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A nonlinear dynamic modeling method for a spacecraft body composed of a laminated composite beam undergoing large rotation
is proposed in this paper. To study the characteristics of a laminated composite beam attached to a spacecraft body for the dynamic
systems, the deformation description of a laminated beam is established with the consideration of laying angles and laying layers,
and the displacement-strain relations is acquired based on the global-local higher-order shear deformation theory. Accordingly, a
nonlinear dynamic model of the spacecraft body composed of a laminated composite beam is deduced using Hamilton variational
principle. And the complete coupling terms for the laminated material properties are considered unlike any other singular or
unidirectional materials. Then, the dynamic behavior of the spacecraft system is analyzed by comparison of an orthogonal-
symmetric, singular, and unidirectional laminated beam. The results show that the laminated composite structures have
significant influences on the dynamics properties of spacecraft compared with conventional equivalent singular or unidirectional
materials. Hence, the nonlinear model is well suitable for approaching the problem of coupling relationship between geometric
nonlinearity and large rotation motions. These conclusions will have significant theory and engineering practice values for
coupling dynamics properties of laminated beams.

1. Introduction

Laminated composite materials are formed by combining
layers of different materials or the same material by using dif-
ferent laying angles, laying sequence, and laying layers [1–3].
Some of the properties can be improved by forming a com-
posite material. For example, the stiffness and strength of
fibrous composites come from fibers which are stiffer and
stronger than the same material in bulk form [4]. In addition,
some new laminated structures composed of different rein-
forcements were investigated in [5, 6], such as basalt fiber
reinforced polymer and carbon fiber reinforced polymer
composites. However, stiffness changes during the service
loading of composite laminates can be significantly large,
especially as those changes affect deflections, dimensional
changes, vibration characteristics, and load or stress distribu-
tions [7]. With the development of aerospace exploration
technology, spacecraft is becoming so large-scale, complex,

flexible, and lightweight that conventional alloy materials
cannot meet the practical engineering needs. Because com-
posite materials exhibit not only better strength and stiffness
properties but also better fatigue life and vibration resistance.
Some laminated structures formed by composite materials
have been widely used in aviation, aerospace, and many other
engineering fields [8].

Flexible beams undergoing large-scale motions have their
own unique theoretical and practical values in many applica-
tions. Many slender structures in aerospace engineering, such
as space manipulators, solar wings, and satellite antenna, can
be idealized to beam structures, and the dynamics properties
of those structures are critical to system performance, integ-
rity, and reliability [9–11]. For these reasons, the dynamic
behaviors of flexible bodies experiencing a large-scale motion
have been studied by many researchers in some academic
fields. Accordingly, a lot of research of multibody system
dynamics modeling for beam structures has been presented.
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Space flexible beams with large-scale motion and nonlinear
deformation have been studied in [12]. In particular, the
effect of impact-induced damage on the mechanical behavior
of laminated composite structures was studied in [13, 14].
Rigid-flexible coupling system dynamic properties with
large-scale translational motion were studied in [15]. Next,
rigid-flexible coupling system dynamics properties of flexible
beams with large-scale deformation were studied in [16].
However, the geometric nonlinearity of laminated structures
with composite material has been studied by few researchers.
Dynamic properties of rotating composite material plates
were studied in [17]. And considering shear deformation,
dynamics properties of rigid-flexible coupling composited
material beam system were studied in [18]. Moreover,
dynamics equations of laminated beams with a large-scale
motion were presented in [19], and the influences on dynam-
ics properties for the transverse shear deformation of lami-
nated beams were analyzed. Then, the vibration properties
of laminated beams were studied in [20]. However, the geo-
metric nonlinear effect of deformations can significantly
influence dynamic behavior of the spacecraft system within
the framework of a multibody dynamics, and few researchers
have illustrated the specific rigid-flexible coupling character-
istics of the laminated composite structures. Moreover, most
of the above researchers did not consider the influence of
laminated composite material beams on its own dynamics
properties with large-scale motion. Thus, how to reasonably
derive exact models for a rotating laminated beam attached
to a spacecraft body within the context of multibody system
dynamics has been a subject of several researches.

In order to study dynamic behavior characteristics of a
spacecraft beam with laminated composite structures and a
large-scale motion, the aim of the present investigation is to
develop a dynamic model. Also, the rigid-flexible coupling
dynamics modeling are performed with the consideration
of laying angles and laying layers of laminated composite
beams. Then, the complete expressions of nonlinear terms,
coupled deformation terms, and nonlinear elastic forces are
developed in this study.

