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ABSTRACT

It is shown that if X is a uniformly convex Banach space and 5’ a bounded linear operator on

X for which [[I- 5’[[ 1, then 5’ is invertible if and only if [[I- 1/25’[[ < 1. From this it follows that

if 5’ is invertible on X then either (i) dist(I,[5"]) < 1, or (ii) 0 is the unique best approximation to

I from [5’], a natural (partial) converse to the well-known sufficient condition for invertibility that

dist(I,[5"]) < 1.
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1. Introduction. It is well-known [3, p. 584] that if 5’ is a bounded linear operator on a Banach

space X for which III- 5’11 < then 5’ is invertible. Equivalently, if [5’] denotes the subspace of

/(X) spanned by 5’, then 5’ is invertible if dist(l,[5"]) < 1. Simple examples show that in the

"extreme" case when III- 5’11 1 the operator 5’ may, or may not, be invertible.

In this paper we characterize the invertible operators 5’ on X for which III- 5’11 in the

case where X is a uniformly convex space (Theorem 1). As a consequence of this result we derive

a necessary condition for invertibility of an operator on a uniformly convex space in terms of best

approximation to the identity operator in (X) which is a natural complement to the sufficient

condition cited above (Theorem 2).

The terminology and notation used here is standard (e.g. [3]). For simplicity the word "oper-

ator" will be used to mean "bounded linear operator", the word "space" to mean "Banach space",

and the symbol/:(X) to denote the space of all operators on X. Finally, we recall that a space X is

called uniformly convex [2] if for each 0 < e _< 2 there exists 0 < < so that if Ilxll _< 1, IlY[[ -< 1,

and IIx- Yll-> in X, then IIx + Yll < 2(1- 6); e.g., it is well-known that every LP(p)-space with

< p < +cx) is uniformly convex [2].
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2. Our results are based on the following recent result of Abramovich, Aliprantis, and Burkinshaw

concerning Daugavet’s equation in uniformly convex spaces:

TmmOREM (A-A-B) [1]. If X is a uniformly convex space, an operator T on X satisties the

equation I[/+ Tll + IITll if and only ilITll is in t approximate point spectrum ofT (i.e. there

is a sequence {z,,} in X with I1=11-- for all n for which IIT= -IITIl.ll-. 0).

From this we have:

PXOPOSTON 1. Let X be a uniformly convex space and T an operator on X for which IITII 1.

Then lit + TII < 2 if and only if I- T is invertible on X.

Ptoor: If I- T is invertible then 1 IITil is not in the approximate point spectrum of T, so by

Theorem (A-A-B) above [[I + TII < 2.

On the other hand, if IITII nd I1 + TII < 2 then by Theorem (A-A-B) the number

is not in the approximate point spectrum of T so the operator I- T must be bounded below

on the unit sphere {11111 1} in x, and hence I- T is an isomorphism from X onto the

closed subspace ran(I- T) of X. If this range of I- T were a proper subspace of X then there

would exist a functional f E X* for which Ilfll and (I- T*)(f) 0; but then T*f f, so

III+Tll III+T*ll > II(+T*)(f)ll- 2, a contradiction. Therefore it must be that ran(I-T) X,

and I- T is invertible.

Now, as we remarked earlier, it is well-known that if S is an operator on a space X for which

lIE- all < 1 then S is invertible, but if III- all 1 no conclusion is possible. However we now show

that in contrast to the general case, if X is uniformly convex we can characterize exactly which

such operators are invertible.

THEOREM 1. Let X be a uniformly convex space and S an operator on" X for which Ill- Sll 1.

Then the following are equivalent:

(i) S is invertible.

(ii) III- 1/2Sll < x.

Oii) III- tall < 1 for all 0 < < 1.

PROOF: (i) : (ii). Suppose S is invertible, but I1- Sll >_ 1. Since lit- all 1 it follows that

III- 1/2all 1/21lI + (I- S)ll _< 1 as well, so III- 1/2all and hence III + (I- S)ll- 11mr- all 2.

But then by Proposition 1 (with T I- S) we have that S I- (I- S) is not invertible, a

contradiction. Therefore, if S is invertible it must be that III- 1/2Sll < 1.

