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Nowadays, human activity recognition (HAR) plays an important role inwellness-care and context-aware systems.Human activities
can be recognized in real-time by using sensory data collected from various sensors built in smart mobile devices. Recent studies
have focused on HAR that is solely based on triaxial accelerometers, which is the most energy-efficient approach. However, such
HAR approaches are still energy-inefficient because the accelerometer is required to run without stopping so that the physical
activity of a user can be recognized in real-time. In this paper, we propose a novel approach for HAR process that controls the
activity recognition duration for energy-efficient HAR.We investigated the impact of varying the acceleration-sampling frequency
and window size for HAR by using the variable activity recognition duration (VARD) strategy. We implemented our approach by
using an Android platform and evaluated its performance in terms of energy efficiency and accuracy. The experimental results
showed that our approach reduced energy consumption by a minimum of about 44.23% and maximum of about 78.85% compared
to conventional HAR without sacrificing accuracy.

1. Introduction

Interest in u-health andwellness-care has recently been grow-
ing [1–3]. Various technologies that recognize the physical
activities of users using various embedded sensors in smart
mobile devices are actively studied. Recognized physical
human activities can be used to develop applications that
predict a falling accident ormeasure calorie consumption [4–
7]. Such applications mainly use the triaxial accelerometer
because it consumes the least power compared to other avail-
able sensors [8, 9]. Therefore, the use of “sensor” hereafter in
this paper refers to a triaxial accelerometer.

These applications need the accelerometer to operate
continuously without stopping in order to recognize different
physical human activities in real-time. Unfortunately, this
incurs unnecessary power consumption by the sensor and
computational overhead; it is regarded as a big problem con-
sidering the limited power resources of smart mobile devices
[10–12]. For example, while the battery life of LG Optimus
Pro reaches up to over 60 hours when all applications and
sensors are turned off, it decreases to 22 hours when a human

activity recognition (HAR) application is activated with a
sensor (100Hz).

One facile solution is to blindly limit the usage of the
accelerometer, but this may cause another problem of sacri-
ficing the accuracy of human activity recognition. Another
solution is to adopt a lower acceleration-sampling frequency
(SF) for the sensor, but thismay result in the loss of important
sampling data. For this reason, previous studies have mostly
focused on achieving a rather suboptimal balance between
energy efficiency and HAR accuracy, instead of seeking
optimal power consumption without sacrificing the HAR
accuracy [13–16]. An analysis of the previous studies showed
that they required the accelerometer to be operating at all
times; as a result, the power consumption due to the continu-
ous operation of the sensor itself and the accompanying data
processing by the CPU remain unaddressed. In this paper, we
argue that it is possible to save energy to great extent without
continuous sensor operation.

In order to further improve the energy efficiency, we pro-
pose an approach that dynamically controls the variable activ-
ity recognition duration (VARD) for HAR. Our approach
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classifies a user’s activities as dynamic or static and controls
the classification duration and sleep time for theHARprocess
based on two factors: the acceleration-sampling frequency
and window size (WS). We performed experiments and
conducted a thorough analysis of the result to show that
the proposed VARD strategy performs well in terms of both
energy efficiency and HAR accuracy.

The remainder of the paper is organized as follows. Sec-
tion 2 presents an analysis of previous HAR approaches for
efficient power consumption. Section 3 describes our initial
motivations and a basic HAR system. Section 4 presents the
impact of varying the SF, WS, and feature vector dimen-
sionality (FVD) on the classification accuracy and the power
consumption. Section 5 explains theVARDstrategy. Section 6
reports on the evaluation results for our approach. Finally,
Section 7 concludes with a summary and future directions.

2. Related Works

In this section, we first present a variety of accelerometer-
based HAR technologies and then discuss relevant previous
studies.

2.1. Human Activity Recognition Using Accelerometer. Early-
stage researchers investigated the wearable sensor-based
HAR; they demonstrated that the usage of wearable sensors
can provide elevated accuracy in the area of HAR [17–20].
Recent wearable sensor-based HAR has been enhanced by
some previouswork.Hong et al. [21] presented a personalized
HAR system using Bayesian network and support vector
machine (SVM).