2. Formulation for a Laminated Composite
Beam with a Large-Scale Motion

2.1. Deformation Description. The laminated composite beam
can be illustrated in Figure 1. The length, width, and height of
the beam are denoted as a, b, and h (b≪ a, h≪ a). The lam-
inated beam is composed of L orthotropic layers. O0, e 0

and O, e are the inertial reference coordinate system
and floating coordinate system, respectively. When the lam-
inated composite beam undergoes a large-scale motion with
a spacecraft body, the deformation relative to the floating
coordinate system will be produced in the laminated beam.
An arbitrary point of the laminated composite beam can
move from position P0 before deformation to position P after
deformation, and the displacement vector can be expressed
as u. In Figure 1, ρ and ρ0 denote displacement vectors of
points P and P0 relative to floating coordinate origin O of
the laminated composite beam, r0 and r denote displacement

vectors of points O and P relative to inertial reference coordi-
nate origin O0. zk is the coordinate value of the kth layer in
the direction of e3, and hk is the lamina thickness of the kth
layer by hk = zk+1 − zk. In the inertial reference coordinate
system O0, e 0 , the position vector r of point P of the
laminated composite beam can be expressed as

r = r0 + ρ = r0 +A ρ0 + u , 1

where Α is the direction cosine matrix between the floating
coordinate system O, e and inertial reference coordinate
system O0, e 0 .

Let u k = u k v k w k be the deformation of a point
P0

k on the mid-plane of the layer relative to floating coordi-
nate system, based on the global-local higher-order shear
deformation theory, then the deformations u k , v k , and
w k (in Figure 2) of any point on the kth layer of the lami-
nated composite beam can be expressed as [21]

u k = u k
0 + zφ k

x − c1z
3 φ k

x +
∂w k

0
∂x

,

v k = v k
0 + zφ k

y − c1z
3 φ k

y +
∂w k

0
∂y

,

w k =w k
0 ,

2

where c1 = 4/3h2, φx = ∂u/∂z, φy = ∂v/∂z, u0 k , v0
k , and

w0
k are the displacements on the mid-plane of the kth

layer of the laminated composite beam, and z is far away
from the mid-plane of laminated composite beam as shown
in Figure 2.

The laying angles are denoted as θ k , k = 1, 2,… , L, in
the laminated composite beam as shown in Figure 3. Then,
the total deformation vector of the laminated composite
beam can be written as

u = u 1 +⋯ + u k +⋯ + u L = 〠
L

k=1
B k u k , k = 1, 2,… , L,

3

where u k is the position vector of any point on the
mid-plane of the kth layer, B k is the direction cosine trans-
formation matrix from floating coordinate system O, e
of the kth layer (shown in Figure 3) to inertial reference coor-
dinate system O0, e 0 , and

B k =
cos θ k −sin θ k 0

sin θ k cos θ k 0

0 0 1

4

The transformation relations between Euler parameters
and Euler angles can be written as
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Figure 1: Laminated beam with a large-scale motion.
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Figure 2: Deformation of the kth layer of laminated composite beam.
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Figure 3: Laying angles of the kth layer of a laminated composite beam.
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Θ0 = cos
ψ

2
cos

ϑ + φ

2
,

Θ1 = sin
ψ

2
cos

ϑ − φ

2
,

Θ2 = sin ψ

2
sin ϑ − φ

2
,

Θ3 = cos
ψ

2
sin

ϑ + φ

2
,

5

where ψ, ϑ, and φ are the relative rotating angles of O, e
around e3

0 , e1
0 , and e2

0 of O0, e 0 , respectively.
We introduce a 3 × 4 order auxiliary matrix Ĝ defined by

Ĝ = −Θ −Θ +Θ0I =

−Θ1

−Θ2

−Θ3

Θ0

−Θ3

−Θ2

Θ3

Θ0

−Θ1

−Θ2

Θ1

Θ0

, 6

where Θ = Θ1,Θ2,Θ3
Τ and antisymmetric matrix

Θ =

0 −Θ3 Θ2

Θ3 0 −Θ1

−Θ2 Θ1 0

7

Substituting (2), (3), (5), and (6) into (1), then differenti-
ating with respect to time t, we have the velocity vector r of an
arbitrary point P in O0, e 0 :

r = I −Aρ A

r0
ω′

〠
L

k=1
B k u k

, k = 1, 2,… , L, 8

where ρ is the antisymmetric matrix,

ρ =
0 −z y

z 0 x

−y x 0

, 9

and x, y, and z are the displacement coordinates of point
P0 along axis e1, e2, and e3, respectively, in Figures 2 and 3.
We introduce a four-dimension vector Λ defined by Λ =
Θ0 Θ1 Θ2 Θ3

