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The limiting distribution of the size of binary interval tree is investigated. Our illustration is based on the contraction method,
and it is quite different from the case in one-sided binary interval tree. First, we build a distributional recursive equation of the
size. Then, we draw the expectation, the variance, and some high order moments. Finally, it is shown that the size (with suitable
standardization) approaches the standard normal random variable in the Zolotarev metric space.

1. Introduction

Random trees are usually generated based on combinatorics
and occur also in the context of algorithms from com-
puter science. There are many kinds of random trees with
different structures, such as recursive trees, search trees,
binary trees, and interval trees. The asymptotic probability
behavior of random variables in random trees has attracted
more scholars’ attention and has become a popular research
area. Drmota [1] introduced some labelled and unlabelled
random trees in his book. Devroye and Janson [2] studied
the protected nodes in several random trees. Feng and Hu
[3] researched the phase changes of scale-free trees. The
limiting law for the height, size, and subtree of binary search
trees was also considered (see [4–6]). There were also some
researchers investigating the Zagreb index and nodes of
random recursive trees (see [7–9]).

Binary interval tree is a random structure that underlies
the process of random division of a line interval and parking
problems. It has recently been a popular subject. Sibuya
and Itoh [10] showed that the number of internal and
external nodes in different levels of binary internal tree is
asymptotically normal, fromwhich the asymptotic normality
of the size of the tree could not be achieved directly. Prodinger
[11] looked into various parameters of the incomplete trie,

a one-sided version of a random tree with a digital flavor.
Fill et al. [12] followed with a study of the nonexistence of
limit distribution for the height of the incomplete trie. Itoh
and Mahmoud [13] considered five incomplete one-sided
variants of binary interval trees and proved that their sizes all
approach some normal random variables. Janson [14] drew
the same result for a larger scale of one-sided interval trees by
the renewal theory, and one kind of fragmentation trees was
discussed by Janson and Neininger [15]. Javanian et al. [16]
investigated the paths in m-ary interval trees. Su et al. [17]
studied the complete binary interval trees and got the Law
of Large Numbers. In addition, Pan et al. [18] considered the
construction algorithm about binary interval trees.

The binary interval tree is a tree associated with repeated
divisions of a line interval of length𝑥.The process of divisions
is as follows. If 𝑥 < 1, there is no division in effect; the
associated interval tree consists only of one terminal node.
Supposing that𝑥 ≥ 1, we beginwith the interval (0, 𝑥). Divide
the interval (0, 𝑥) into two subintervals by choosing 𝑈

𝑥
, a

point uniformly distributed over the interval (0, 𝑥). Then,
we get two intervals, (0, 𝑈

𝑥
) and (𝑈

𝑥
, 𝑥). Each of the two

subintervals is further divided at a uniformpoint of its length,
and two smaller subintervals are got as before. If the length of
the subinterval is less than 1, we stop the division. Repeat this
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Figure 1: (a) The division process. (b) The binary interval tree.

process until the length of every interval (or subinterval) is
less than 1.

We take 𝑥 = 4, for instance. Figures 1(a) and 1(b) show
how the above random division process of interval generates
a binary interval tree.

If some different conditions are added and those intervals
satisfying the conditions are not allowed to be divided (see
[13, 14]), thenwe can get different incomplete interval trees. In
particular, if we only divide one subinterval of every interval,
then the interval treewe get is the so-called one-sided interval
tree (see [13]).

It is obvious that interval tree could embody many
properties of random division, so it can elicit lots of valuable
subjects related to probability. For example, for 𝑥 > 0,
the height of the interval tree is the greatest level of all
subintervals after the divisions, denoted by 𝐻

𝑥
; the total

number of nodes of an interval tree is the total number of
intervals that were got from the randomdivision process, and
so on. Let 𝑆

𝑥
be the size of the interval trees, that is, the total

number of nodes of the binary interval trees. Our intention
is to investigate the random variable 𝑆

𝑥
, the size of binary

interval trees.
In this paper, the central limit theorem of the size of

binary interval trees is investigated. In view of the difficulty
to calculate the moment generating function of 𝑆

𝑥
, the

method we used is completely different from that in the
case of one-sided interval trees. In Section 2, we build a
distributional recursive equation of 𝑆

𝑥
and give the expec-

tation, the variance, and some high order moments of 𝑆
𝑥
.

