 − 1 (𝑗 =
1, 2, . . . , 𝑚);𝑀

𝑖−1,𝑗
is the CoLM forced by the 𝑗th perturbed

atmospheric forcing data; and 𝑚 is the total number of
ensemble members (select as 100 in this study).

The mean forecast state of the variables related to the
water budget is defined as

xf
𝑖

=
1

𝑚

𝑚

∑

𝑗=1

xf
𝑖,𝑗

. (5)

The forecast error matrix and the forecast error covariance
matrix are initially estimated as

Xf
𝑖

= (xf
𝑖,1

− xf
𝑖

, . . . , xf
𝑖,𝑚

− xf
𝑖

) , (6)

P
𝑖
=

1

𝑚 − 1
Xf
𝑖

XfT
𝑖

, (7)

respectively.
Then the forecast error matrix is inflated to the following

form:

Xf(𝑠)
𝑖

= [√𝜆
(𝑠)

𝑖

]Xf
𝑖

, (8)

and the forecast error covariance matrix is adjusted as

P(𝑠)
𝑖

= [√𝜆
(𝑠)

𝑖

]P
𝑖
[√𝜆
(𝑠)

𝑖

] , (9)

where [√𝜆(𝑠)
𝑡

] is a diagonal matrix with the diagonal elements

√𝜆
(𝑠)

𝑡

and 𝑠 is the inflation layer that is selected by (11). For the
soil moistures in the layers shallower than 𝑠, 𝜆(𝑠)

𝑖

is a scalar 𝜆(𝑠)
𝑖

that inflates the forecast errors; the soil moisture in the layers
deeper than 𝑠 are not updated, and then the corresponding
elements of𝜆(𝑠)

𝑖

(i.e., the𝜆(𝑠)
𝑖

related to SM in the layer from 𝑠+
1 to 10) are set to zero; the forecast errors of the water budget
variables other than soil moistures are not inflated, and then
the corresponding elements of𝜆(𝑠)

𝑖

(i.e., the𝜆(𝑠)
𝑖

related to SIC,
CWC, and SWE) are set to unit. To cover the observations at
5 cm depth, the threshold layer 𝑠 should be larger than 3.

Because the observation and forecast errors are
assumed to be statistically independent of each other, time-
uncorrelated, and with mean zero and covariance P(𝑠)

𝑖

and
𝑅
𝑖
, the innovation statistic 𝑜

𝑖
− H
𝑖
xf
𝑖

is normally distributed
with mean zero and covariance H

𝑖
P(𝑠)
𝑖

HT
𝑖

+ 𝑅
𝑖
. Therefore,

the inflation factor 𝜆̂
(𝑠)

𝑖

can be estimated by minimizing
the following −2 log-likelihood of the innovation statistic
[38, 39]; that is,

𝐿
(𝑠)

𝑖

(𝜆
(𝑠)

𝑖

)

= ln (H
𝑖
P(𝑠)
𝑖

HT
𝑖

+ 𝑅
𝑖
)

+ (𝑜
𝑖
−H
𝑖
xf
𝑖

)
T
(H
𝑖
P(𝑠)
𝑖

HT
𝑖

+ 𝑅
𝑖
)
−1

(𝑜
𝑖
−H
𝑖
xf
𝑖

) .

(10)

The total objective function value 𝐿(𝑠) during the entire
assimilation period is

𝐿
(𝑠)

≡

𝑁

∑

𝑖=1

(𝐿
(𝑠)

𝑖

(𝜆̂
(𝑠)

𝑖

)) , (11)

which is treated as a function of the threshold layer 𝑠. For a
given 𝑠, the inflation factors 𝜆(𝑠)

𝑖

are estimated by minimizing
(10) and the value of 𝐿(𝑠) is also calculated through (11). Then
the threshold layer 𝑠 is selected as the smallest number such
that 𝐿(𝑠) is the smallest value among (𝐿(3), 𝐿(4), . . . , 𝐿(𝑠+1)).The
forecast error inflation is conducted using the selected 𝑠 and
the corresponding inflation factors 𝜆(𝑠)

𝑖

.