Τ, and ω′ = 2ĜΛ in (8).
Using the finite element discretization method, the

laminated composite beam can be divided into n spatial
beam elements having two nodes as shown in Figure 4, in
which each node has six deformation degrees of freedom.

The node displacement vector q
k
of the spatial beam

element i in the local reference coordinate system Oi, e i

can be written as

q
k
= qiqi+1 T, 10

where

qk = uk vk wk γxk γyk γzk
T, k = i, i + 1

11

A simple way to obtain the derivatives of the director
field is to use interpolation. So, being Nj j = 1, 2,… , 6 ,
linear Lagrangian shape function coefficients will be used.
Then, the deformation vector ui of the spatial beam element
i in Oi, e i can be written as

ui =Nq
k
, 12

where N is the shape function of the spatial beam element
i with two nodes and six degrees of freedom of two nodes
defined by [22]

The parameters of N can be written as

N1 = 1 − τ,

N2 = τ,

N3 = 1 − 3τ2 + 2τ3,

N4 = τli 1 − τ 2,

N5 = 3τ2 − 2τ3,

N6 = τ2li τ − 1 ,

14

where τ = x/li, and x is the total displacement coordinates of

point P along axis e1 in Oi, e i , li is the length of the spatial

beam element i.
The node deformation displacement vector q in O, e

can be given by

N = Nx Ny Nz Nγ
T =

N1

0

0

0

0

N2

0

0

0

0

N3

0

0

0

0

N1

0

0

−N4

0

0

N4

0

0

N2

0

0

0

0

N5

0

0

0

0

N5

0

0

0

0

N2

0

0

−N6

0

0

N6

0

0

13

q = q
k
+ ui vi wi 0 0 0 ui vi wi 0 0 0 T

15
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Figure 4: Element division of a laminated composite beam.

We introduce a 12 × 12 order orientation matrix Bk

based on nodes of spatial beam element, and it can be defined
by [22]

B k =
0 I6×6
0 0 12×12

16

Then, the displacement vector of any point in O, e can
be given by

ui =
N1q − 0 5qTHq

N2q
N3q

=Φq , 17

where N j j = 1, 2, 3 is a 1 × 12 order matrix, N1 =NxBk,

N2 =NyBk, N3 =NzBk, and H is a coupled shape function
matrix of order 12 × 12.

Φ =
N1q − 0 5qTHq

N2q
N3q

18

The coupled shape function matrix H can be written as

H =
x

0

∂NT
1

∂x
∂N1
∂x

dx +
x

0

∂NT
2

∂x
∂N2
∂x

dx 19

2.2. Displacement-Stress Equations of a Laminated Composite
Beam. According to the deformation displacement of point
P in (2) and the displacement-strain relations of elastic
mechanics based on the global-local higher order shear
deformation theory, the strain of a laminated composite
beam can be given by [19]

εxx =
∂u0
∂x

+
1
2

∂w0
∂x

2
+ z

∂φx

∂x
− c1z

3 ∂φx

∂x
+
∂2w0
∂x2

,

εyy =
∂v0
∂y

+
1
2

∂w0
∂y

2
+ z

∂φy

∂y
− c1z

3 ∂φy

∂y
+
∂2w0
∂y2

,

εzz = 0,

γxy =
∂u0
∂y

+
∂v0
∂x

+
∂w0
∂x

∂w0
∂y

+ z
∂φx

∂y
+
∂φy

∂x

− c1z
3 ∂φx

∂y
+
∂φy

∂x
+ 2

∂2w0
∂x∂y

,

γyz = φy +
∂w0
∂y

− c2z
2 φy +

∂w0
∂y

,

γxz = φx +
∂w0
∂x

− c2z
2 φx +

∂w0
∂x

20
Using the displacement-strain relations of (20), the

displacement-strain equation of the kth layer can be given
by [19]

