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Demand response (DR) is an effective method to lower peak-to-average ratio of demand, facilitate the integration of renewable
resources (e.g., wind and solar) and plug-in hybrid electric vehicles, and strengthen the reliability of power system. In smart grid,
implementing DR through home energy management system (HEMS) in residential sector has a great significance. However, an
algorithm that only optimally controls parts of HEMS rather than the overall system cannot obtain the best results. In addition,
single objective optimization algorithm that minimizes electricity cost cannot quantify user’s comfort level and cannot take a
tradeoff between electricity cost and comfort level conveniently. To tackle these problems, this paper proposes a framework of
HEMS that consists of grid, load, renewable resource (i.e., solar resource), and battery. In this framework, a user has the ability to
sell electricity to utility grid for revenue. Different comfort level indicators are proposed for different home appliances according to
their characteristics and user preferences. Based on these comfort level indicators, this paper proposes amultiobjective optimization
algorithm for HEMS that minimizes electricity cost and maximizes user’s comfort level simultaneously. Simulation results indicate
that the algorithm can reduce user’s electricity cost significantly, ensure user’s comfort level, and take a tradeoff between the cost
and comfort level conveniently.

1. Introduction

Over the past several decades, with the development of
economy, the electricity demandof thewholeworld increased
dramatically, which makes the power system encounter
stress conditions frequently. At the same time, the pressure
of natural resources and environmental problems have
attracted great attention to incorporation of clean, renewable
generation sources, such as wind and solar power [1, 2]. How-
ever, due to the variable and uncertainty characteristics, the
increasing penetration of renewable generation sources intro-
duces further challenges to the power system [3]. In addition
to these factors, the emergence of a large number of plug-in
hybrid electric vehicles (PHEVs) has the potential to
increase peak demand significantly, overload distribution
lines, degenerate distribution transformers, and threaten the

reliability of the power system [4–6]. To alleviate these
problems, demand response (DR) plays an important role.

DR is an effective method to lower peak-to-average
ratio of demand, improve the utilization of power assets,
strengthen the reliability of power system, and facilitate the
integration of renewable resources and PHEVs [7–11]. DR has
been successfully applied in industrial and commercial sec-
tors. On the other hand, in residential sector, it is difficult to
implement DR effectively because of little power consump-
tion of single residential customer, large numbers of customers,
and the lack of corresponding technologies and incentives in
conventional power grid. However, take theUSA, as example,
according to the report of the US Energy Information
Administration (EIA), the residential sector consumes 20%
of the total energy supply and dominates 60% of peak load in
certain parts of the country [12]. From this point of view,
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implementing DR in the residential sector has a great signif-
icance.

In recent years, with the emergence of smart grid, DR
in residential sector is getting more and more attention.
Different from the conventional grid, the smart grid has two-
way energy and information flows, which provides the base to
implement DR in the residential sector. Residents can control
the operations of their home appliances, batteries, PHEVs,
and distributed generation through home energy manage-
ment system (HEMS). Optimal scheduling algorithm is one
of the key components ofHEMS and a hot topic in smart grid.

Many papers have been published about the optimal
scheduling algorithms in HEMS.Most papers [1, 13–21] focus
on minimizing users’ electricity usage cost, while retaining
users’ comfort level at a predefined range. For example, in
[16], the authors developed a smart-grid strategy thatmatches
renewable energy generation (i.e., wind and solar power)with
the heating, ventilation, and air conditioning (HVAC) load.
In [19], the thermostatically controlled household loads are
scheduled based on electricity price and energy consumption
forecasts by considering users’ comfort level to minimize
electricity cost. In order to minimize the energy payment,
the authors in [20] proposed amultistage optimization-based
real-time residential load management algorithm that takes
into account load uncertainty. These algorithms are single
objective optimization algorithms, where user comfort is
transformed into a set of constraints.These algorithms do not
quantitatively consider users’ comfort level during operation.
However, from the users’ point of view, in addition to mon-
etary expense, high comfort level is another objective that
they pursue. Unfortunately, the objectives of cost and comfort
level are conflicting. Therefore, compared with single objec-
tive optimization algorithms that only consider energy pay-
ment, the multiobjective optimization algorithm that not
only minimizes monetary expense but also maximizes com-
fort level simultaneously is more attractive and natural.

For the moment, the multiobjective optimal scheduling
algorithm for HEMS has not been well investigated. In [22],
the authors proposed an optimal residential energy consump-
tion scheduling framework to achieve a tradeoff between
minimizing payment and waiting time for the operation of
each household appliance. In [22], waiting time is used to
indicate user’s comfort level. Although thismethod is suitable
to washing machine (WM), clothes dryer (CD), and dish-
washer (DW), it is meaningless for HVAC and electric water
heater (EWH), where the user’s concern is temperature. In
[23], the authors developed a multiobjective air condition-
ing control algorithm based on immune clonal selection
programming to determine the day-ahead 24 h temperature
schedule for air conditioning. In addition to electricity cost,
the expected error for the desired indoor temperature is
introduced as a user comfort level indicator and optimized as
an objective of the algorithm. However, this indicator cannot
reflect users’ temperature preferences in different seasons.

In smart grid, a residential customer not only has
home appliances that consume electricity, but also may have
distributed renewable generation (e.g., wind and PV) and
batteries which may have extra electricity sold to the grid for
revenue as presented [1, 14]. However, the optimal scheduling

algorithms proposed in those papers did not consider the
power distribution relationships among loads, batteries, dis-
tributed renewable generation, and grid. For example, the
algorithms in [17–23] only schedule the operation of loads.
The systems proposed in [13–16] include load, storage system,
and distributed renewable generation, where the ability to sell
electricity to the grid is not considered. Although the system
described in [1, 14] consists of loads, batteries, and renewable
generation and the user has the ability to sell electricity to
the grid, the power distribution relationships among different
components of HEMS are not thoroughly investigated.

This paper proposes a HEMS framework that includes
loads, batteries, and renewable generation interconnected
with the grid through a smart mater. In this framework, the
user can sell the electricity generated by renewable sources or
stored in batteries to the grid for profit. A set of comfort level
indicators are proposed for different home appliances. Based
on these indicators, a multiobjective optimal schedule model
is built, which minimizes monetary expense and maximizes
user comfort level simultaneously. An improved hybrid
discrete particle swarm optimization (PSO) is employed to
solve themodel, and amultiobjective optimization algorithm
forHEMS is proposed.The algorithm schedules the operation
of home appliances, batteries, and renewable generation (i.e.,
PV) as well as the optimal power distribution among loads,
batteries, renewable generation, and grids.

The rest of this paper is organized as follows. Section 2
proposes a framework of HEMS and presents models and
constraints of home appliances and batteries. Section 3 des-
cribes the comfort level indicators for different home appli-
ances and the formulation of the HEMS optimization prob-
lem, including the optimization objectives and constraints.
Section 4 presents a multiobjective optimization algorithm
based on an improved hybrid discrete PSO technique.
Section 5 provides a case study and compares the simulation
results of the proposed algorithm with other algorithms
proposed in the literature. Section 6 concludes the paper.

2. System Model

2.1. DR Abilities of Different Home Appliances. In terms of
the schedulability, home appliances can be divided into two
categories: schedulable appliances (SAs) and nonschedulable
appliances (NSAs). SAs refer to the appliances whose opera-
tions can be scheduled to a certain extent without reducing
user’s comfort level, such as WM, CD, DW, HVAC, and
EWH. On the contrary, NSAs are the appliances whose oper-
ations must be started immediately when users need their
services, such as computer, television, microwave oven, and
light. NSAs are also called critical loads. SAs can be further
classified into two groups: interruptible loads and uninter-
ruptible loads. For example, PHEVs are interruptible loads.
Uninterruptible loads refer to the appliances whose opera-
tions can be delayed, but after being started, theymust be kept
working until the tasks are completed, such as WM and DW.

Although several papers investigate the controllingmeth-
ods for low power consumption appliances, such as refrig-
erators and coffee maker, they are not evident for DR due
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Figure 1: Framework of the HEMS in smart grid.

to their low power consumption compared with the overall
household power consumption [24]. In this paper, we choose
HVAC, EWH, PHEV, WM, CD, and DW as scheduling
objects to implement DR in household.

Battery is another important kind of interruptible SA.
The battery can be used to store surplus energy generated by
renewable sources (e.g., PV) or the energy from the gridwhen
the electricity price is low. The stored electric energy can be
supplied to loads or sold back to the grid for revenuewhen the
price is high. Therefore, battery is another scheduling object
in this paper.