3.2.2. Analysis Step. Calculate the analysis state as

xa
𝑖

= xf
𝑖

+ Xf(𝑠)
𝑖

wa(𝑠)
𝑖

, (12)
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where wa(𝑠)
𝑖

is the weight vector, which is estimated by
minimizing the following objective function with a weak
water balance constraint [43]

𝐽
𝑖
(w) = (𝑚 − 1)wTw + (𝑜

𝑖
−H
𝑖
(xf
𝑖

+ Xf(𝑠)
𝑖

w))
T

⋅ 𝑅
−1

𝑖

(𝑜
𝑖
−H
𝑖
(xf
𝑖

+ Xf(𝑠)
𝑖

w))

+ (𝛽
𝑖
− c(𝑠)T (xf

𝑖

+ Xf(𝑠)
𝑖

w))
T

⋅ 𝜑
−1

𝑖

(𝛽
𝑖
− c(𝑠)T (xf

𝑖

+ Xf(𝑠)
𝑖

w)) ,

(13)

where c(𝑠) is a 22-dimensional vector similar to vector c but
where components corresponding to the soil moisture in the
layers deeper than 𝑠 are modified to zero, which is different
from Yilmaz et al. [43, 44]. One has that

𝜑
𝑖
=

1

𝑚 − 1

𝑚

∑

𝑗=1

(𝛽
𝑖,𝑗
− 𝛽
𝑖
)
2

(14)

is the error variance of 𝛽
𝑖
, and 𝛽

𝑖,𝑗
is the 𝑗th perturbed

realizations of 𝛽
𝑖
. For the linear observation operator, the

estimated weight vector had the following analytic form:

wa(𝑠)
𝑖

= P̃(𝑠)
𝑖

(Xf(𝑠)T
𝑖

HT
𝑖

𝑅
−1

𝑖

(𝑜
𝑖
−H
𝑖
xf
𝑖

)

+ Xf(𝑠)T
𝑖

c(𝑠)T𝜑−1
𝑖

(𝛽
𝑖
− c(𝑠)Txf

𝑖

)) ,

(15)

where P̃(𝑠)
𝑖

is the posterior variance of wa(𝑠)
𝑖

; that is,

P̃(𝑠)
𝑖

= ((𝑚 − 1) I + Xf(𝑠)T
𝑖

HT
𝑖

𝑅
−1

𝑖

H
𝑖
Xf(𝑠)
𝑖

+ Xf(𝑠)T
𝑖

c(𝑠)T𝜑−1
𝑖

c(𝑠)Xf(𝑠)
𝑖

)
−1

.

(16)

Then, calculate a perturbed analysis state as

xa
𝑖,𝑗

= xa
𝑖

+ Xf(𝑠)
𝑖

Wa(𝑠)
𝑖,𝑗

, (17)

where Wa(𝑠)
𝑖,𝑗

is the 𝑗th column of the matrix Wa(𝑠)
𝑖

= ((𝑚 −

1)P̃(𝑠)
𝑖

)
1/2 [31]. The analysis states of the variables other than

those related to the water budget are set as the corresponding
forecast states. Lastly, set 𝑖 = 𝑖 + 1 and return to the
Forecast Step for the next iteration.The complete assimilation
procedure is shown in Figure 2.

3.3. Validation Statistics. To compare the estimated 10 layers
of soilmoisturewith the 6 levels of soilmoisture observations,
a root-mean-square-error statistic is used:

RMSE (lev) = √ 1
𝑁

𝑁

∑

𝑖=1

((hxa
𝑖

) (lev) − 𝑜
𝑖
(lev))2, (18)

where h is the linear interpolation operator that interpolates
the soil moisture analysis to all of the depths of the observa-
tions and lev specifies the level of observations.

To test the effect of the forecast error inflation, a Chi-
square statistic [55] is used in this study. The statistic at time
𝑖 is defined as

𝜒
2

𝑖

= (𝑜
𝑖
−H
𝑖
xf
𝑖

)
T
(H
𝑖
P(𝑠)
𝑖

HT
𝑖

+ 𝑅
𝑖
)
−1

(𝑜
𝑖
−H
𝑖
xf
𝑖

) . (19)

If the forecast and observation error covariance matrix are
correctly estimated, the innovation statistic 𝑜

𝑖
− H
𝑖
xf
𝑖

is nor-
mally distributed with mean zero and covarianceH

𝑖
P(𝑠)
𝑖

HT
𝑖

+

𝑅
𝑖
; then 𝜒2

𝑖

will follow a Chi-square distribution with the
number of observations as its degrees of freedom [56]. The
value of 𝜒2

𝑖

in this study can be easily calculated and should
be close to 1. Therefore the inflation effect can be effectively
evaluated.