σxx

σyy

σzz
τxy

τyz

τxz k

=

Q11 Q12 0 0 0 0

Q12 Q22 0 0 0 0

0 0 0 0 0 0

0 0 0 Q66 0 0

0 0 0 0 Q44 0

0 0 0 0 0 Q55 k

εxx

εyy

εzz
γxy

γyz

γxz k

,

21
where Qij i, j = 1, 2,… , 6 is the equivalent stiffness coeffi-
cients of two-dimensional layers which can be defined by [21]

Q11 =Q11n
4 + 2 Q12 + 2Q66 m2n2 +Q22m

4,

Q12 = Q11 +Q22 − 4Q66 m2n2 +Q12 m4 + n4 ,

Q22 =Q11m
4 + 2 Q12 + 2Q66 m2n2 +Q22n

4,

Q44 = Q11 −Q12 − 2Q44 mn3 + Q12 −Q22 +Q44 m3n,

Q55 = Q11 −Q12 − 2Q55 m3n + Q12 −Q22 +Q55 mn3,

Q66 = Q11 +Q22 − 2Q12 − 2Q66 m2n2 +Q66 m4 + n4 ,
22

where m = sin θ, n = cos θ, and θ is the laying angle, and
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Q11 =
E1

1 − ν12ν21
,

Q12 =
ν12E2

1 − ν12ν21
,

Q21 =
ν21E2

1 − ν12ν21
,

Q22 =
E2

1 − ν12ν21
,

Q66 =G12,

Q44 =G23,

Q55 =G13,

23

where ν12 is the primary Poisson’s ratio of a laminated com-
posite beam, ν21 is the secondary Poisson’s ratio, Ei is the
elastic modulus, and Gij is the shear modulus of elasticity.

We introduce the stress σ and the strain ε of point P on
the kth layer of a laminated composite beam defined by

σ = σxx σyy σzz τxy τyz τxz
T
k
,

ε = εxx εyy εzz γxy γyz γxz
T
k
,

24

Then, (21) can be rewritten as the matrix form

σ =Qε, 25

where Q is reduced stiffness matrix of laminated composite
beam along the primary fiber direction, and

Q =

Q11 Q12 0 0 0 0

Q12 Q22 0 0 0 0

0 0 0 0 0 0

0 0 0 Q66 0 0

0 0 0 0 Q44 0

0 0 0 0 0 Q55 k

26

2.3. Rigid-Flexible Coupling Dynamics Modeling. The cou-
pling dynamics equations of a laminated composite beam
undergoing a large-scale motion can be obtained by using
the Hamilton variational principle. The Hamilton variational
principle can be given by [23]

t2

t1

δU − δT − δW dt = 0, 27

where T is the kinetic energy of the laminated composite
beam, U is the potential energy of the laminated composite
beam, and W is the virtual work by external forces of the
laminated composite beam.

2.3.1. Kinetic Energy. The kinetic energy of the laminated
composite beam undergoing a large-scale motion can be
written as

T =
1
2 V

ρ̂rTrdV , 28

where ρ̂ is the mass density of the laminated composite
beam, V is the volume of the laminated composite beam,
and r is the absolute velocity of any point of laminated
composite beams.

According to (8) and (17), the velocity vector of point
P of the laminated beam in the inertial reference coordinate
system O0, e 0 can be rewritten as

r = I C DΦ

r0
Λ
q

= Lq, 29

where C = −2AρĜ and D is reduced transformation matrix,
D =A∑L

k=1B k k = 1, 2,… , L , L = I C DΦ , q is the
generalized coordinate of the laminated composite beam,

and q = rT0 ΛT q T T
.

Substituting (29) into (28), the variational form of kinetic
energy of the laminated composite beam can be given by

δT =
1
2
δqTMδq, 30

whereM is the mass matrix of the laminated composite beam
defined by

M =

mrr mrθ mrd

mθr mθθ mθd

mdr mdθ mdd

, 31

in which

mrr =
v
ρ̂IdV ,

mrd =mT
dr =

v
ρ̂DΦdV ,

mθθ =
v
ρ̂CTCdV ,

mθd =mT
dθ =

v
ρ̂CTDΦdV ,

mdd =
v
ρ̂ΦTDTDΦdV ,

mrθ =mT
θr =

v
ρ̂CdV

32

2.3.2. Potential Energy. The potential energy of the laminated
composite beam undergoing a large-scale motion can be
written as