Due to the rapid advancement of smart mobile devices
technology, many researchers focused on the mobile device-
based HAR. Their work [4, 22–24] also turned out to be
successful in providing high recognition rate. Torres-Huitzil
and Nuno-Maganda [25] showed a position-independent
HAR systemusing time-domain features and neural network.
Vo et al. [13] presented a personalized HAR system through
SVM, along with a 𝑘-medoids clusteringmethod. Albert et al.
[2] studied a HAR system for Parkinson’s patients.

Smart mobile devices are promising platform for HAR
because they not only are equipped with embedded built-
in sensors but also are a natural part of everyday human
daily life [26]. However, smart mobile device needs energy
management due to its limited resources.

2.2. Human Activity Recognition with the Energy-Saving. A
naive solution to reducing the power consumption of mobile
devices is to limit the usage of the accelerometer. However,
such an approachmaynegatively affect theHARaccuracy and
therefore should be applied with caution.

Vo et al. [13] aimed to reduce the power consumption of
the accelerometer and CPU by improving the HAR algo-
rithm. Their approach relied on a SVM and time-domain
features and reduced the power consumption by about 6.7%
when compared to a conventional approach adopting SVM
and fast Fourier transform (FFT). However, they focused

more on the HAR accuracy than on reducing the power
consumption.

Vo et al. [14] and Yan et al. [15] improved the power con-
sumption efficiency by changing the SFs of the accelerometer
and classification features. The key concept was identifying
the best combination of SF and classification feature for a
specific activity.Their approach reduced the power consump-
tion by about 20%–25% compared to previous approaches.
However, their approach also requires continuous operation
of the triaxial accelerometer when the application is running.

Liang et al. [16] reduced the power consumption of HAR
by using lower SFs. They proposed a hierarchical recogni-
tion algorithm that uses time-domain features, frequency-
domain features, and similarity measurements. Their algo-
rithm applies a decision tree instead of SVM. In their results,
the battery life was extended by 3.2 h. However, because this
algorithm tried to use a lower SF, the HAR accuracy was at
best over 85%, which is less than that of other studies [13–15].

In this paper, we propose a new approach for HAR
process that reflects the physical states of the mobile user.
Our approach can secure a similar or higher HAR accuracy
compared to previous approaches while providing better
energy efficiency.

3. Human Activity Recognition on
Smart Mobile Devices

In this study, our aim was to develop a lightweight HAR
approach that uses the embedded accelerometer in smart
mobile devices. To build a mobile HAR system on smart
mobile devices, methods for sensormonitoring and real-time
detection of user activity need to be considered, as depicted
in Figure 1.

Typical HAR can simply be defined as the process of
interpreting raw sensor data to classify a set of physical
human activities [27]. Statisticalmachine learning techniques
are used to infer information about the activities from raw
sensor readings; this process usually includes a training phase
and predicting phase. The training phase requires collecting
labeled data to learn the model parameters and build a
training model from the collection. The predicting phase
uses the training model to classify physical activities of users
in the following sequence: preprocessing, segmentation, fea-
ture extraction, and classification. The following subsections
explain the details of the proposed HAR process.

3.1. Collecting Acceleration. Physical human activities consist
of basic movements such as walking, sitting, standing, and
running.We selected the sixmost common activities as target
activities, which have been recognized in previous works
[8, 13–16, 19, 24]. Table 1 presents the target activities for our
study.

We collected data from the triaxial accelerometer (MPU-
6050; maximum range: 39.227m/s2; resolution: 0.001m/s2)
on the LG Optimus Pro (Android Kitkat 4.4.2 OS) of two
male subjects who are 28 and 32 years old, respectively. A
smart mobile device was placed inside the back pocket of the
pants of a subject.
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Classifying activities (SVM)

Preprocessing data

(i) Segmenting windows by sampling length
(ii) Calculating total magnitude
(iii) Normalizing raw data and total magnitude by

each absolute maximum value

Extracting features

(i) First 5 FFT coefficients on x axis
(ii) First 5 FFT coefficients on y axis

(iii) First 5 FFT coefficients on z axis
(iv) First 5 FFT coefficients on total magnitude

Collecting acceleration (50Hz to 100Hz)

Figure 1: Human activity recognition using a single accelerometer.

Table 1: Classification of target activities.