To illustrate the water budget balance at a location, the
water budget balance residual is calculated as follows:

𝑟 =
1

𝑁

𝑁

∑

𝑖=1

𝑟
𝑖
. (20)

If an assimilation scheme maintains a water budget balance,
the water balance residual should be close to 0.

4. Experimentation

4.1. Evaluation of the Atmospheric Forcing Data. In the
following experiments at the Daxing Automatic Weather
Station, the atmospheric forcing data with high precision are
obtained from the observations. To evaluate the accuracy of
interpolated forcing data (described in Section 2.3), CoLM
is driven using the interpolated data, the CFSR data, and the
ERA-interim data as the meteorological forcing for one year
(from June 1 2009 to May 31 2010). The simulated results are
then interpolated to the 6 observation layers and the corre-
sponding RMSE are plotted in Figure 3. Because the CFSR
data are used to estimate the trend surface when generating
the interpolated forcing data, the latter performs better than
the former in almost all 6 layers. In the shallow layers (5 cm
and 10 cm) and deep layers (60 cm and 100 cm), the RMSE
of the interpolated data is smaller than the ERA-interim data
but is converse in the middle layers (20 cm and 40 cm). This
may be due to the soil moisture in the deep layers fluctuating
slower than in the middle and shallow layers, and also the
interpolation errors in the shallow layers being smaller than
in the middle and deep layers. On the whole, the interpolated
data perform better than the CFSR data and the ERA-interim
data. Whether this is a general principal or is site dependent
will be validated further using more observations in the near
future.

Next, the interpolated forcing data are used to drive
CoLM from June 1 2009 to August 31 2010 to simulate the
soil moisture at the station. The results in the first year are
treated as spin-up and the last three months are used for the
assimilation experiments. The time-mean values of observed
and interpolated forcing data, as well as the corresponding
RMSEs of the seven variables, are listed in Table 2. The
simulated soil moistures using interpolated forcing data are
interpolated to the observation layer and are compared with
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Figure 2: The assimilation procedure of the experiments.

Table 2: The time-mean values of observed and interpolated forcing data, as well as the corresponding time-mean RMSEs: near-surface air
temperature, relative humidity, wind speed, precipitation, downward shortwave radiation, and longwave radiation.

Near-surface
air

temperature
(K)

Relative
humidity
(Kg/Kg)

Surface
pressure (Pa)

Wind speed
(m/s)

Precipitation
(mm/s)

Downward
shortwave radiation

(W/m2)

Downward
longwave

radiation (W/m2)

Observed forcing data 287.92 0.0080 101555 2.38 1.65𝑒 − 5 153.41 331.19
Interpolated forcing 287.91 0.0081 101017 2.26 1.91𝑒 − 5 180.53 353.81
RMSE 1.87 0.0019 618.36 1.52 0.0002 126.69 44.27

the soil moisture observations. The time-mean RMSEs for
the 6 observation layers are listed in Table 3. Generally
speaking, the interpolated forcing data are comparable with
the observed forcing data, especially for near-surface air tem-
perature and relative humidity. The simulated soil moisture
using interpolated forcing data is different from the observed
values but can be improved by assimilating the observation
to CoLM, which is introduced in the last section.

4.2. AssimilationResults. In this section, the interpolated data
are used to drive CoLM and the soil moisture observation
at the depth of 5 cm at 0000 UTC is assimilated every day
from June 1 2010 toAugust 31 2010.The four variables strongly
related to soil moisture (near-surface air temperature, pre-
cipitation, downward shortwave radiation, and longwave
radiation) are perturbed with a 5% error scale to generate
the ensemble forecast states. The initial values used during
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Table 3: The time-mean values of observed and simulated soil moisture in the observation layers, as well as the corresponding time-mean
RMSEs.

5 cm 10 cm 20 cm 40 cm 60 cm 100 cm Mean
Observed soil moisture 18.51 19.92 26.92 28.99 29.44 29.06 25.47
Simulated soil moisture 26.67 27.58 28.19 32.39 34.19 34.72 30.62
RMSE 5.80 4.29 7.53 11.38 4.88 3.27 6.19

Table 4: The time-mean RMSEs of estimated soil moistures in observation layers of different assimilation schemes.