δU =
1
2 V

σTδε dV 33
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Further, we introduce a 6 × 6 order operator matrix
D̂ defined by

Then, substituting (3), (17), (20), and (25) into (33), the
potential energy of the laminated composite beam can be
rewritten as

δU =
1
2
qTKδq, 35

where K is the stiffness matrix of the laminated composite
beam defined by

K =

0 0 0

0 0 0

0 0 k f f

, 36

where k f f is a coupling stiffness matrix and

k f f =
V

B̂TD̂TQTD̂B̂ dV , 37

in which B̂ =∑L
k=1B k Φ k = 1, 2,… , L . Consequently, k f f

is strongly determined by the constitutive relationships of
laminated composite structure and a large rotation motion.
In other words, as the beam structure is made of singular or
unidirectional laminated materials, k f f can be condensed
statistically to a smaller sized matrix. Therefore, it accurately
represents the nonlinear properties unlike other conven-
tional stiffness matrix.

2.3.3. Virtual Work by External Forces. The virtual work δW
by external forces of the laminated composite beam with a
large-scale motion can be written as

δW = δWF + δW∗, 38

where δW∗ is the virtual work by inertial forces and δWF is
the virtual work by all the driving and disturbing forces.

Let the external force F act on the laminated composite
beam; the virtual work by external forces can be given by

δWF = FTδr = FT I C DΦ

δr0
δΛ
δq

= Fqδq, 39

where Fq = Fr Fθ Ff , Fr = FT, Fθ = FTC, and Ff = FT ·
DΦ.

Given the generalized inertial force F∗ acting on the
laminated composite beam, the virtual work δW∗ by the
inertial forces can be written as

δW∗ = F∗δq, 40

where F∗ = F∗r F∗θ F∗f . Accordingly,

F∗r = −A 4Ĝ I −ΛΛT ĜSt + 4ĜĜ
T
Sq ,

F∗θ = −8Ĝ
T
ΓθθĜΛ − 4Ĝ

T
Γθf q − 2ĜTΓθθĜΛ,

F∗f = −
V
ρ̂ ΦT 4Ĝ I −ΛΛT Ĝρ + 4ĜĜ

T
q dV ,

41

where

St =
V
ρ̂ρdV ,

S =
V
ρ̂ΦdV ,

Γθθ =
V
ρ̂ρTρdV ,

Γθf =
V
ρ̂ρΦdV

42

Here, the expressions of F∗ is characterized by more concise-
ness and formalized for the dynamic model, and it can be eas-
ily applied to the derivation of generalized force for arbitrary

D̂ =

∂
∂x

0
1
2

∂
∂x

2
− c1z

3 ∂2

∂x2
z
∂
∂x

− c1z
3 ∂
∂x

0 0

0
∂
∂y

1
2

∂
∂y

2
− c1z

3 ∂2

∂y2
0 z

∂
∂y

− c1z
3 ∂
∂y

0

0 0 0 0 0 0
∂
∂y

∂
∂x

∂
∂x

∂
∂y

− c1z
32

∂2

∂x∂y
z − c1z

3 ∂
∂y

z − c1z
3 ∂
∂x

0

0 0 1 − c2z
2 ∂

∂y
0 1 − c2z

2 0

0 0 1 − c2z
2 ∂

∂x
1 − c2z

2 0 0

34
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beam structures. Especially, in dealing with geometric non-
linear problems, the expressions can be used to avoid the
derivation of large nonlinear stiffness matrix. Hence, it
can significantly simplify the computational procedures.

Substituting (39) and (40) into (38), the virtual work δW
by external and inertial forces can be given by

δW = Fqδq + F∗δq 43

2.3.4. Coupling Dynamic Modeling of the Spacecraft System.
Substituting (30), (35), and (43) into (27), the coupling
dynamic equation of the laminated composite beam with a
large-scale motion can be written as

M K ΦT
q

Φq 0 0

q
q
λ

=
Fq + F∗

ς
, 44

where λ is the Lagrange multiplier, ς is the right-side term
column matrix of the acceleration form constrain equation,
and Φq is the Jacobi matrix of link hinge joints constrain
equations of the spacecraft system.