In Section 3, via the contraction method, the limit law of
𝑆
𝑥
is shown to approach the unique solution of a fixed-

point distributional equation in the Zolotarev metric space.
Finally, we demonstrate that 𝑆

𝑥
, with suitable standardization,

converges to a normal limiting random variable, as 𝑥 → ∞.

2. The Moments of 𝑆
𝑥

Compared with the one-sided interval trees, the properties
of binary interval trees are much more complex. There are
a lot of difficulties when it comes to obtaining the moment
generating function of 𝑆

𝑥
. Therefore, the method used in

the case of one-sided interval trees (see [13]) is no longer
applicable. Here, we build a distributional recursive equation
of 𝑆
𝑥
. We can calculate the expectation and the variance of

𝑆
𝑥
. Furthermore, we find that the order of the fourth central

moment of 𝑆
𝑥
is 𝑂(𝑥2) as 𝑥 goes to infinity.

From the definition of binary interval tree, it is easy to
see that 𝑆

1
= 3 and 𝑆

𝑥
= 1, for 𝑥 < 1. For our purpose to

investigate the case of 𝑥 ≥ 1, let 𝑈
𝑥
denote the point chosen

uniformly from interval (0, 𝑥); hence, 𝑈
𝑥
∼ 𝑈(0, 𝑥). For any

fixed real number 0 < 𝑢 < 𝑥, if 𝑈
𝑥
= 𝑢, we denote 𝑆(1)

𝑢

to be the size of the left subtree associated with the interval
(0, 𝑢). Correspondingly, 𝑆(2)

𝑥−𝑢
denotes the size of the right

subtree associated with the interval (𝑢, 𝑥). According to the
rule of division, we can see that 𝑆(1)

𝑢
and 𝑆

(2)

𝑥−𝑢
are mutually

independent. Thus, we have

𝑆
𝑥




𝑈=𝑢

𝑑

= 1 + 𝑆
(1)

𝑢
+ 𝑆
(2)

𝑥−𝑢
, ∀0 < 𝑢 < 𝑥. (1)

This formula implies that if 𝑈
𝑥
= 𝑢 is given, 𝑆

𝑥
has the same

distribution as 1 + 𝑆
(1)

𝑢
+ 𝑆
(2)

𝑥−𝑢
. Obviously, we can rewrite the

above formula as

𝑆
𝑥

𝑑

= 1 + 𝑆
(1)

𝑈
𝑥

+ 𝑆
(2)

𝑥−𝑈
𝑥

. (2)

Define
𝑚
1
(𝑥) := E𝑆

𝑥
;

𝑚
2
(𝑥) := E (𝑆

𝑥
)
2

.

(3)

It is easy to see that

𝑚
1
(1) = E𝑆

1
= 3;

𝑚
2
(1) = 9;

𝑚
1
(𝑥) = 𝑚

2
(𝑥) = 1, 0 < 𝑥 < 1.

(4)

From the distributional recursive equation (2) and the
above boundary conditions, Su et al. [17] calculated the
expectation E𝑆

𝑥
and the variance Var 𝑆

𝑥
, for any 𝑥 ≥ 0.

Lemma 1. Let 𝑆
𝑥
be the size of a binary interval tree. Then

E𝑆
𝑥
= 𝑚
1
(𝑥) = 4𝑥 − 1, 𝑥 ≥ 1. (5)

Lemma 2. Let 𝑆
𝑥
be the size of a binary interval tree. Then

Var 𝑆
𝑥
=

{

{

{

32𝑥 ln𝑥 − 16𝑥2 + 8𝑥 + 8, 1 ≤ 𝑥 ≤ 2,

(32 ln 2 − 20) 𝑥, 𝑥 ≥ 2.

(6)

In order to prove that the asymptotic distribution of 𝑆
𝑥
is

normal, we also need the order of E(𝑆
𝑥
− E𝑆
𝑥
)
4 as 𝑥 → ∞.