2.2. Framework of the HEMS. The framework of HEMS
proposed in this paper is shown in Figure 1. As mentioned
above, the framework includes loads (i.e., NSAs, SAs, and
PHEV), home energy storage battery, and renewable gener-
ation (i.e., PV). It must be pointed out that PHEV is a special
kind of loads. Different from other loads, a PHEV not only
can act as a load that absorbs electricity from the grid or
renewable generation, but also, in some special cases, acts as a
power source through the vehicle-to-grid (V2G) or vehicle-
to-home (V2H) function [25, 26]. In this paper, the PHEV is
considered as a load only.

The two-way energy and information exchange between
HEMS and the grid is realized through a smart meter. The
smartmeter is responsible for transmitting consumption data
fromhome appliances to the utility company and it also relays
the electricity price signal from the utility company back
to a controller. For the moment, there are different time-
based pricing tariffs including time-of-use (TOU) tariff,
critical peak pricing (CPP) tariff, and real-time pricing (RTP)
tariff [27]. This paper uses day-ahead RTP; in other words,
the electricity price of every hour is published by the utility
company to residents one day ahead.

The controller is the kernel of HEMS. Each HEMS
component communicates with the controller over a home
area network (HAN), which can be realized through Zigbee
communication technology [28]. The controller connects
with the Internet by a broadband access unit (BAU) and gets
weather information including outdoor temperature forecast
via the Internet. Through the controller, the user can set
parameters and configure the system.

In the framework, the schedulable appliances (i.e., HVAC,
EWH,WM, CD, and DW), PHEV, and battery are scheduled
by the controller to minimize the electricity cost and maxi-
mize user comfort level according to the electricity price, user
preferences, and PV power output.

2.3. Power Distribution Relationships of the HEMS. In the
proposed framework, the power distribution relationships
among loads, battery, PV, and grid are shown in Figure 2. In
this figure, the components enclosed by the dash line, that is,
loads, PV, and battery, are owned by the user, and they are the
scheduling objects of the proposed algorithm. 𝑝G2L

𝑡
is the

power that is transmitted from grid to loads at time 𝑡. Sim-
ilarly, 𝑝P2L

𝑡
and 𝑝

B2L
𝑡

are the power transmitted from PV and
battery to loads, 𝑝G2B

𝑡
and 𝑝

P2B
𝑡

represent the power transmit-
ted to the battery from grid, and PV, 𝑝P2G

𝑡
, and 𝑝

B2G
𝑡

stand for
the power transmitted to grid from PV and battery at time 𝑡,
respectively.The values of these power distributions are equal
to or greater than zero.

Under the RTP scheme, the scheduling of loads and
power distribution among different components affect the
total monetary expense. As a result, besides load manage-
ment, optimal control of the power distributions among grid,
loads, battery, and PV is another important issue for the
optimization goals. This problem will be discussed in detail
in Section 3.
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Figure 2: Power distribution relationships of the HEMS in smart
grid.

2.4. Models and Constraints of Individual Appliances. The
model of each appliance used in this paper and the corre-
sponding constraints are described as follows.

2.4.1. HVAC. TheHVACmodel developed in [29] is adopted
in this paper. In this model, the room temperature is calcu-
lated as

𝑇
Room
𝑡+1

= 𝑇
Room
𝑡

+ Δ𝑡 ⋅
𝐺
𝑡

Δ𝑐
+ Δ𝑡 ⋅

𝐶HVAC
Δ𝑐

⋅ 𝑆
HVAC
𝑡

, (1)

where 𝑇
Room
𝑡

and 𝑇
Room
𝑡+1

are the room temperatures (∘F) in
time slots 𝑡 and 𝑡+1, respectively;Δ𝑡 is the length of time slot 𝑡
in hours; 𝐺

𝑡
is the heat gain rate of the house in Btu/h during

time slot 𝑡; Δ𝑐 is the energy needed to change the temper-
ature of the air in the room by 1∘F (Btu/∘F); 𝐶HVAC is the
cooling/heating capacity of HVAC in Btu/h, positive for heat-
ing and negative for cooling; 𝑆HVAC

𝑡
is the working status of

HVAC in time slot 𝑡, 1 for on and 0 for off. For simplicity, it
is assumed that the HVAC runs with its rated power, 𝑃HVAC

(kW), when it is turned on.
In order to ensure the comfort preference, HVAC should

regulate the room temperature within the certain range
prespecified by the user. This constraint is depicted in

𝑇
Room
min ≤ 𝑇

Room
𝑡

≤ 𝑇
Room
max , (2)

where 𝑇
Room
min and 𝑇

Room
max stand for the minimum and maxi-

mum room temperatures, respectively.

2.4.2. EWH. The model presented in [2] is employed in this
paper to calculate the temperature of hot water inside the
EWH tank:

𝑇
EWH
𝑡+1

= 𝑇
EWH
𝑡

⋅ 𝑒
−(1/(𝑅



𝑡
⋅𝐶))⋅Δ𝑡

+ {𝐺
EWH

⋅ 𝑅


𝑡
⋅ 𝑇

EWH,env
𝑡

+ 𝐵
𝑡
⋅ 𝑅


𝑡
⋅ 𝑇

EWH,in
𝑡

+ 𝑄
𝑡
⋅ 𝑅


𝑡
} ⋅ [1 − 𝑒

−(1/(𝑅


𝑡
⋅𝐶))⋅Δ𝑡

] ,

(3)

where 𝑇
EWH
𝑡

and 𝑇
EWH
𝑡+1

are the hot water temperatures (∘F)
inside the EWH tank in time slots 𝑡 and 𝑡 + 1, respectively;

𝑇
EWH,env
𝑡

and 𝑇
EWH,in
𝑡

are the temperatures (∘F) of ambient
environment and inlet water in time slot 𝑡, respectively; 𝐶 is
the equivalent thermal mass (Btu/∘F); Δ𝑡 is the length of a
time slot in hours; 𝐺EWH is the ratio of the surface area of
EWH to the thermal resistance of the tank. 𝐵

𝑡
, 𝑅
𝑡
, and𝑄

𝑡
are

calculated according to the following equations, respectively:

𝐵
𝑡
= 𝑑water × 𝐹

𝑡
× 𝐶
𝑝
, (4)

𝑅


𝑡
=

1

(𝐺EWH + 𝐵
𝑡
)
, (5)

𝑄
𝑡
= 3.4121 × 10

−8
× 𝑃

EWH
× 𝑆

EWH
𝑡

, (6)

where 𝑑water is the density of water, 𝐶
𝑝
is the specific heat

of water, and 𝐹
𝑡
represents hot water flow rate in time slot 𝑡.

𝑃
EWH is the rated power of the EWH (kW) and 𝑆

EWH
𝑡

is the
status of the EWH in time slot 𝑡.

The EWH has two statuses, on and off. When turned
on, it runs with the rated power, and the hot water tem-
perature increases exponentially; otherwise, the temperature
decreases. Similar to HVAC, the EWH should maintain
the hot water temperature within a prespecified range
[𝑇

EWH
min , 𝑇

EWH
max ], where 𝑇EWH

min and 𝑇
EWH
max are the minimum and

maximumwater temperatures set by a user, respectively.This
constraint is expressed by

𝑇
EWH
min ≤ 𝑇

EWH
𝑡

≤ 𝑇
EWH
max . (7)

2.4.3. PHEV. The battery state-of-charge (SOC) relationship
of PHEV [29] is calculated according to

SOCPHEV
𝑡+1

= SOCPHEV
𝑡

+ 𝑝
PHEV
𝑡

⋅
Δ𝑡

𝐶PHEV
size

, (8)

where SOCPHEV
𝑡

and SOCPHEV
𝑡+1

are the PHEV battery SOC in
time slots 𝑡 and 𝑡 + 1, respectively; 𝐶PHEV

size is the rated capacity
of PHEV battery (kW⋅h); Δ𝑡 is the length of a time slot in
hours; 𝑝PHEV

𝑡
is the charging power of PHEV in time slot 𝑡

(kW); in this paper, it is assumed that the charging power is
constant, that is, the rated charging power of PHEV, 𝑃PHEV

(kW). Therefore, 𝑝PHEV
𝑡

is determined by

𝑝
PHEV
𝑡

= 𝑃
PHEV

⋅ 𝑆
PHEV
𝑡

, (9)

where 𝑆PHEV
𝑡

is the charging status of PHEV in time slot 𝑡, with
1 representing on and 0 representing off.