(ii) = (iii). Suppose lie- 1/2Sll < 1 bt lie- t0Sll >_ 1for some 0 < to < 1. Again, this implies

I1- t0sII 1, and hence that II(x to)I + to(Z- S)ll IIIII III- sII- 1. By the Itahn-Banach
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Theorem it follows easily that II(1 t)I + t(I S)II for all 0 < < as well, a conlradiction to

(ii) when 1/2, so (ii) => (iii).

(iii) => (i). If IIZ- tsII < for all 0 < < 1, then for an_.n.Z such the operator tS must be invertible

by the condition cited above, implying S itself is invertible.

In terms of the geometry of the space (X) Theorem 1 has the equivalent fortnulation:

COROLLARY 1. If X is uniformly convex, S E .(X), and 11I- Sll {, then S is invertible if and

only if the open segment (I,I- S) in the unit ball 1t of l2(X) contains no boundary point of B.

Recall, too, that if X is any Banach space and T E (X) satisfies liar- TII < 1, then not only

is T invertible, but T-1 has the representation

T-l= I + (I- T)",
n=l

where this series converges absolutely in/(X) [3, p.584]. Using this result and Theorem we get

the same sort of representation for the inverse of an invertible operator S on a uniformly convex

space even when IIZ- Sll 1.

COROLLARY 2. Let X be a uniformly convex space and S an invertible operator on X for which

III- Sll 1. Then

S-1 2I "Jr" 2 E(I- S)n,
’-’1

where this series converges absolutely in L(X).

PROOF" Since S is invertible, by Theorem IlI- -Sll < 1. It follows (as above) that 1/2S is invertible

and (S)- I + E,=(I- 1/2S)n, from which the result follows.

Remark: While the assumption of uniform convexity in Theorem 1 is sutcient to imply the

conclusions of that theorem, it is possible to weaken this requirement somewhat and still obtain the

same results. For example, one can show that if X is only sumed to have a Kadec-Klee norm [4]

and X* is strictly convex then Theorem still holds. On the other hand, the fact that some fairly

strong geometric conditions must be imposed on X in order to obtain the conclusion of Theorem

1 can be easily seen by examples such as the following:

Example: Let S" 11 be defined by S(e) 1/2el + .]e2 and S(e,) e, for n >_ 2, where

{en}n=l denotes the standard basis for . Clearly S is invertible, 11I- sll sup II(I- S)e,ll 1,

nd yet liar- 1/2Sll sp I1(I- 1/2S)ell Ilea 1/2Selll 1 also, so Theorem fails to hold for

operators on 1.

Now let us return to a consideration of the criterion III- sII < for invertibility of an operator

S on am arbitrary Bamach space X. Since S is invertible if and only if AS is inveryible for some
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A 0, this condition admits the following interpretation in terms of approximation in (X)"

If [S] denotes the subspace of (X) spanned by S, and if dist (I,[S]) < 1, then S is inre,’tible.

In general, of course, the converse of this result need not hold; however, if X is uniformly

convex we can apply Theorem 1 to obtain an interesting partial converse which reveals further he

relationship between invertibility of an operator S and best approximation to I from the subspace

IS] of (X).

THEOREM 2. Let X be a uniformly convex space and S E (X). If S is invertible on X then either

O) dist (I, IS]) < 1, or

Oi) 0 is the unique best approxiamtion to I from IS].

PROOF: Suppose S is invertible on X and dist (l, [S]) >_ 1. Since dist(I,[S]) _< it must then be

that dist (I, [,5’]) III- 0[I so 0 is

_
best approximation to I from IS].

If 0 is not the unique best approximation there is some A 0 for which III- AS][ as

well. Since S is assumed to be invertible, A,S is invertible and by Theorem it follows that

I1- 1/2(S)ll < 1. But this is a contradiction to the fact that dist (I, [S]) 1, so 0 must, in fact, be

the unique best approximation, and the result follows.

ttemark: Again, the operator S of the example above shows that, in general, Theorem 2 need

not hold for an arbitrary space X. Exact conditions on X for the validity of Theorem 2 are not

known.
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