Activity type Activity
Static Standing and sitting

Dynamic Walking, running, ascending stairs,
and descending stairs

With the Android operating system, four different SFs
(NORMAL: 5Hz, UI: 16Hz, GAME: 50Hz, and FASTEST)
can be selected for the accelerometer. The FASTEST SF
depends on the computational workload of each specific
mobile device and thus can differ from device to device. For
our device, the FASTEST frequency was 100Hz. In this study,
we collected training data for six activities from two subjects.
For each activity, 30 samples were collected at four different
SFs; thus, we collected 1440 samples in total. A sample was
a unit with a single activity classification and corresponded
to a window that contained the preset number of contiguous
accelerometer data, which we called the WS. Section 4
discusses the experiments performedwith the above samples.
Figure 2 illustrates an example of the acceleration signals of
human activities on each axis. This example was obtained at
an SF of 100Hz and WS of 128.

3.2. Preprocessing Data. The preprocessing step consists of
segmentation, the total magnitude (TM), and normalization.
In the segmentation phase, the raw accelerometer data are
segmented intowindowswith size 𝑛, where 𝑛/2 accelerometer
samples overlap between two consecutive windows. Feature
extraction has been successfully performed on windows with
50% overlap in previous work [17]. The TM is the intensity
(vibration) of a user activity and is a significant metric
for discriminating between activities [8, 16, 24]. The TM is
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Figure 2: An example of acceleration signals of target activities on
three axes.

calculated according to TM = √𝐴𝑥 + 𝐴𝑦 + 𝐴𝑧, where 𝐴 𝑖 is
the magnitude of the sampled data on 𝑖-axis. Figure 3 plots
the acceleration on each axis, and the TM data are a sample
of the “walking” activity.

Finally, the raw data and TM data are normalized to have
values in range of (−1, 1) for later feature extraction and
classification [28].

3.3. Extracting Features. The selection of proper features
from raw data plays an important role in the HAR perfor-
mance. In general, the relevant features extracted for HAR
are grouped into three categories: (i) time-domain features
such as the mean, standard deviation, energy, and correlation
between axes [13–17, 23]; (ii) frequency-domain features such
as the FFT coefficient, zero crossing rate, and autocorrelation
of the magnitude [13–17, 29, 30]; and (iii) other features such
as wavelet features [16, 29], the autoregressive coefficient [31],
and discrete cosine transform coefficients [32].

The FFT coefficient demonstrates a higher average accu-
racy than the rest of the features [16, 31]. Thus, the first 20
FFT coefficients (first five for each of the three axes and
five from TM; see Sections 4.1 and 4.2) are selected for each
window, as illustrated in Figure 4. The FFT coefficients on
each axis reflect the amplitude of basic waves which can
be combined to reconstruct the original signal. For FFT,
we utilized the decimation-in-time (DIT) Radix-2 FFT [33],
which recursively partitions a discrete Fourier transform
(DFT) into two half-length DFTs of the even- and odd-
indexed time samples.

3.4. Classifying Activities. The extracted feature vectors can
be classified by using the SVM classifier, which is widely used
for HAR [13–15, 23]. LibSVM [34] was adopted to classify the
dataset. SVM is a learning algorithm that separates training
samples into their corresponding classes by maximizing the
margin of a separating hyperplane between classes in order
to solve the classification problem. SVM efficiently finds the
complex hyperplane in nonlinear data by using the kernel
trick. We used the radial basis function (RBF) kernel in order
to map support vectors to multiple dimensions because there
were 20 FFT attributes [23].

Human activities were classified into two activity types,
as given in Table 1: (i) the static activity type (SAT) includes
“sitting” and “standing” and (ii) the dynamic activity type
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Figure 3: Normalized amplitude of the “walking” activity on 𝑥-, 𝑦-, and 𝑧-axes and the total magnitude.
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Figure 5: Accuracy across six activities with different acceleration-
sampling frequencies.

(DAT) includes “walking,” “running,” “ascending stairs,” and
“descending stairs.” The SAT is equivalent to a nonmoving
relaxed state, and the DAT denotes active movement. Our
strategy exploits the fact that humans are likely to maintain
the same activity type for some time, especially for the SAT.

4. Tradeoff between Energy and Accuracy

The effects of the SF, WS, and FVD on the classification
accuracy and power consumption were evaluated, and the
FVD and combination of SF and WS were identified for
application to our method. To obtain the readings, we turned
off the network interfaces and display of our mobile device
during the experiment. We used PowerTutor [35] utility to
measure the power consumption.