To protect the PHEV battery from damage, the
battery SOC should be maintained in a safe range of
[SOCPHEV

min , SOCPHEV
max ], where SOCPHEV

min and SOCPHEV
max are

the minimum and maximum allowable PHEV battery SOC.
To satisfy user’s transportation demand, the PHEV battery
should be charged each day with a SOC equal to or greater
than the prespecified SOC, SOCPHEV

final . These two constraints
are depicted in the following, respectively:

SOCPHEV
min ≤ SOCPHEV

𝑡
≤ SOCPHEV

max , (10)

SOCPHEV
final ≤ SOCPHEV

𝑁slot
≤ SOCPHEV

max , (11)
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where SOCPHEV
𝑁slot

is the PHEV battery SOC in the final time
slot (i.e., time slot 𝑁slot) of the scheduling horizon. 𝑁slot
denotes the total number of the time slots in the scheduling
horizon.

2.4.4. WM, CD, and DW. In this paper, WM, CD, and DW
are taken as noninterruptible appliances; in other words,
these appliances have two statuses, on and off. Once they are
turned on, they must keep working with the rated power
until their tasks are completed.The task starting time and the
number of time slots that are needed for completing the task
of each appliance are set by the user. They should meet the
constraints

1 ≤ 𝑁
𝑎

start ≤ 𝑁slot − 𝑁
𝑎

task,

𝑆
𝑎

𝑡
=
{

{

{

1 𝑡 = 𝑁
𝑎

start, 𝑁
𝑎

start + 1, . . . , 𝑁
𝑎

start + 𝑁
𝑎

task − 1

0 otherwise,

𝑁slot

∑

𝑡=1

𝑆
𝑎

𝑡
= 𝑁
𝑎

task,

(12)

where 𝑎 ∈ {WM,CD,DW};𝑁𝑎start is the time slot in which the
task of home appliance 𝑎 is started;𝑁𝑎task is the number of time
slots that are needed to complete the task of appliance 𝑎; 𝑆𝑎

𝑡

is the working status of appliance 𝑎 in time slot 𝑡, with 1
representing on and 0 representing off.

The power of appliance 𝑎 in time slot 𝑡, 𝑝𝑎
𝑡
, is calculated

as

𝑝
𝑎

𝑡
= 𝑃
𝑎
⋅ 𝑆
𝑎

𝑡
, (13)

where 𝑃𝑎 is the rated power of appliance 𝑎.

2.4.5. Battery. In order to prevent the home energy stor-
age battery from overcharge and overdischarge, the bat-
tery SOC should always be maintained within a specified
range [SOCBat

min, SOCBat
max], where SOCBat

min and SOCBat
max are

the minimum and maximum allowable SOC of the battery,
respectively. This constraint is depicted in

SOCBat
min ≤ SOCBat

𝑡
≤ SOCBat

max. (14)

The battery SOC associatedwith the charge and discharge
of the battery is calculated by the following equations,
respectively:

SOCBat
𝑡+1

= SOCBat
𝑡

+
(𝑝

Bat,ch
𝑡

⋅ Δ𝑡 ⋅ 𝜂
Bat
ch )

𝐶Bat
size

, (15)

SOCBat
𝑡+1

= SOCBat
𝑡

−
(𝑝

Bat,disch
𝑡

⋅ Δ𝑡)

(𝜂Batdisch ⋅ 𝐶Bat
size)

, (16)

where 𝐶
Bat
size is the rated battery capacity (kW⋅h); SOCBat

𝑡
and

SOCBat
𝑡+1

are the battery SOC in time slots 𝑡 and 𝑡 + 1, respec-
tively; 𝑝Bat,ch

𝑡
and 𝑝

Bat,disch
𝑡

represent the charging and dis-
charging power in time slot 𝑡, respectively, 𝜂Batch is the charging
efficiency; and 𝜂

Bat
disch is the discharging efficiency.

To ensure the safety of operation, the charging and
discharging powers should be controlled to be equal to or
smaller than the maximum allowable values. As shown in
Figure 2, the battery can be charged by power from the grid
𝑝
G2B
𝑡

and PV 𝑝
P2B
𝑡

; on the other hand, the battery can also
supply electricity to loads 𝑝B2L

𝑡
and grid 𝑝

B2G
𝑡

. Consequently,
the constraints about charging and discharging power are
formulated as follows, respectively:

0 ≤ 𝑝
Bat,ch
𝑡

= 𝑝
P2B
𝑡

+ 𝑝
G2B
𝑡

≤ 𝑃
Bat,ch
max , (17)

0 ≤ 𝑝
Bat,disch
𝑡

= 𝑝
B2L
𝑡

+ 𝑝
B2G
𝑡

≤ 𝑃
Bat,disch
max , (18)

where 𝑃Bat,ch
max and 𝑃

Bat,disch
max are the maximum allowable charg-

ing and discharging power of the battery, respectively.
The battery is not allowed to supply electricity to loads or

the grid when it is in charging state, or to be charged when it
is supplying electricity to loads or the grid. This constraint is
formulated as

(𝑝
B2L
𝑡

+ 𝑝
B2G
𝑡

) ⋅ (𝑝
P2B
𝑡

+ 𝑝
G2B
𝑡

) = 0

∀𝑡 ∈ {1, 2, . . . , 𝑁slot} .
(19)

2.4.6. Other Constraints. Besides the constraints mentioned
above, other constraints are described as follows:

𝑝
P2L
𝑡

+ 𝑝
P2B
𝑡

+ 𝑝
P2G
𝑡

= 𝑝
PV
𝑡

,

∑

𝑎∈A
𝑝
𝑎

𝑡
+ 𝑝

CL
𝑡

= 𝑝
P2L
𝑡

+ 𝑝
B2L
𝑡

+ 𝑝
G2L
𝑡

A = {HVAC,EWH,PHEV,WM,CD,DW} ,

(20)

where 𝑝PV
𝑡

is the power output of PV in time slot 𝑡 in kW and
𝑝
CL
𝑡

is the total power of the critical loads (i.e., nonschedulable
loads) in time slot 𝑡 in kW.

3. Multiobjective Optimization of HEMS

3.1. Electricity Cost. In this paper, minimizing the overall
electricity cost over the next 24 hours (i.e., next day) is one
of optimization objectives based on the forecasted outdoor
temperature and power output of PV over the next 24 hours,
which can be obtained using the corresponding prediction
algorithms [30, 31]. However, these algorithms have limita-
tions due to the prediction accuracy. In this study, scenarios
are used to capture the uncertainties of forecasted outdoor
temperature and power output of the PV. The overall net
electricity cost over the scheduling horizon is formulated as
(21), which consists of three parts: the first item represents the
overall electricity cost of buying electricity from the grid, the
second item stands for the degradation cost ($) of the home
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energy storage battery, and the third item denotes the overall
revenue of selling electricity to the grid:

𝐹cost = ∑

𝑠
1
∈Stemp

∑

𝑠
2
∈SPV

𝑝
𝑠
1𝑝
𝑠
2 ⋅ {

𝑁slot

∑

𝑡=1

[(𝑝
G2L,𝑠

1
𝑠
2

𝑡
+ 𝑝

G2B,𝑠
1
𝑠
2

𝑡
)

× Δ𝑡 × 𝑐
grid
𝑡

]

+

𝑁slot

∑

𝑡=1

[(𝑝
P2B,𝑠
1
𝑠
2

𝑡
+ 𝑝

G2B,𝑠
1
𝑠
2

𝑡
+ 𝑝

B2L,𝑠
1
𝑠
2

𝑡
+ 𝑝

B2G,𝑠
1
𝑠
2

𝑡
)

× Δ𝑡 × 𝑐
𝑠
1
𝑠
2

Deg] −

𝑁slot

∑

𝑡=1

[(𝑝
P2G,𝑠

1
𝑠
2

𝑡
+ 𝑝

B2G,𝑠
1
𝑠
2

𝑡
) × Δ𝑡

× 𝑐
sell
𝑡

]} ,

(21)

where stemp and sPV denote the outdoor temperature and
PV power output scenario sets, respectively; 𝑠

1
represents an

outdoor temperature scenario and 𝑠
2
stands for a PV power

output scenario; 𝑝𝑠1 and 𝑝
𝑠
2 denote the occurrence possibility

of scenario 𝑠
1
and 𝑠
2
, respectively; 𝑐grid

𝑡
is the electricity price

in time slot 𝑡when the user buys electricity from the grid; and
𝑐
sell
𝑡

is the electricity price in time slot 𝑡 when the user sells
electricity to the grid. 𝑝G2L,s

1
𝑠
2

𝑡
denotes the power transmitted

from the grid to loads in the scenario when 𝑠
1
and 𝑠
2
occur

at the same time, and other symbols have similar meanings.
𝑐
𝑠
1
𝑠
2

Deg is the battery degradation cost ($/kW⋅h); the detailed
description and calculation method of it can be found in [3].