3. Numerical Simulations

In this section, numerical simulations of a laminated
composite beam rotating around the fixed axis are con-
ducted as shown in Figure 5, including four laying layers
and laying style 0°/90°/90°/0° . The size of the beam is a ×
b × h = 1000 0mm × 10 0mm × 10 0mm, and the thickness
of each layer hk = 2 5mm. Point PE is on the end of the
laminated beam. The influences of gravity, air resistance
force, and structural damping force have been neglected
in this simulation.

The numerical examples can be governed and verified
by a generally large-scale motion. The equation of angular
displacement curve can be defined by

θ =
Ω
T
t −

Ω
2π sin

2π
T

t , 0 ≤ t ≤ T ,

Ω, t ≥ T ,
45

where Ω = 180° and T = 20 0 s.
Boron/aluminum composite materials are used in both

the orthogonal-symmetric laminated beam 0/90 s and uni-
directional laminated beam 0n . The material properties of
the boron/aluminum composite are listed as follows in [24].
The density ρ = 2653 0 kg/m3; other material characteristic
parameters are listed in Table 1. For the single material
structure beam with boron aluminum alloy, the modulus of
elasticity E1 = 215 3GPa, the density ρ = 2766 7 kg/m3, and
Poisson’s ratio μ = 0 3.

The initial parameters are the following: the displace-
ment and velocity of the spacecraft body is zero, namely,
r0 = 0 and r∣t=0 = 0. The spacecraft body experiences a
large rotation motion around a fixed axis e2 in Figure 5,
Euler parameter ϑ = 0 and φ = 0, and the initial motion
position ψ∣t=0 = 0. Moreover, the initial velocity of the

O
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e3

u

p0

p

p0

p

r
0

r

e1

0

0
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0e3
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1
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4

b

h

a
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𝜃

Figure 5: A spacecraft body with a laminated beam rotating around a fixed axis.

Table 1: Material characteristic of boron/aluminum composite
[24].

Parameters Value Note

E1 (GPa) 215.3 Modulus of elasticity along fiber direction 1

E2 (GPa) 144.1
Modulus of elasticity perpendicular to fiber

direction 2

E3 (GPa) 144.1
Modulus of elasticity perpendicular to fiber

direction 3

G12 (GPa) 54.39 Shear modulus along fiber directions 1 and 2

G23 (GPa) 54.39 Shear modulus along fiber directions 2 and 3

G13 (GPa) 45.92 Shear modulus along fiber directions 1 and 3

μ12 0.195 Poisson’s ratio along directions 1 and 2

μ23 0.255 Poisson’s ratio along directions 2 and 3

μ13 0.255 Poisson’s ratio along directions 1 and 3
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flexible beam is assumed as zero without any external load
disturbance during the motion.

To reveal the dynamics characteristics of the spacecraft
beam with a large-scale motion as shown in Figure 5, the
dynamic behavior of a spacecraft body composed of a rectan-
gle beam with different material properties has been studied
in this section. The transversal and longitudinal deforma-
tions of the end point PE in the singular material beam and
laminated beam are shown in Figures 6 and 7, respectively.
From the two figures, when 0 ≤ t ≤ 20 0 s, the deformation
displacement u of the laminated beam has greater fluctua-
tions for its transversal and longitudinal components. Mean-
while, because the Q and B̂ =∑L

k=1B k Φ are introduced in
(37) to express the coupling stiffness matrix k f f of the anisot-
ropy of materials, the deformation of the laminated beam is

larger than that of the isotropic beam. Consequently, the geo-
metric nonlinear effect of laminated structures can be
described more exactly. Besides, the unidirectional laminated
beam and the orthogonal symmetric beam show greater dif-
ference because the coupling stiffness matrix k f f can produce
the differences caused by the laying angle and laying layers of
the laminated beam. Likewise, when t > 20 0 s, the response
of the three beams can converge to the same equilibrium
position with low-amplitude decay oscillations, but the
amplitude of singular material beam is smaller. Thus, it can
be seen that modeling without considering the laminated
composite structure will lead to greater errors and cannot
exactly describe the spacecraft dynamics responses.

The angular deformation velocity and acceleration curves
of point PE of a singular material and laminated beams are
illustrated in Figures 8 and 9, respectively. From the two
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Figure 6: Transversal deformation of point PE.