4.1. Classification Accuracy and Acceleration-Sampling Fre-
quency. We investigated the impact of different SFs on the
classification accuracy with aWS of 128 and FVD of 20. Here,
2400 test samples were used (six activities × four SFs × 100
samples).

As shown in Figure 5, high SFs normally produced better
predictions, especially for the DAT cases. The SFs of 50 and
100Hz recorded an average accuracy of 90% or more in six
activities and were sufficiently higher than the minimum SF
of 20Hz that is required to assess daily activities [36].

4.2. ClassificationAccuracy and Feature VectorDimensionality
withDifferingWindowSizes. Figure 6 illustrates how the clas-
sification accuracy changed with the number of coefficients
for each WS. Using the first 20 FFT coefficients (first five
for each of the three axes and five from TM) produced an
accuracy of more than 90% for a WS of 128 or more. Our
experiments showed a slightly different result compared to
Preece et al. [29], who analyzed the discriminative ability of
individual FFT coefficients.They found that applying the first
18 coefficients (first six on each of the three axes) produced
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Figure 6: Accuracy versus feature vector dimensionality with
different window sizes.
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Figure 7: Power consumption of feature vector dimensionalities at
an acceleration-sampling frequency of 100Hz and window size of
128 over 30min.

the maximal accuracy. This discrepancy may be due to our
incorporation of TM coefficients in our feature vectors.

4.3. Power Consumption and Feature Vector Dimensionality.
For this experiment, we set the SF andWS to 100Hz and 128,
respectively.The SF of 100Hz had the best classification accu-
racy, as shown in Figure 5, and theWS of 128 had a prediction
accuracy of over 90%, as shown in Figure 6. Figure 7 plots the
power consumption over 30min against different numbers of
FFT coefficients.The power consumption showed a quadratic
increase with the dimensionality. Based on the results shown
in Figures 3 and 4, we selected an FVD of 20 in our study.
This had the least power consumption among FVDs with an
accuracy of more than 90%.

4.4. Power Consumption and Acceleration-Sampling Fre-
quency with Differing Window Sizes. Figure 8 illustrates the
power consumption for different SFs and WSs with an FVD
of 20 over 2 h. The results can be summarized as follows:

(i) The power consumption clearly increases with the SF.
A high frequency mandates more frequent raw data
collection.
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Figure 8: Power consumption at different acceleration-sampling
frequencies and window sizes over 2 h.

Table 2: Summary of tradeoff between energy and accuracy.

Observation Accuracy Power consumption
Higher SF Higher Increase
Bigger WS Higher Decrease
More FVD Higher Rapid increase

(ii) Larger WSs normally consume less power because
they decrease the number of classifications, which
take up a large proportion of the power consumption.

Table 2 summarizes our investigations. We adopted SFs
(50Hz and 100Hz),WSs (128, 256, and 512), and an FVD (20)
which yielded an accuracy of 90% or more with low power
consumption.

5. Experiments on the Variable Activity
Recognition Duration Strategy

To monitor user activities on smart mobile devices in an
energy-efficient manner, our study focused on two key ideas.

First, humans more often tend to maintain the same
activity than change from one activity to another (e.g., walk-
to-run and sit-to-stand). When one activity is recognized
in succession, we assumed that the activity will be lasted
for a while. Therefore, we focused on developing an energy-
saving scheme that increases the classification duration this
situation. If we increase the period in which an activity
is recognized in a given time, the frequency of activity
recognition will decrease. Consequently, this reduces the
power consumption necessary for activity recognition. To
increase the classification duration, we adopted amethod that
lowers the SF and/or increases theWS.We verified that a low
SF and large WS consume less power, as shown in Figure 8.

Second, dynamic activity (e.g., walking and running) is
more meaningful than static activity (e.g., sitting and stand-
ing) equivalent to a nonmoving relaxed state because it can be
used as data for dynamic health information such as calorie
consumption. Thus, we first classified a user’s activities as a
DAT and SAT, as indicated in Table 1. And then, when an SAT

Table 3: Variable activity recognition duration configuration for
dynamic activity type.

Activity type Acceleration-sampling frequency Window size

Dynamic

100Hz 128
50Hz 128
50Hz 256
50Hz 512

is recognized, we gave a break to the HAR process in order to
save more energy.

Based on these ideas, we applied different strategies for
each typewith regard to the classification duration. To control
the duration, the SF and WS were used for the DAT, and
a sleep time was additionally used for the SAT. We call
this energy-saving scheme the variable activity recognition
duration (VARD) strategy.