3.2. Comfort Level Indicator for HomeAppliances. In practice,
a residential user has different concerns for different home
appliances. For example, for HVAC and EWH, the user pays
more attention to temperature; however, for PHEV, WM,
CD, and DW, the user focuses on when the tasks of these
appliances are completed. Therefore, a set of comfort level
indicators are proposed based on appliance type.

3.2.1. HVAC. To quantify a user’s comfort level under the
operation of HVAC, this paper proposes a comfort level
indicator whose definition is based on the assumption that

when the room temperature is equal to the user setting
temperature, the user is most comfortable; if the room tem-
perature deviates from the setting value to a certain extent,
the user’s comfort level will be decreased [32]. The indicator
is calculated as

𝐼HVAC =
100

𝑁slot

𝑁slot

∑

𝑡=1

𝑑
Room
𝑡

Δ𝑇Room
max

, (22)

where Δ𝑇Room
max = max{𝑇Room

set − 𝑇
Room
min , 𝑇

Room
max − 𝑇

Room
set }. 𝑑Room

𝑡

is determined by

𝑑
Room
𝑡

=

{{{{{{{

{{{{{{{

{

𝑇
Room
set − 𝑇

Room
𝑡

𝑇
Room
min ≤ 𝑇

Room
𝑡

< 𝑇
Room
set − Δ𝑇

Room
𝐿

0 𝑇
Room
set − Δ𝑇

Room
𝐿

≤ 𝑇
Room
𝑡

≤ 𝑇
Room
set + Δ𝑇

Room
𝑈

𝑇
Room
𝑡

− 𝑇
Room
set 𝑇

Room
set + Δ𝑇

Room
𝑈

< 𝑇
Room
𝑡

≤ 𝑇
Room
max

Δ𝑇
Room
max otherwise,

(23)

where𝑇Room
set is the desired indoor temperature set by the user

and Δ𝑇
Room
𝐿

and Δ𝑇
Room
𝑈

are two parameters that are related
to the temperature deadband of HVAC and the user’s prefer-
ence. For example, in summer, the user prefers cool. Conse-
quently, in this case, Δ𝑇Room

𝐿
> Δ𝑇

Room
𝑈

> 0. According to
the definition of 𝐼HVAC, it is within [0, 100].

The relationships among parameters 𝑇
Room
min , 𝑇

Room
max ,

𝑇
Room
set , Δ𝑇Room

𝐿
, and Δ𝑇

Room
𝑈

are demonstrated in Figure 3.
The indoor temperature horizon is divided into three zones
by these parameters: comfortable zone, tolerable zone, and
intolerable zone.

3.2.2. EWH. The definition of comfort level indicator for
EWH is similar to that for HVAC, and it is calculated as

𝐼EWH =
100

𝑁slot

𝑁slot

∑

𝑡=1

𝑑
EWH
𝑡

Δ𝑇EWH
max

,

𝑑
EWH
𝑡

=

{{{{{{{

{{{{{{{

{

𝑇
EWH
set − 𝑇

EWH
𝑡

𝑇
EWH
min ≤ 𝑇

EWH
𝑡

< 𝑇
EWH
set − Δ𝑇

EWH
𝐿

0 𝑇
EWH
set − Δ𝑇

EWH
𝐿

≤ 𝑇
EWH
𝑡

≤ 𝑇
EWH
set + Δ𝑇

EWH
𝑈

𝑇
EWH
𝑡

− 𝑇
EWH
set 𝑇

EWH
set + Δ𝑇

EWH
𝑈

< 𝑇
EWH
𝑡

≤ 𝑇
EWH
max

Δ𝑇
EWH
max otherwise,

(24)

where Δ𝑇
EWH
max = max{𝑇EWH

set − 𝑇
EWH
min , 𝑇

EWH
max − 𝑇

EWH
set } and

𝑇
EWH
set ,Δ𝑇EWH

𝐿
, andΔ𝑇

EWH
𝑈

are user setting parameters whose
meanings are similar to the parameters of HVAC comfort
level indicator. 𝐼EWH is in the range of [0, 100] too.

3.2.3. PHEV. A user’s comfort level about PHEV is deter-
mined by the charging finish time. The user is most satisfied
in the case where once a PHEV is plugged in and it is kept
charging until the PHEV battery SOC reaches the specified
value. In reality, the user can tolerate some delay of the
charging finish time, which makes the PHEV a flexible load.
However, this tolerance is limited; if the delay is too long, the
user will be unsatisfied. Based on these facts, the comfort level
indicator for PHEV is calculated as
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𝐼PHEV =
𝑑
PHEV

𝑡end − (𝑡plug + 𝑡charge + 𝑡delay)
× 100,

𝑑
PHEV

=
{

{

{

0 𝑡plug + 𝑡charge ≤ 𝑡
PHEV
fsoc ≤ 𝑡plug + 𝑡charge + 𝑡delay

𝑡
PHEV
fsoc − (𝑡plug + 𝑡charge + 𝑡delay) 𝑡

PHEV
fsoc > 𝑡plug + 𝑡charge + 𝑡delay,

(25)

where 𝑡plug is the time shot when the PHEV is plugged in;
𝑡charge is the number of time slots that are needed to complete a
charging task; 𝑡delay is themaximum tolerant delay of charging
completion time in time slot; 𝑡PHEV

fsoc is the time slot in which
the PHEV battery SOC reaches the specified value; 𝑡end is
the last time slot of the scheduling horizon. According to

the definition, 𝐼PHEV is within [0, 100]. Figure 4 illustrates the
relationships among these parameters.

3.2.4. WM, CD, and DW. The comfort level indicators for
WM, CD, and DW share the same expression, and they are
calculated as

𝐼
𝑎
=

{{{{

{{{{

{

0 𝑡
𝑎

min ≤ 𝑡
𝑎

start ≤ 𝑡
𝑎

ideal + 𝑡
𝑎

delay

𝑡
𝑎

start − (𝑡
𝑎

ideal + 𝑡
𝑎

delay)

(𝑡𝑎max − 𝑡𝑎work) − (𝑡𝑎ideal + 𝑡𝑎delay)
× 100 𝑡

𝑎

ideal + 𝑡
𝑎

delay < 𝑡
𝑎

start ≤ 𝑡
𝑎

max − 𝑡
𝑎

work

𝑎 ∈ {WM,CD,DW} ,

(26)

where 𝑡
𝑎

min and 𝑡
𝑎

max specify the valid working interval for
appliance 𝑎; 𝑡𝑎ideal is the ideal time slot in which the appliance
𝑎 is started, and it is set by a user; 𝑡𝑎start is the actual starting
time slot of appliance 𝑎; 𝑡𝑎work denotes the number of time
slots that are needed by appliance 𝑎 to complete its task; 𝑡𝑎delay
is the tolerant delay of task finish time. The relationships of
these parameters are depicted in Figure 5. 𝐼

𝑎
is in the range of

[0, 100] too.
For home appliance 𝑎, if its task is started before or in the

time slot 𝑡𝑎ideal + 𝑡
𝑎

delay, the user will be satisfied; if the task is
started in the range of [𝑡𝑎ideal + 𝑡

𝑎

delay, 𝑡
𝑎

max − 𝑡
𝑎

work], the task can
be completed before the deadline; however, the user’s comfort
level will be decreased.

It must be pointed out that, according to the comfort
level indicators’ definitions, the smaller these indicators, the
more comfortable the user. For example, the user is most
comfortable when 𝐼HVAC is equal to zero.

Based on the above definitions, the user’s overall comfort
level during the scheduling horizon is formulated as

𝐹comfort = ∑

𝑠
1
∈Stemp

∑

𝑠
2
∈SPV

𝑝
𝑠
1𝑝
𝑠
2

1

𝑁
|A|

∑

𝑎∈A
𝐼
𝑠
1
𝑠
2

𝑎

A = {HVAC,EWH,PHEV,WM,CD,DW} ,

(27)

where 𝐼𝑠1𝑠2
𝑎

denotes the comfort level indicator value of appli-
ance 𝑎 in the scenario when outdoor temperature scenario 𝑠

1

and PV power output scenario 𝑠
2
occur at the same time and

𝑁
|A| is the number of appliances in schedule home appliance

setA.𝐹comfort is within [0, 100]. When𝐹comfort is zero, the user
is most comfortable.

3.3. Multiobjective Optimization Model. The multiobjective
optimization model for HEMS is formulated as

min 𝐹cost

min 𝐹comfort

s.t. (2) , (7) , (10)–(12), (14) , (17)–(20).