Single material structure beam
Unidirectional laminated beam
Orthogonal-symmetric laminated beam

302520151050
−1

0

1

2

3

4

×10−4

Time (s)

Lo
ng

itu
di

na
l d

ef
or

m
at

io
n 

of
 P

E 
(m

m
)

Figure 7: Longitudinal deformation of point PE.
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figures, the variation trend of those curves is consistent
between the total motions of singular material and laminated
beams. The velocity of the laminated beam fluctuates obvi-
ously, so obvious vibration is induced in the motions.
Meanwhile, due to persistent disturbances by the nonlinear
elastic force F∗f in (41), the value of angular acceleration
amplitude of the laminated beam is much larger than that
of the singular material beam. Furthermore, the obvious
disturbing force will be induced to increase the coupling
dynamics effect. Thus, it can be seen that the differences
of system dynamics responses between the singular mate-
rial and laminated beams are much more obvious. For this
reason, the geometric nonlinear effect of laminated struc-
tures must be considered in the study of the dynamic
characteristics of the spacecraft system.

Furthermore, we study the influences of different laying
layers of laminated structure on the system dynamics charac-
teristics. The structural dimensions and material parameters
of the beam are defined by Figure 5 and Table 1, respectively,
and the numbers of layers of the laminated beam L are 2, 4, 8,
and 20, and laying angle of the unidirectional laminated
beam θ is 0°.

Figures 10 and 11 show the transversal and longitudinal
deformation of the unidirectional laminated beam with
different layer thickness. From the two figures, when the
number of laying layers L ≤ 8 during the total motion of
the laminated beam, the responses of transversal and longi-
tudinal deformations of point PE are similar. When L = 20,
the value of deformation of the laminated beam obviously
become greater due to the coupling stiffness matrix k f f

considering the influence of laying layers L in the matrix
B̂. Thus, as the thickness of each layer of the laminated
beam increases, the differences of deformations tend to
become larger.

Figures 12 and 13 show the angular deformation velocity
and acceleration of point PE with different laying layers of
the laminated composite beam, respectively. From the two

figures, in the laminated beam model, the difference between
values of angular deformation velocity and acceleration is
smaller as the layers L increases. However, as a whole, the
vibration amplitudes tend to increase as the thickness of
laying layer decreases. For this reason, the influence of thick-
ness of laying layer should be considered carefully when a
laminated beam rotates with large rotations.

The transverse and longitudinal deformation of point
PE with different laying angles (0°/45°/90°) are illustrated
in Figures 14 and 15, respectively. From the two figures,
for θ = 0°, the elastic deformation varies between −2.0mm
and 2.0mm, and for θ = 90°, the elastic deformation varies
between −8.0mm and 8.0mm. Accordingly, the elastic defor-
mation of the laminated beam becomes larger as the laying
angle increases. In general, the laying angles of laminated
beams have significant influences on the dynamic properties
of a laminated composite beam with a large-scale motion.
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Figure 10: Transversal deformation of point PE.
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Through the above analysis, the dynamics characteristics
of the rectangle beam considering laminated composite
material structures and simplification of isotropic material
(singular material) from the conventional equivalence have
been verified preliminarily by using numerical methods.
And, the complete expressions of the coupling stiffness
matrix and the nonlinear elastic force are considered in the
dynamic modeling of the spacecraft system. The results show
that the laminated structure has significant influences on the
exact calculation of the dynamic model. This also reveals the
importance and correctness of considering laminated com-
posite structures. Meanwhile, the influence of the laminated
composite beam with various lamination parameters on the
system dynamic behavior is further carefully considered in
this section. The results also show that the number of layers
and the laying angles have more significant influences on sys-
tem dynamics properties.

4. Conclusions

When the spacecraft with laminated beam appendages
undergoes large-scale motions, such as attitude adjustment
and orbital maneuver, the elastic deformation of laminated
composite appendages can be induced, which can influ-
ence the dynamics properties of the spacecraft system.
From these reasons, the rigid-flexible coupling dynamic
model for a spacecraft body with laminated composite
beam-shape appendages have been presented in this paper
by considering constitutive relationships of anisotropic
laminated structures. Accordingly, the important influ-
ences of the coupling stiffness matrix and the nonlinear
elastic force are considered in this model. Furthermore,
the numerical simulations of laminated composite beams
with a large rotation motion are conducted by considering
the influences of the laminated structures and equivalent
laminated beams of a singular material, different laying
angles, and layers on the dynamics properties of the space-
craft system. The numerical results indicate that character-
istics of material properties, the number of layers, and
laying angles cannot be ignored for the dynamic analysis
of large-scale rigid-flexible multibody systems with laminated
composite structures.
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