5.1. Variable Activity Recognition Duration Strategy for the
Dynamic Activity Type. To increase the classification dura-
tion, we can lower the SF and/or increase the WS. However,
a low SF and large WS are insensitive to rapidly changing
activities because they yield fewer samples than a high SF and
smallWS.Therefore, our strategy is to start with a high SF and
small WS to quickly identify changing activities. If the same
dynamic activity ismaintained for a long time,we assume that
the same activity will continue and adopt a method to lower
the SF and increase the WS.

To guarantee the energy efficiency and high accuracy
of HAR, we can choose SFs of 50 and 100Hz, as shown
in Figure 5, and WSs of 128, 256, and 512, as shown in
Figure 6. Each SF and WS can be combined for a total of six
combinations. The classification durations of ⟨100Hz, 256⟩
and ⟨50Hz, 128⟩ are the same at 2.56 s.

However, the power consumption of ⟨50Hz, 128⟩
(573mWh) is less than that of ⟨100Hz, 256⟩ (832mWh), as
shown in Figure 8. Another difference between the two
combinations is that the larger WS provides better HAR acc-
uracy because it extracts more precise features in the raw data
with noise comprising the latter part of previous acceleration
from the changing activity, as shown in Figure 9. These two
differences have conflicting tendencies for the energy efficie-
ncy andHAR accuracy. If the classification durations overlap,
we can choose the energy-efficient combination to focus on
saving energy.

Accordingly, we adopted four combinations for the strat-
egy with the DAT, as listed in Table 3: ⟨100Hz, 128⟩, ⟨50Hz,
128⟩, ⟨50Hz, 256⟩, and ⟨50Hz, 512⟩. We used the repeating
count of the same activity in order to check that the same
activity is continuous. A threshold for this count was set,
and we implemented a strategy of changing from the current
combination to the next combination with a low frequency
and large WS if the count carries over the threshold. The
progression to each configuration away from the first com-
bination causes the improvement in energy efficiency and
marginal weakening of the HAR accuracy.
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Figure 9: Comparison of feature extraction precision with noise.

5.2. Variable Activity Recognition Duration Strategy for the
Static Activity Type. Our strategy for the SAT is based on a
similar concept for the DAT strategy. However, there is no
need to recognize SAT often because there is less movement
compared with DAT. Our SAT strategy, therefore, uses the
sleep time during the HAR process along with the SF andWS
for better energy efficiency compared to the DAT strategy.
In addition, a DAT should be stably recognized in the SAT
state because it is more important than the SAT for extracting
processed information.

In our strategy, when an SAT is recognized during the
classification of human activity, the process takes a break.
After the break, the human activity is reclassified. As a
result, the classification duration increases within a given
time because this strategy incorporates a sleep time.

To ensure stable HAR accuracy while reducing energy
consumption, this strategy involves Sleeping 0 s when an
SAT is initially recognized and gradually increasing the sleep
time in increments of 1 s whenever an SAT is continuously
recognized.

The power consumption can be reduced with a break.
Nevertheless, the extent to which the break can be increased
while ensuring stable HAR accuracy needed to be evalu-
ated. Therefore, we investigated the HAR accuracy with six
combinations: ⟨100Hz, 128⟩, ⟨50Hz, 128⟩, ⟨100Hz, 256⟩,
⟨50Hz, 256⟩, ⟨100Hz, 512⟩, and ⟨50Hz, 512⟩. This was done

Observation time: five minutes

Observation time: ten minutes

10 15 20 25 30 35 40 45 50 55 605
Sleeping time (s)

10 15 20 25 30 35 40 45 50 55 605
Sleeping time (s)

20
40
60
80

100

Ac
cu

ra
cy

 (%
)

20
40
60
80

100

Ac
cu

ra
cy

 (%
)

⟨50Hz, 512, 11 s⟩
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⟨50Hz, 128, 3 s⟩
⟨100Hz, 128, 2 s⟩

Figure 10: Recognition accuracy of human activities with variable
activity recognition duration. The circle of each combination rep-
resents the break where the human activity recognition accuracy
violently fluctuates.