(28)

In this model, the working status of HVAC, EWH, and
PHEV in each time slot and the task starting times of
WM, CD, and DW are decision variables. Minimizing elec-
tricity cost and maximizing user comfort level are the two
objectives.

4. Algorithm Design

4.1. Model Transformation. For simplicity the multiobjective
optimization model proposed in Section 3.3 is transformed
into a single objective optimization model by weighting
method:

min 𝐹total = 𝛼𝐹cost + (1 − 𝛼) 𝐹comfort

s.t. (2) , (7) , (10)–(12), (14) , (17)–(20),
(29)

where 𝛼 is called user preference factor, 0 ≤ 𝛼 ≤ 1, through
which a user can take a tradeoff between the electricity cost
and the comfort level conveniently.

To handle the constraints of model (29), the penalty func-
tion method is used. Model (29) is further transformed into
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tcharge tdelay

tplug tPHEV
fsoc tend

Comfortable zone

Tolerable zone

Figure 4: Relationships among parameters of PHEV comfort level
indicator.

tawork tadelay

tamin taideal tastart tamax

Comfortable zone

Tolerable zone

Invalid zone

Figure 5: Relationships among parameters of CW, CD, and DW
comfort level indicators.

(30), which is a nonconstraint single objective optimization
model and easy to solve:

min 𝐹final = 𝐹total + 𝑀 ⋅ 𝐹viol, (30)

where 𝐹final is the final objective function, 𝑀 is a positive
figure that is big enough, and 𝐹viol is the overall violation
value:

𝐹viol = ∑

𝑠
1
∈Stemp

∑

𝑠
2
∈SPV

𝑝
𝑠
1𝑝
𝑠
2

⋅ {

𝑁slot

∑

𝑡=1

max (0, 𝑇Room
𝑡

− 𝑇
Room
max , 𝑇

Room
min − 𝑇

Room
𝑡

)

𝑇Room
max − 𝑇Room

min

+

𝑁slot

∑

𝑡=1

max (0, 𝑇EWH
𝑡

− 𝑇
EWH
max , 𝑇

EWH
min − 𝑇

EWH
𝑡

)

𝑇EWH
max − 𝑇EWH

min

+

𝑁slot

∑

𝑡=1

max (0, SOCPHEV
𝑡

− SOCPHEV
max , SOCPHEV

min − SOCPHEV
𝑡

)

SOCPHEV
max − SOCPHEV

min
} .

(31)

𝐹viol only considers constraints (2), (7), and (10). Other
constraints can be guaranteed to be satisfied by other meth-
ods presented in Section 4.3.

Model (30) is solved by an improved high-dimensional
hybrid discrete particle swam optimization algorithm pre-
sented in the following section.

4.2. Improved Particle SwarmOptimization. PSO is originally
proposed by Kennedy to solve unconstrained continuous

single objective optimization problems [33], and it is a kind
of stochastic search algorithms. Due to its simplicity, strong
search ability, and robustness, PSO has been explored in
depth, many improved PSO algorithms have been proposed
in the literature, and its application has not been limited to
continuous optimization problems anymore. Algorithms
based on PSO have been applied in many engineering opti-
mization fields [34–37].Therefore, in this paper, an improved
PSO is employed to solve the optimization model depicted in
(30).

Although the basic PSO has many advantages, it has
the drawback of premature convergence and local optima
[38]. The performance of PSO algorithm can be improved
by identifying the particles which fell into local optimal area
and performing crossover, mutation, local search, reset, or
reinitialization on these particles during operation [39]. For
this purpose, [40] assigns a counter for each particle in the
population; at each iteration, the fitness value of each particle
is compared with the global best particle’s fitness value.
If the absolute value of the fitness value difference between
a particle and the global best particle is smaller than a
predefined threshold, the particle’s counter is increased by 1,
and then the counter is checked as to whether it reaches the
specified maximum value; if so, the particle’s position and
velocity vectors are initialized and the corresponding counter
is reset.Thismethod is effective in some cases. However, if the
particle which fell into local optimal area is not in the same
area with the global best particle that keeps evolving, the
absolute value of the fitness value difference may be kept
greater than the specified threshold. As a result, the particle
which fell into local optimal area cannot be identified.

To overcome this problem, a novel “worst particles” iden-
tificationmethod is proposed to find out the particles that fell
into local optimal area based on the update of each particle’s
personal best position vector and the sorted particle fitness
values. This method is described as follows.

Similar to [40], each particle in the population has a
counter. However, different form [40], the counter is used to
record the number of iterations in which the particle’s
personal best position vector is not updated successively. The
counter is named personal-best-update counter and updated
as

𝐶
𝑖
(𝑘) =

{

{

{

𝐶
𝑖
(𝑘 − 1) + 1 P𝑖best (𝑘) = P𝑖best (𝑘 − 1)

0 P𝑖best (𝑘) ̸= P𝑖best (𝑘 − 1) ,
(32)

where𝐶
𝑖
(𝑘) and𝐶

𝑖
(𝑘−1) denote the counter values of particle

𝑖 at iterations 𝑘 and 𝑘 − 1, respectively and P𝑖best(𝑘) and
P𝑖best(𝑘 − 1) are the personal best position vectors of particle 𝑖
at iterations 𝑘 and 𝑘 − 1, respectively.

After updating each particle’s counter, the particles in the
population are sorted decreasingly according to their fitness
values. If the optimization is minimization, the smaller the
function value is, the greater the fitness value will be. Within
the last 𝑁

𝑐
sorted particles, the particles whose counters are

equal to or greater than the specified threshold 𝐶th are
selected to create a particle set namedworst-particle-set.Λ(𝑘)

denotes the worst-particle-set created at iteration 𝑘, and the
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Figure 6: Flowchart of power flow vectors calculation method.

number of the particles in the set is |Λ(𝑘)|, 0 ≤ |Λ(𝑘)| ≤ 𝑁
𝑐
. If

|Λ(𝑘)| = 0, the last particle of the sorted particles is selected as
theworst particle; if |Λ(𝑘)| = 1, the particle inΛ(𝑘) is selected;
if |Λ(𝑘)| > 1, a particle is selected randomly from Λ(𝑘) as the
worst particle. Finally, the selected worst particle is initialized
and the corresponding counter is reset.

4.3. Algorithm Based on Improved Hybrid PSO. Based on
the improved PSO algorithm described in Section 4.2, a
multiobjective optimization algorithm forHEMS is described
in this section.

In this optimization algorithm, the 𝑖th decision vector of
the optimization model (30) is depicted as

X𝑑
𝑖
= [SHVAC, SEWH, SPHEV,Tstart] , (33)

where

SHVAC = [𝑆
HVAC
1

, 𝑆
HVAC
2

, . . . , 𝑆
HVAC
𝑁slot

] ;

SEWH = [𝑆
EWH
1

, 𝑆
EWH
2

, . . . , 𝑆
EWH
𝑁slot

] ;

SPHEV = [𝑆
PHEV
𝑡plug

, 𝑆
PHEV
𝑡plug+1

, . . . , 𝑆
PHEV
𝑁slot

] ;

Tstart = [𝑡
CW
start, 𝑡

CD
start, 𝑡

DW
start] .

(34)

As shown, SHVAC, SEWH, and SPHEV are binary vectors, and
Tstart is a discrete vector. Therefore, the decision vector Xd

𝑖
is

a typical hybrid vector with a dimension of 3𝑁slot + 4 − 𝑡plug.
The dimension is related to the time slot when the PHEV
is plugged in. For example, in the case that the scheduling
horizon is 24 hours and is evenly divided into 120 time slots
(i.e., the length of each time slot is 12 minutes) and the PHEV
is plugged in at time slot 91, the dimension of (33) is 273. In
this paper, it is assumed that the PHEV can be guaranteed to
be plugged in power grid through HEMS during [𝑡plug, 𝑁slot].

In the algorithm, the position vector of each particle
represents a decision vector of model (30). The principal
procedure of the proposed multiobjective optimization algo-
rithm for HEMS in smart grid is described as follows.

Step 1. Get electricity price and forecasted weather informa-
tion of the scheduling horizon from the utility company and
the Internet, respectively. Based on the weather forecast
information, the power output of PV during the scheduling
horizon is predicted.

Step 2. Generate a set of outdoor temperature scenarios and
PV power output scenarios using Monte Carlo simulations.

Step 3. Set parameters of PSO, such as population size 𝑁pop,
maximum iteration number 𝑘max, maximum velocity weight
𝑤max, minimum velocity weight𝑤min, thresholds𝐶th, and𝑁

𝑐
.