5 cm 10 cm 20 cm 40 cm 60 cm 100 cm Mean
ETKF 5.89 4.85 3.98 2.12 3.93 5.47 4.37
ETKF-Inf (𝑠 = 6) 5.81 3.30 3.22 6.49 2.27 2.20 3.88
WCETKF 4.38 3.32 6.18 10.89 5.58 5.79 6.02
WCETKF-Inf (𝑠 = 5) 5.44 3.02 2.54 6.76 4.36 4.23 4.39

Mean
Observation layer
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Figure 3:The simulation results of soilmoisture in the 6 observation
layers using different meteorological forcing. Red bars: the inter-
polated forcing; green bars: the CFSR forcing; blue bars: the ERA-
interim forcing.

the assimilation period are the model forecasts after one
year’s spin-up.The assimilated soil moisture observations are
plotted in Figure 4.The observation error scale is set as 0.5%.
The following four ETKF assimilation settings are examined.

ETKF: traditional ETKF without forecast error infla-
tion and water balance constraint.
ETKF-Inf: ETKF with forecast error inflation but
without water balance constraint.
WCETKF: ETKF with water balance constraint but
without forecast error inflation.
WCETKF-Inf: ETKF with forecast error inflation and
water balance constraint.

The selected inflation layer is 5 forWCETKF-Inf and 6 for
ETKF-Inf using the criterion of (11) described in Section 3.2.1.
The estimated 10-layer soil moistures are interpolated to the
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Figure 4:The assimilated soilmoisture observation from June 1 2010
to August 31 2010.

6 observation layers and the corresponding RMSEs of these
assimilation schemes as well as the corresponding mean
values are listed in Table 4. For all of the four different assimi-
lation schemes, the RMSEs are generally smaller than those of
the simulations (the second row inTable 3), except in separate
layers. The mean RMSE of ETKF-Inf (3.88) is smaller than
that of ETKF (4.87), whereas the mean RMSE of WCETKF-
Inf (4.39) is smaller than that of WCETKF (6.02), indicating
that the forecast error inflation can improve the assimilation
accuracy. However, the mean RMSE of WCETKF (6.02)
is larger than that of ETKF (4.87), whereas the mean
RMSE of WCETKF-Inf (4.39) is larger than that of ETKF-Inf
(3.88), indicating that the water balance constraint may result
in assimilation accuracy loss to some extent.

The ensemble members of the ETKF-Inf scheme are
plotted in Figure 5, which indicates the uncertainty of our
analysis state to some extent. It shows that the ensemble
spreads in the very shallow and deep layers are relatively small
whereas those in the middle layers are slightly large, which
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Figure 5: The ensemble members of the ETKF-Inf (𝑠 = 6) scheme in the 6 observation layers from June 1 2010 to August 31 2010. (a)–(f) are
for the observation layers at 5 cm, 10 cm, 20 cm, 40 cm, 60 cm, and 100 cm, respectively.

is consistent with the fluctuation of the used forcing data.
This may be due to the assimilated observation being in the
shallow layer (at the depth of 5 cm) and the soil moisture in
the deep layers fluctuating slower than in the shallow layers.
Therefore the corresponding uncertainty in the very shallow
and deep layers seems to be small, whereas that in the middle
layers may be larger.

4.3. Water Budget Residual. The water balance constraint is
conducted in this study to reduce the water budget residual.
For the two assimilation schemes with inflating forecast error
on selected inflation layers, the water budget residual (see
(19)) of ETKF-Inf scheme is 0.1580mm, whereas it is only
0.0662mmofWCETKF-Inf scheme, indicating that thewater
balance constraint can reduce the water budget residual.
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5. Discussions

5.1. Inflation. It is widely recognized that the initial estimate
of ensemble forecast errors should be inflated to improve the
assimilated results. In this study, a method for estimating
the multiplicative inflation factors by minimizing the −2
log-likelihood of the innovation statistic is investigated. The
forecast errors of soil moisture in the layers shallower than
𝑠 are inflated, while the threshold layer 𝑠 is selected by
the criterion described in Section 3.2.1. To examine the
effect of the select criterion, the assimilation experiments are
conducted with the inflation layer from 3 to 10. The mean
RMSE and the value of the objective function as a function of
the inflation layer are plotted in Figure 6. For the assimilation
schemes with and without a water balance constraint, the
selected inflation layers are both consistent with the smallest
mean RMSE, indicating that the selected criteria described in
Section 3.2.1 are effective.