in order to calculate the preferred maximum sleep time. In
this experiment, theHAR accuracy was observed as the break
was increased from 0 s to 60 s for each combination. The
observation times for each break were 5 and 10min.Wemade
a total of 732 observations (6 × 61 × 2) of the HAR accuracy.
Figure 10 plots the observed HAR accuracy.
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This experiment showed that the HAR accuracy became
unstable every time the break was over a certain amount.The
circular symbols in Figure 10 show the break after which the
HAR accuracy badly fluctuated. This point was the limit to
the break for each combination. The limit can be calculated
by

𝑡lim (𝑓𝑠, 𝑛) = 𝑇 − ⌈
𝑛

𝑓
𝑠

⌉ , (1)

where 𝑓
𝑠
is an SF, 𝑛 is a WS, and 𝑇 is a constant of 30 s as

determined in this experiment. Based on this limit, we can
guarantee efficient power consumption and stable accuracy
during HAR.

Figure 11 plots the measured power consumption of six
combinations in 2 h with a preset maximum sleep time:
⟨100Hz, 128⟩, ⟨50Hz, 128⟩, ⟨100Hz, 256⟩, ⟨50Hz, 256⟩,
⟨100Hz, 512⟩, and ⟨50Hz, 512⟩. The power consumption
increasedwith a largerWS relative to a smallWS, and changes
to the SF had less effect on the power consumption than
changes to the WS. This is because the numbers of activity
recognition processes for every combination within a given
time are equal if the HAR process has a sleep time, and a large
WS increases the computational cost of HAR. As a result, the
samples with a large WS consumed more power. Therefore,
using a small WS can ensure high energy efficiency.

As shown in Figure 10, however, the average accuracy is
higher for large WSs than small WSs.Thus, we adopted three
combinations for the SAT strategy: ⟨100Hz, 512⟩, ⟨100Hz,
256⟩, and ⟨100Hz, 128⟩. As indicated in Table 4, we defined
the VARD combination configuration for SAT strategy. We
used the repeating count of SAT in order to check that the
type is continuous and employed a strategy of changing from
the current combination to the next combination with a
smallerWS if the count carried over a threshold based on the
sleep time limit. Progressing to further configurations away
from the first combination increases the energy efficiency and
destabilizes the HAR accuracy.

Table 4: Variable activity recognition duration configuration for
static activity type.

Activity type Acceleration-sampling frequency Window size

Static
100Hz 512
100Hz 256
100Hz 128

5.3. Real-Time Human Activity Recognition with the Variable
Activity Recognition Duration Strategy. The VARD strategy
can effectively guarantee not only classification accuracy but
also energy efficiency because it does not need to constantly
keep a specific SF and WS for HAR. Figure 12 represents
our approach as a state machine diagram, and the strategy is
described inAlgorithm 1. In order to obtain a break, ourHAR
process is divided into a Sensing State and Sleeping State, as
shown in Figure 12.

The Sensing State repeats the following cycles: collecting,
preprocessing, feature extraction, and classification. Our
classifier in the HAR process uses a variety of trainingmodels
for VARD configuration, as indicated in Tables 3 and 4.These
models are built by an offline SVMusing the training samples
discussed in Section 3.1.

By classifying a recognized activity as a DAT or SAT, the
HAR process transfers from the Sensing State to the state
for each type. For a DAT, the HAR process goes into the
Dynamic State to perform the DAT strategy. Otherwise, the
SAT strategy is performed for the Static State. When the
SAT strategy is performed, the HAR process transfers to the
Sleeping State unconditionally and takes a break. This break
time is set by the repeating count of SAT. After the break, the
process returns to the Sensing State in order to reclassify the
human activity.

When an event listener for the triaxial accelerometer is
registered in the initial Idle State, the HAR process transfers
to the Active State. The Active State comprises two substate
machines: the Sensing State and Sleeping State. In the Active
State, the process initializes the SF and WS and loads the
classificationmodel for this combination. It also sets a thresh-
old for the repeating count of the same activity. The HAR
process transfers to the Sensing State after the accelerometer
is started. While this transition is performed, the repeating
count of the SAT and repeating count of the same activity
are initialized with zero. When all of the initializations are
completed, the Sensing State begins so that a human activity
can be recognized.This portion is equivalent to lines (1)–(10)
in Algorithm 1.