Step 4. Set user preference parameters, such as preference
factor 𝛼, 𝑇Room

min , 𝑇Room
max , 𝑇Room

set , Δ𝑇Room
𝐿

, Δ𝑇Room
𝑈

, and 𝑡plug.
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Step 5. Initialize particle population:

(1) Initialize position vector X𝑖, velocity vector V𝑖, and
personal best vector P𝑖best.

(2) Calculate power distribution vectorsPG2L,PG2B,PP2L,
PP2B, PP2G, PB2G, and PB2L based on electricity price,
PV power output, and X𝑖 (i.e., [SHVAC, SEWH,

SPHEV,Tstart]). Here, PG2L
= [𝑝

G2L
1

, 𝑝
G2L
2

, . . . , 𝑝
G2L
𝑁slot

],
and the other power distribution vectors have similar
forms. The calculation procedure of these vectors is
described in Section 4.4.

(3) Calculate the objective function value according to
(30).

(4) After initializing all particles in the population, ini-
tialize the global best particle’s position vector.

(5) Reset iteration counter 𝑘 and personal-best-update
counter of each particle.

Step 6. Compute the velocity weight 𝑤(𝑘) [38] at iteration 𝑘

as

𝑤 (𝑘) = 𝑤max −
𝑘 (𝑤max − 𝑤min)

𝑘max
. (35)

Step 7. For each particle in the population, perform the
following operations.

(1) Update the velocity vector as

V
𝑖,𝑗
(𝑘 + 1) = 𝑤 (𝑘) V

𝑖,𝑗
(𝑘) + 𝑐

1
𝑟
1
[𝑝
𝑖,𝑗

− 𝑥
𝑖,𝑗
(𝑘)]

+ 𝑐
2
𝑟
2
[𝑝
𝑔,𝑗

− 𝑥
𝑖,𝑗
(𝑘)] ,

(36)

where V
𝑖,𝑗
(𝑘) and V

𝑖,𝑗
(𝑘 + 1) denote the values of the 𝑗th

dimension of particle 𝑖 at iterations 𝑘 and 𝑘 + 1, respectively;
𝑟
1
and 𝑟

2
are two random uniform distribution stochastic

variables within [0, 1]; 𝑐
1
= 𝑐
2
= 2 are two learning factors;

𝑝
𝑖,𝑗
is the 𝑗th dimension of the personal best vector of particle

𝑖; 𝑝
𝑔,𝑗

is the 𝑗th dimension of the global best position vector.

(2) Update the position vector X𝑖.

The first part of X𝑖, that is, [SHVAC, SEWH, SPHEV], is
updated as

𝑥
𝑖,𝑗
(𝑘 + 1) =

{{

{{

{

1 𝑟
3
<

1.0

(1 + exp (−V
𝑖,𝑗
(𝑘 + 1)))

0 otherwise

𝑗 = 1, 2, . . . , 3𝑁slot + 1 − 𝑡plug,

(37)

where 𝑟
3
is a random uniform distribution stochastic variable

within [0, 1].
The second part of X𝑖, that is, Tstart, is updated as

𝑥
𝑖,𝑗
(𝑘 + 1) = 𝑥

𝑖,𝑗
(𝑘) + ⌈V

𝑖,𝑗
(𝑘 + 1)⌉

𝑗 = 3𝑁slot + 2 − 𝑡plug, . . . , 3𝑁slot + 4 − 𝑡plug,
(38)

where the symbol ⌈⌉ denotes rounding to zero.

(3) Calculate power distribution vectorsPG2L,PG2B,PP2L,
PP2B, PP2G, PB2G, and PB2L.

(4) Calculate the objective function value according to
(30).

(5) Update the personal best position vector according to
(39) and the personal-best-update counter according
to (32):

P𝑖best (𝑘 + 1)

=
{

{

{

X𝑖 (𝑘 + 1) 𝐹final (X𝑖 (𝑘 + 1)) < 𝐹final (P𝑖best (𝑘))

P𝑖best (𝑘) 𝐹final (X𝑖 (𝑘 + 1)) ≥ 𝐹final (P𝑖best (𝑘)) .

(39)

(6) Update the global best position vector:

P
𝑔
(𝑘 + 1) = arg{ min

1≤𝑖≤𝑁pop
[𝐹final (P

𝑖

best (𝑘 + 1))]} . (40)

Step 8. Identify theworst particlewhich fell into local optimal
area as follows:

(1) Create the worst-particle-set following the method
described in Section 4.2.

(2) Select the worst particle and reinitialize it and reset
the corresponding personal-best-update counter.

Step 9. Increase the iteration counter by 1. Check whether the
iteration counter reaches the maximum number 𝑘max or not.
If not, jump to Step 6; if so, continue Step 10.

Step 10. Calculate the electricity cost indicator and comfort
level indicator as follows:

(1) Output the global best position vector.
(2) Calculate the power distribution vectors.
(3) Calculate the electricity cost indicator and comfort

level indicator according to (21) and (27), respectively.
Check whether the user is satisfied with the indicators
or not. If not, jump to Step 4; if so, continue Step 11.

Step 11. Control the operations of HVAC, EWH, PHEV,WM,
CD, and DW according to the vector P

𝑔
, the final global

best particle’s position vector. In each time slot, the power
distribution among loads, battery, renewable generation, and
power grid is determined through the method described in
Section 4.4.

4.4. Calculation Methods of Power Distribution Vectors. In
time slot 𝑡, the values of 𝑝G2L

𝑡
, 𝑝G2B
𝑡

, 𝑝P2L
𝑡

, 𝑝P2B
𝑡

, 𝑝P2G
𝑡

, 𝑝B2L
𝑡

,
and 𝑝

B2G
𝑡

are determined following the flowchart shown in
Figure 6.

As shown in Figure 6, the power output of PV is supplied
to loads first. If there is extra energy, it is used to charge the
home energy storage battery or sold to the utility grid for rev-
enue; if the PV power output cannot meet the load demand,
the shortage is met by the home energy storage battery or the
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Figure 7: Electricity price.

grid. In this paper, the production cost of PV is assumed to
be negligible.

𝑐
Bat
𝑡

denotes the price of the energy stored in the home
energy storage battery in time slot 𝑡, its value is determined
by charging operation, and it is not affected by discharging.
𝑐
Bat
𝑡

is calculated as follows [1]:

𝑐
Bat
𝑡+1

=
(𝑐

Bat
𝑡

⋅ 𝐸
Bat
𝑡

+ 𝑝
G2B
𝑡

⋅ Δ𝑡 ⋅ 𝑐
grid
𝑡

)

𝐸Bat
𝑡+1

,

𝐸
Bat
𝑡+1

= 𝐸
Bat
𝑡

+ (𝑝
G2B
𝑡

+ 𝑝
P2B
𝑡

) ⋅ Δ𝑡 ⋅ 𝜂
Bat
ch ,

(41)

where 𝐸
Bat
𝑡

and 𝐸
Bat
𝑡+1

denote the energy in kW⋅h stored in
the home energy storage battery in time slots 𝑡 and 𝑡 + 1,
respectively.

𝑐
Bat,sell
𝑡

stands for a threshold of grid electricity price in
time slot 𝑡. If the grid electricity price 𝑐

grid
𝑡

is greater than
𝑐
Bat,sell
𝑡

, the home energy storage battery is allowed to sell the
stored energy to the grid for revenue. 𝑐Bat,sell

𝑡
is calculated as

𝑐
Bat,sell
𝑡

= 𝛽
sell

⋅max {𝑐grid
1

, 𝑐
grid
2

, . . . , 𝑐
grid
𝑁slot

}

0 < 𝛽
sell

< 1.

(42)

𝛽
sell controls the possibility of selling the energy stored in

the home energy storage battery to the grid in time slot 𝑡; the
smaller 𝛽sell is, the greater the possibility will be.

𝑐
Bat,buy
𝑡

is another threshold of grid electricity price in time
slot 𝑡. If the grid electricity price 𝑐

grid
𝑡

is smaller than 𝑐
Bat,buy
𝑡

,
the home energy storage battery is allowed to buy electricity
from the grid for charging. 𝑐Bat,buy

𝑡
is calculated as

𝑐
Bat,buy
𝑡

= 𝛽
buy

⋅max {𝑐grid
𝑡

, 𝑐
grid
𝑡+1

, . . . , 𝑐
grid
𝑁slot

}

0 < 𝛽
buy

< 1.

(43)
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Figure 8: Forecasted outdoor temperature.

𝛽
buy controls the possibility of buying electricity from the

grid to charge the home energy storage battery in time slot 𝑡.
The greater the 𝛽buy is, the greater the possibility will be.

From the algorithm described in Section 4.3 and the
power distribution vector calculation method presented in
this section, it can the said that the constraints of (30), that
is, constraints (11)-(12), (14), and (17)–(20), are ensured to be
satisfied.