Another statistic to evaluate the effect of the forecast
error inflation is the Chi-square statistic (see (20)) described
in Section 3.3. For WCETKF-Inf and ETKF-Inf assimilation
schemes with selected inflation layers (5 and 6, resp.), as
well as the two assimilation schemes without a forecast
error inflation (ETKF and WCETKF), the corresponding
time series of 𝜒2

𝑖

from June 1 2010 to August 31 2010 are
plotted in Figure 7. It shows that the values are remarkably
close to 1 if the forecast error is inflated. In contrast, if the
initially estimated forecast error (i.e., 𝜆(𝑠)

𝑖

= 1) is used in
the assimilation procedure, the values of 𝜒2

𝑖

depart extremely
from 1.This indicates that the forecast error inflation method
used in this study is effective for correctly estimating the error
statistics.

The −2 log-likelihood function of the innovation statis-
tic seems like a good objective function to quantify the
goodness-of-fit of the forecast error covariance matrix. In
fact, suppose that the forecast and observation errors are
statistically independent of each other, time-uncorrelated,
and normally distributed with zero mean and covariance P(𝑠)
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Figure 7:The Chi-square statistic (see (20)) at the assimilation time
from June 1 2010 to August 31 2010 for the four assimilation schemes.
The black line: ETKF; the red line: ETKF-Inf (𝑠 = 6); the green line:
WCETKF; the blue line: WCETKF-Inf (𝑠 = 5).

and 𝑅
𝑖
; then the innovation statistic will also follow a normal

distribution with mean zero and covariance H
𝑖
P(𝑠)
𝑖

HT
𝑖

+ 𝑅
𝑖
.

Therefore the inflation factor estimationmethod based on the
−2 log-likelihood function will incorporate the information
of the whole distribution other than that of the moment.
In most cases of this study, the −2 log-likelihood function
corresponds to a smaller RMSE.

5.2. Water Balance Constraint. Assimilation of hydrological
observations (e.g., soilmoisture) can improve the estimates of
hydrological variables but generally results in water balance
degradation. To compensate for this defect, a water balance
constraint in the assimilation procedure becomes increas-
ingly important.

To evaluate the effect of the water balance constraint in
this study, the water balance residual (see (19)) is calculated
for the inflation layer from 3 to 10. The results of ETKF-
Inf and WCETKF-Inf assimilation schemes are plotted in
Figure 8. The figure clearly shows that, for each scheme,
the water balance residual increases as the inflation layer
increases. However, for a fixed inflation layer, the water
balance residual of the WCETKF-Inf assimilation scheme is
smaller than that of the ETKF-Inf assimilation scheme. This
illustrates that the water balance constraint is effective for
maintaining the water balance and the inflation layer selec-
tion is very important.

Another problem that requires attention is that, for a
fixed inflation layer, the mean RMSE of the WCETKF-Inf
assimilation is usually larger than that of the ETKF-Inf assim-
ilation scheme. In land data assimilation systems, the state
updates usually produce a water budget imbalance residual.
The analysis error may increase if a water balance constraint
is conducted, which may not be experiment dependent
but may be the general case. In fact, the cost function of
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Figure 8:The water balance residual as a function of inflation layer.
The solid line: ETKF-Inf; the dashed line: WCETKF-Inf.

the assimilation scheme with a water balance constraint is
the summation of three terms that represent the forecast
errors, observation errors, and the water budget imbalance,
respectively. The corresponding assimilation results can be
treated as a trade-off in reducing the analysis error and
water budget residual. Although it may lead to the analysis
error increasing, the water balance constraint can make
the land surface model more consistent in the physical
structure. A better understanding of the water budget can
also help to facilitate model parameterization development,
better understand the hydrological processes, improve our
knowledge of land-atmosphere water exchange and related
physical mechanisms and, therefore, help to improve our
ability to develop models.

6. Conclusion

In this study, interpolated forcing data is evaluated and
the observations in the shallow layer are assimilated to
CoLM to better estimate soil moisture. The forecast error is
inflated to improve the analysis state accuracy and the water
balance constraint is adopted to reduce the water budget
residual in the assimilation procedure. The experimental
results illustrate that the adaptive forecast error inflation can
reduce the analysis error, whereas the proper inflation layer
can be selected based on the −2 log-likelihood function of the
innovation statistic.Thewater balance constraint can result in
a substantially reduced water budget residual, at a low cost
of assimilation accuracy loss. The assimilation scheme can
potentially be applied to assimilate the remote sensing data
and we plan to do this in the near future.
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