When a recognized activity is a DAT, the HAR process is
transferred to the Dynamic State. In this state, the repeating
count of the same activity and maximum sleep time are ini-
tialized. In the Dynamic State, the current activity is checked
to see if it is equivalent to the previous activity. If they are the
same, the repeating count of the same activity is increased.
If this count exceeds the threshold, then the current VARD
configuration is changed to the next combination, and the
count is initialized. If the current and previous activities are
not the same, the repeating count of the same activity is
initialized, and theVARDconfiguration is changed to the first
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Variable Activity Recognition Duration]state machine Variable Activity Recognition Duration [ 

Set threshold for the repeating count of same activity;
entry/Set the SF with initial Hz, WS with N, classification model;

do/Start Accelerometer
exit/Stop Accelerometer

Initialize the count of same activity
[current previous activity]=activity
Increase the count of same activity;

entry/ previous activity]≠activity[current

Initialize the count of Sleeping state;
exit/Update the SF, the WS, and the classification model by the count of same activity;

Dynamic

entry/Update the SF, the WS, and the classification model by the count of SAT;
exit/Calculate the maximum sleep time

Static

Preprocessing Feature Extraction

Classification

Collecting

Sensing

entry/Set the timeout of Sleeping by the repeating count of SAT
do/Start the timer of Sleeping at its Timeout
exit/Increase the repeating count of SAT 

Sleeping

Active

Idle

when (filled window)

when (Activity type is “static”)

when (Activity type is “dynamic”)

/Stop Accelerometer

when (expired timer of Sleeping)/
Start Accelerometer

/Initialize the repeating count of SAT and the repeating count of same activity

when (register Listener of Accelerometer)

Figure 12: State machine for the variable activity recognition duration strategy.

DAT combination. In the Dynamic State, SF and WS are
updated by the current configuration, and a classification
model is loaded for the configuration. At the end of the
Dynamic State, HAR is started. This portion is equivalent to
lines (11)–(22) in Algorithm 1.

When a recognized activity is an SAT, the HAR process
is transferred to a Static State. If the previous activity is a
DAT, the VARD configuration is first changed to an SAT.
In the Static State, SF and WS are updated by the current
configuration, and a classification model is loaded for the
configuration. If the repeating count of the SAT exceeds
the maximum sleep time, the current VARD configuration
is changed to the next SAT combination, and the count

is initialized. Then, the HAR process is transferred to the
Sleeping State, and the accelerometer stops. In this state, the
sleep time is set by using the repeating count of the SAT, and
the HAR process takes a break during this time. After the
break, the repeating count of the SAT is increased, and the
HAR process is transferred to the Active State.This portion is
equivalent to lines (23)–(38) in Algorithm 1.

6. Performance Evaluation and Discussion

To evaluate the performance of the proposed algorithm, we
performed independent experiments with regard to the reco-
gnition accuracy and power consumption. An application
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(1) Set the SF f with the initial Hz and the WS𝑁 with the initial size;
(2) Load the classification model𝑀 for f and𝑁;
(3) Load the dynamic configuration table as [𝐷

1
: (100Hz, 128),𝐷

2
: (50Hz, 128),𝐷

3
: (50Hz, 256),𝐷

4
: (50Hz, 512)];

(4) Load the static configuration table as [𝑆
1
: (100Hz, 512), 𝑆

2
: (100Hz, 256), 𝑆

3
: (100Hz, 128)],

(5) the repeating count of SAT 𝑐 ← 0, and the repeating count of the same activity 𝑗 ← 0; 𝑖 ← 1;
(6) Set the threshold th for 𝑗
(7) and the maximum sleep time 𝑡lim ← 0;
(8)While 𝐴𝑝𝑝 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 Do
(9) Start the accelerometer; fill window with𝑁;
(10) Classify the current activity from the window with𝑀;
(11) If the current activity is DATThen
(12) 𝑐 ← 0; 𝑡lim ← 0;
(13) If the current activity is equivalent to the previous activityThen
(14) Increase 𝑗;
(15) If 𝑗 exceeds thThen
(16) Increase 𝑖 up to the size of the dynamic configuration table; 𝑗 ← 0;
(17) End If
(18) Else
(19) 𝑗 ← 0; 𝑖 ← 1;
(20) End If
(21) Update f and𝑁 with the control table𝐷

𝑖
;

(22) Load the classification model𝑀 for f and𝑁;
(23) Else
(24) If 𝑡lim is equivalent to 0Then
(25) 𝑖 ← 1;
(26) End If
(27) Update f and𝑁 with the control table 𝑆