5. Case Studies

In this section, to validate the effectiveness of the algorithm
proposed in this paper, simulations were performed exten-
sively. All simulation programs were coded in C language in
the environment of Microsoft Visual Studio 2008 and were
run on aWindows 7 (32 bit) Intel Core i7-3540M@3.00GHz
computer with an 8.00GB memory.

5.1. Input Data and Parameter Setting. The scheduling hori-
zon is 24 hours, and it is divided evenly into 120 time slots
with each time slot being 12 minutes; that is, 𝑁slot = 120,
Δ𝑡 = 0.2 h.

The data of real-time electricity price and outdoor tem-
perature from [41], hot water usage from [42], and critical
load from [43] are utilized. The electricity price, outdoor
temperature, hot water usage, and critical load are shown in
Figures 7, 8, 9, and 10, respectively.

In this paper, it is assumed that the capacity of the PV
system in Figure 1 is 5.75 kWand the PVpower output during
scheduling horizon is as shown in Figure 11. In each time slot,
the price of selling electricity to the power grid by a user, 𝑐sell

𝑡
,

is assumed to be equal to the price that he/she pays for buying
electricity from the grid, 𝑐grid

𝑡
.

Based on the forecasted outdoor temperature and PV
power output, two sets of stochastic scenarios were generated
which are shown in Figures 12 and 13, respectively.

The parameters of house and HVAC of [24] are used in
this paper, which are listed in Table 1.
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Figure 9: Hot water usage profile.
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Figure 10: Critical load profile.
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Figure 12: Scenarios of outdoor temperature over scheduling
horizon.
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Figure 13: Scenarios of PV power output over scheduling horizon.

Consequently, in model (1), 𝐺
𝑡
= 500.82 × (𝑇

Outdoor
𝑡

−

𝑇
Room
𝑡

) (Btu/h) where 𝑇Outdoor
𝑡

is the outdoor temperature in
time slot 𝑡, Δ𝑐 = 3400.08 (Btu/∘F), Δ𝑡 = 0.2 h, and the rated
power is 2.352 (kW). The user preference parameters about
HVAC 𝑇

Room
min , 𝑇Room

max , 𝑇Room
set , Δ𝑇Room

𝐿
, and Δ𝑇

Room
𝑈

are 72, 80,
76, 3, and 2 (∘F), respectively.

The parameters of EWH are as follows. The volume of
EWH tank is 50 gallons, 𝐺

EWH is 1.0 (Btu/(h∗∘F)), 𝐶 is
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Table 1: Parameter of the house under study.

Parameter Value Unit

House size 2000 + 500
basement ft2

𝐴floor, 𝐴 ceiling, 𝐴wall, and 𝐴window
(the area of the floor, ceiling,
wall, and window)

2000, 2000,
2600, 520 ft2

𝑅ceiling, 𝑅wall, and 𝑅window (the
heat resistance of the ceiling,
wall, and window)

49, 13, 2 ft2
∗
∘F/(Btu/h)

𝐶HVAC (capacity of the AC unit) 34,000 Btu/h

Table 2: Parameter setting of CW, CD, and DW.

Parameter CW CD DW
𝑡
𝑎

min (time slot) 46 96 46
𝑡
𝑎

max (time slot) 95 120 105
𝑡
𝑎

ideal (time slot) 60 100 70
𝑡
𝑎

work (time slots) 5 10 5
𝑡
𝑎

delay (time slots) 5 5 5
Rated power (kW) 0.5 4 1

419.88 (Btu/∘F), the rated power is 4.5 (kW), 𝑇
EWH,env
𝑡

is
equal to 𝑇

Room
𝑡

, and 𝑇
EWH,in
𝑡

is 60 (∘F). The user preference
parameters 𝑇EWH

min , 𝑇EWH
max , 𝑇EWH

set , Δ𝑇EWH
𝐿

, and Δ𝑇
EWH
𝑈

are 108,
122, 115, 3, and 3 (∘F), respectively.

As for the PHEV, 𝐶PHEV
size is 16 (kW⋅h), SOCPHEV

0
is 0.5,

𝑃
PHEV is 3.3 (kW), and SOCPHEV

min , SOCPHEV
max , and SOCPHEV

final are
0.2, 0.95, and 0.85, respectively. It is assumed that the PHEV
is plugged in the grid in time slot 91; that is, 𝑡plug = 91. 𝑡charge
is 9, 𝑡delay is 3, and 𝑡end = 𝑁slot = 120.

The parameters ofWM, CD, andDWare listed in Table 2.
As for the home energy storage battery, the rated battery

capacity 𝐶
Bat
size is 13.44 (kW⋅h), 𝐸Bat

0
is 6.72 (kW⋅h), SOCBat

min
is 0.2, SOCBat

max is 1. 𝑃Bat,ch
max = 𝑃

Bat,disch
max = 2.0 (kW), and

𝜂
Bat
ch = 𝜂

Bat
disch = 0.9. It is assumed that the battery is lead-

acid battery; the capital cost is 2176 ($). The degradation cost
function coefficients in [44] are used.

As described in Section 4.4, 𝛽sell and 𝛽
buy are two impor-

tant parameters that affect the power distributions between
the grid and home energy storage battery. In the simulations,
they are 0.6 and 0.8, respectively.

The parameters of PSO are as follows.The population size
𝑁pop is 30 and the maximum iteration number 𝑘max is 3000.
𝑤min, 𝑤max, 𝐶th, and 𝑁c are 0.2, 0.9, 20, and 5, respectively.
According to the values of 𝑁slot and 𝑡plug, the dimension of
position vector and velocity vector of each particle is 273.

5.2. Case Description. For comparison, different cases were
studied, and the input data and parameter setting in all cases
are the same as those presented in Section 5.1.These cases are
summarized as follows.

Case 1. It is the multiobjective optimization algorithm for
HEMS proposed in this paper, and the scheduling objects are

PHEV, EWH, PHEV,WM,CD,DW, and home energy storage
battery. In this case, the user has the ability to sell electricity
to the grid for revenue. The power distributions among grid,
loads, PV, and battery are demonstrated in Figure 2.

Case 2. It is a single objective optimization algorithm that
minimizes the electricity cost. Other aspects of Case 2 are the
same as those in Case 1.

Case 3. It is a single objective optimization algorithm that
minimizes the electricity cost too. However, the user does
not have the ability to sell electricity to the grid for revenue.
The home energy storage battery is used to store the excessive
energy generated by the PV. In this case, if the power output
from PV is greater than the sum of load demand and the
charging power of home energy storage battery, the excessive
energy will be discarded.

Case 4. This case is similar to Case 3 except that, in this
case, the operations of home appliances are not optimally
scheduled by any algorithmand the user uses these appliances
without considering the electricity price, PV power output,
and forecasted outdoor temperature.

5.3. Cost and Comfort Level. The simulation results of these
four cases are listed in Table 3.

For Cases 1, 2, and 3, the algorithms were run inde-
pendently 30 times with different initializations. The results
presented in Table 2 are the average values of different runs.
For Case 1, the user preference factor 𝛼 is 0.5.

FromTable 3, we can see that the user ismost comfortable
in Case 4. However, in this case, the user’s net electricity cost
is the highest because of not considering the electricity price
and PV power output. During the operations of the PHEV
and CD, the electricity price is high and the PV power output
is low,which increases the electricity cost.Thepower fromPV
is supplied to the loads and the home energy storage battery.
When the PV power output is high (e.g., time slots 60–90),
the excessive power is discarded due to the inability to sell
electricity to the utility grid for revenue. Therefore, the PV
utilization efficiency is very low.

In Case 3, the schedulable home appliances and the home
energy storage battery are optimally scheduled according to
electricity price, PV power output, forecasted outdoor tem-
perature, and user preferences. The power consumption on
peak hours is shifted to off-peak hours or hours when the PV
power output is high, more demand of loads is met by the PV,
and the PV utilization efficiency is improved significantly. As
a result, the amount of electricity purchased from the grid and
the overall net cost are reduced. Compared with Case 4, the
electricity purchase cost and net cost of Case 3 are reduced by
32.76% and 18.27%, respectively, at the cost of user comfort
level.

In Cases 1 and 2, the user has the ability to sell electricity
to grid for revenue. Therefore, the excessive power of PV
can be sold to the utility grid, and there is no power wasted.
In addition, the home energy storage battery can absorb
electricity from the grid when the electricity price is low and
supply the stored energy to loads or sell back to the utility grid
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Table 3: Simulation results of different cases.

Case Purchase cost (cents) Battery cost (cents) Sales revenue (cents) Net cost (cents) Comfort level
Case 1 84.67 108.89 57.29 136.27 24.87
Case 2 77.90 107.41 58.67 126.35 36.77
Case 3 68.82 80.79 — 149.61 34.13
Case 4 102.35 80.70 — 183.05 0.0

for profit when the electricity price is high. These two factors
contribute to overall net cost reduction. On the other hand,
because the home energy storage battery absorbs electricity
from the grid, the costs of purchasing electricity from the grid
in Cases 2 and 1 are higher than that of Case 3. Meanwhile,
more energy is charged to or discharged from the home
energy storage battery; therefore, the battery degradation
costs in the two cases are higher than those in Cases 3 and
4. However, due to the gain of selling electricity to the utility
grid, compared with Case 3, the net costs of Cases 2 and 1
are reduced by 15.55% and 8.92%, respectively. Consequently,
we can say that the framework of HEMS proposed in this
paper is better than other frameworks that only include parts
of these components or without the ability to sell electricity
to the utility grid.

Compared with Case 2, the net cost of Case 1 is increased
by 7.85%. However, the comfort level of Case 1 is improved
by 32.36%. Besides this improvement, in Case 1, the user
can take a tradeoff between the electricity cost and comfort
level through the preference factor 𝛼 conveniently, and the
user’s comfort level is quantified. Based on these results, we
can conclude that the multiobjective optimization algorithm
proposed in this paper is superior to the single objective
algorithms in Cases 2, 3, and 4.

5.4. Operation States of Schedulable Home Appliances. When
the forecasted outdoor temperature scenario is 𝑠

6
and PV

power output scenario is 𝑠
8
, the operation states of schedu-

lable home appliances under the control of the algorithm
proposed in this paper are shown in Figure 14.

As shown in Figure 14, the temperatures of room and
water in the tank of EWHarewithin their prespecified ranges.
Most charge power for PHEV is shifted from high price hours
to low price hours, and the final SOC of the PHEV battery has
reached the specified value. WM, CD, and DW finish their
tasks before their deadlines.

5.5. Power Distributions among Grid, Load, PV, and Battery.
When the operation states of schedulable home appliances are
as shown in Figure 14, the corresponding power distributions
among grid, load, PV, and battery are demonstrated as
follows.

The power distributions between the grid and the home
energy storage battery are shown in Figure 15.

From Figure 15 we can find that when the electricity price
is low, that is, between time slot 1 and time slot 62, the home
energy storage battery absorbs electricity from the grid; when
the price is high, that is, between time slot 63 and time slot 110,
it sells the stored electricity to the grid for profit.

The SOC, charging power, and discharging power of the
home energy storage battery are shown in Figure 16.

Figure 16 shows that the SOC of the home energy storage
battery is within the specified range during the scheduling
horizon. Between time slot 1 and time slot 62, most charging
power is from grid; between time slot 63 and time slot 95,
most charging power is from PV. Before time slot 50, the
power discharged from the home energy storage battery is
supplied to loads; between time slots 51 and 120 and the
discharged power is supplied to loads and sold to the grid.

Figure 17 displays the power distributions from PV to
loads, battery, and grid.

Figure 18 depicts the power distribution that is trans-
mitted from the grid to HEMS, that is, the power that is
purchased by the user in each time slot.

As shown in Figure 18, HEMS purchases electricity from
the utility grid when the electricity price is low. When the
price is high, the amount of electricity purchased from the
utility grid is reduced or even does not buy electricity any
more. For example, from time slot 61 to time slot 90, HEMS
does not buy electricity from the grid because of the high
electricity price.

5.6. Parameter Analysis. To demonstrate the effect of prefer-
ence factor to optimization results, the input data and other
parameters are kept the same as those in Case 1, and the
multiobjective optimization algorithmwas run with different
preference factors. The optimization results are shown in
Figure 19.

As shown in Figure 19, when the user preference factor
increases from 0 to 1, the electricity cost decreases from 169.18
cents to 126.34 cents and the comfort level indicator increases
from 13.55 to 36.77. In other words, with the increase of
preference factor, the electricity cost increases and the user
feels less comfortable.

The optimization algorithm runs with different 𝛽sell while
the other parameters and input data are kept the same as those
in Case 1. Figure 20 shows the relationship between the total
energy that is transmitted from battery to the grid and 𝛽

sell.
As shown in Figure 20, with the increase of 𝛽sell, the total

amount of energy that is transmitted from the home energy
storage battery to grid decreases.The reason is that the greater
𝛽
sell decreases the possibility of selling the stored energy to the

grid for revenue.
Figure 21 depicts the relationship between the total

energy that is transmitted from the grid to the home energy
storage battery and 𝛽

buy.
As shown in Figure 21, with the increase of 𝛽buy, the total

amount energy that is transmitted from the grid to the home
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Figure 14: Operation states of schedulable home appliances.
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Figure 17: Power distributions from PV to loads, battery, and grid.
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Figure 18: Purchased power from grid.

energy storage battery increases. The reason is that greater
𝛽
buy means more chances of buying electricity from the grid

to charge the home energy storage batterywhen the electricity
price is low.

5.7. Runtime and Robustness of Algorithm. The parameters
and input data were kept as described in Section 5.1, and the
maximum iteration number was set to 3000. The algorithms
in Cases 1, 2, and 3 were run 30 times, respectively, and the
statistics of runtime and final fitness value were obtained.The
results are displayed in Table 4.

As presented in Table 4, the runtimes in Cases 1 and 2
are longer than that in Case 3. The reason is that the former
two cases need to determine the power distribution among
loads, PV, battery, and grid through the method described in
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Table 4: Statistics of runtime and fitness value.

Case Parameter Minimum Maximum Mean Standard deviation

Case 1 Runtime (s) 81.9630 83.1010 82.4493 0.3515
Fitness value 78.4738 82.1968 80.5712 1.2511

Case 2 Runtime (s) 81.0580 81.9160 81.5070 0.3689
Fitness value 121.7943 129.1096 126.3472 2.3401

Case 3 Runtime (s) 28.1420 28.9380 28.3093 0.2702
Fitness value 147.4412 153.5338 149.6107 2.1340
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Figure 19: Relationship between optimization results and prefer-
ence factor.
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Figure 20: Relationship between total energy transmitted from the
home energy storage battery to grid and 𝛽

sell.

Section 4.4. Because the proposed multiobjective optimiza-
tion algorithm for HEMS is an offline optimization algo-
rithm, the runtime is acceptable for practical applications.
In fact, compared to the algorithm in [1], it is very fast. In
addition, from the standard deviations of runtime and fitness
value in Table 4, we can say that the proposed algorithm is
robust enough for application.
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Figure 21: Relationship between total energy transmitted from the
grid to the home energy storage battery and 𝛽

buy.

6. Conclusion

In smart grid, implementing DR in residential sector
through HEMS has attracted much interest of both academic
researchers and industrial engineers. This paper first pro-
poses a framework of HEMS including grid, load, PV, and
home energy storage battery. In this framework, a user has the
ability to sell electricity to utility grid for revenue. In order to
quantify user’s comfort level during the operation of home
appliances, a set of comfort level indicators are proposed
based on home appliance’s characteristics and user’s pref-
erences. A novel multiobjective optimization algorithm for
HEMS is proposed, which minimizes the electricity cost and
maximizes the comfort level of the user simultaneously. The
algorithm optimally controls the operations of schedulable
home appliances, such as PEHV, EWH, WM, CD and DW,
and the power distributions among grid, load, PV, and
battery according to the electricity price, power output of PV,
forecasted outdoor temperature, and user preferences. The
stochastic natures of PV generation and outdoor temperature
are considered andmodeled by scenario method.The control
of both home appliances and power distributions among
different components of HEMS is investigated in depth by
simulations. The computation time and robustness of the
proposed algorithm are acceptable for practical applications.
The results demonstrate that, compared with other frame-
work of HEMS and algorithms, the framework of HEMS and
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algorithm proposed in this paper can reduce electricity cost
and improve a user’s comfort level significantly, provides the
user with an efficient method of taking a tradeoff between
the electricity cost and the comfort level, and facilitates the
implementation of DR in residential sector in smart grid.

In this paper, the PHEV is considered as a pure load,
which absorbs electricity for transportation. However, in
smart grid, when the grid electricity price is high, it can also
supply the stored electricity to other home appliances or crit-
ical loads through the V2H function to reduce the amount of
electricity purchased from grid and home owner’s electricity
cost. In the future, we will integrate this function into the
model proposed in this paper. In this case, determining the
power distribution among loads, PV, battery, PHEV, and grid
will become more challenging.
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