𝑖
;

(28) Load the classification model𝑀 for f and𝑁;
(29) Calculate 𝑡lim based on (1);
(30) If 𝑐 exceeds 𝑡lim Then
(31) Increase 𝑖 up to the size of the static configuration table; 𝑐 ← 0;
(32) End If
(33) Stop the accelerometer;
(34) Set the timeout of Sleeping with the repeating count of SAT 𝑐;
(35) Delay for the timeout of Sleeping;
(36) Increase 𝑐;
(37) End If
(38) EndWhile

Algorithm 1: Variable activity recognition duration algorithm. The elements (𝐷
𝑖
, 𝑆
𝑖
) of the dynamic and static configuration tables contain

the acceleration-sampling frequency and window size where th is the threshold to maintain a combination in the dynamic configuration
table, 𝑐 is the repeating count of the static activity type, 𝑗 is the count continuously kept of any activity, and 𝑖 is the index of an element in the
configuration table. There are seven classification models for each element in the control tables, and 𝑡lim is the maximum sleep time.

employing our approach was installed as an Android service
that can operate in the background. The initial WS and SF
were set to 128 and 100Hz, respectively. The threshold th for
a DATwas set to 10.The experimental results were as follows.

6.1. Energy Efficiency. Five cases were considered, each for a
span of 12 h:

(i) No HAR: there is no HAR application running on the
phone.

(ii) Typical SVM: the SF is fixed at 100Hz, and the WS is
fixed at 128.

(iii) VARDwith DAT only: all activities are assumed to be
DAT.

(iv) VARD with SAT only: all activities are assumed to be
SAT.

(v) VARD with daily activities: daily activities include
walking to the lab, moving on stairs, studying at a
desk, and jogging.

We measured the battery level by using BatteryMan-
ager Android API and powered off the network interfaces
and display of our mobile device during the experiment.
Figure 13 compares the battery drainage time series in
our experiment. HAR with VARD showed slow and stable
power consumption of the smart mobile device over time.
VARD with DAT represented only the maximum power
consumption of our approach. This case clearly reduced
the energy consumption by 23% compared to the typical
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Figure 13: Comparing power consumption of different types.

Table 5: Confusion matrix of human activity recognition with
variable activity recognition duration.

Classified as a b c d e f
a 92 5
b 8 94
c 1 91 6 4
d 2 97 2 2
e 5 1 89 4
f 2 2 3 90
Key: a, sitting; b, standing; c, walking; d, running; e, ascending stairs; f,
descending stairs.

SVM case. VARD with SAT represented the minimum
power consumption and consumed 3% more power than
with no HAR. Finally, VARD with daily activities showed
a reduction of 36% in energy consumption compared to
typical SVM. The increase in energy efficiency compared
to typical SVM was computed by (power (Typical SVM) −
power (type))/power (Typical SVM). The increase in effi-
ciency was about 44.23% for VARD with dynamic activity
only, about 78.85% for VARD with static activity only, and
about 69.23% for VARD with daily activities.

6.2. Human Activity Recognition Accuracy. The confusion
matrix in Table 5 represents HAR errors for a real dataset
(six activities × 100 samples). The confusion matrix shows
that 5% of “walking” was misclassified as “ascending stairs”
and 6% for opposite misclassification. Also, 8% of “sitting”
was misclassified as “standing” and 5% for the opposite
misclassification. The experimental results showed that the
average HAR accuracy was 92.17%. If the activities “sitting”
and “standing” are unified into a relaxation activity, the HAR
accuracy for an SAT would be 99.5%.

7. Conclusions

Conventional HAR using the built-in accelerometer in smart
mobile devices still has high power consumption due to
not only the sensor itself but also the accompanying CPU

computation overhead. Inspired by such challenge, we pre-
sented a new approach for energy-efficient real-time HAR on
smart mobile devices. The experimental results showed that
our method can achieve greater than 64% average energy-
saving as compared to conventional HAR (SVM). We also
showed that the average HAR accuracy was about 92% with
six different activities. Moreover, we reported on how the SF,
WS, and FVD alter the battery power consumption behavior
with HAR. This report may be helpful to the field of HAR.
However, if the Sleeping State persists for a long time, sudden
human activities such as a fall cannot be recognized properly.
In order to solve this problem, future work on improving the
accuracy for recognizing sudden activity changes is needed.
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