The following proposition shows the fourth central moment
of 𝑆
𝑥
.
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Proposition 3. Let 𝑆
𝑥
be the size of a binary interval tree.Then

E (𝑆
𝑥
− E [𝑆

𝑥
])
4

= 𝑂 (𝑥
2

) , 𝑥 → ∞. (7)

Proof. See the appendix.

3. The CLT for 𝑆
𝑥

In this section, we will prove the asymptotic normality of 𝑆
𝑥

as 𝑥 → ∞. Themain method is the contraction method and
somemetrics are needed especially the Zolotarevmetrics (see
[19]).

First we introduce the Zolotarev metrics. Denote the
distribution of the random variable𝑋 byL(𝑋). LetD be the
set of the distributions of all real random variables, and define

D
∗

= {𝐹 : 𝐹 ∈D, ∫

R

𝑥𝑑𝐹 (𝑥) = 0, ∫

R

𝑥
2

𝑑𝐹 (𝑥)

= 1, ∫

R
|𝑥|
3

𝑑𝐹 (𝑥) <∞} .

(8)

It can be verified that random variable 𝑍 with L(𝑍) =

N(0, 𝜎
2

) satisfies the following formula. For any 𝑢 ∈ [0, 1],

𝑍

𝑑

= 𝑍√𝑢 + 𝑍√1 − 𝑢, (9)

and more generally, we have the following lemma.

Lemma 4. If 𝑍 and 𝑍 are standard normal random variables,
𝑈 is uniformly distributed over interval [0, 1], and (𝑈, 𝑍, 𝑍) are
mutually independent and then one has

𝑍

𝑑

= 𝑍√𝑈 + 𝑍√1 − 𝑈. (10)

Proof. In fact, for any 𝑢 ∈ [0, 1], we have

E exp {i𝑡 (√𝑢𝑍 + √1 − 𝑢𝑍)}

= E exp {i𝑡 (√𝑢𝑍 + √1 − 𝑢𝑍)}

= E𝑒i(𝑡√𝑢)𝑍E𝑒i(𝑡√1−𝑢)𝑍

= exp{−𝑢𝑡
2

2

} exp{−(1 − 𝑢) 𝑡
2

2

} = exp{−𝑡
2

2

} .

(11)

Therefore,

E exp {i𝑡 (√𝑈𝑍 + √1 − 𝑈𝑍)}

= ∫

1

0

E exp {i𝑡 (√𝑢𝑍 + √1 − 𝑢𝑍)} 𝑑𝑢

= ∫

1

0

exp{−𝑡
2

2

}𝑑𝑢 = exp{−𝑡
2

2

} .

(12)

But, we can find that, in the set D∗, there is only one distri-
bution, the standard normalN(0, 1), satisfying (10).

Suppose that 𝑚 is a nonnegative integer. Denote F(𝑚) by
the set of all real functions that are 𝑚 times continuous and
differentiable, defined on the real line. Let

F
(𝑚)

𝛼

:= {𝑓 : 𝑓 ∈F
(𝑚)

,






𝑓
(𝑚)

(𝑥) − 𝑓
(𝑚)

(𝑦)






≤




𝑥 − 𝑦






𝛼

} ,

(13)

where 0 < 𝛼 ≤ 1 is a fixed real number. Let 𝑠 = 𝑚 + 𝛼 and

𝜁
𝑠
(𝑋, 𝑌) := 𝜁

𝑠
(L (𝑋) ,L (𝑌))

= sup {

E𝑓 (𝑋) − E𝑓 (𝑌)


: 𝑓 ∈F

(𝑚)

𝛼
} ,

(14)

and then 𝜁
𝑠
is the Zolotarevmetrics with order 𝑠 on the setD.

According to the properties of the Zolotarevmetric, we know

𝜁
𝑠
(𝑋, 𝑌) < ∞

⇐⇒ E |𝑋|𝑠 + E |𝑌|𝑠 < ∞,

E𝑋𝑘 = E𝑌𝑘, 𝑘 = 1, . . . , 𝑚.

(15)

Therefore, we can choose 𝜁
3
as the metric we need on the

subset D∗ (see [20, 21]); that is, 𝑚 = 2, 𝛼 = 1. This is due
to the fact that, for anyL(𝑋) ∈ D∗ andL(𝑌) ∉ D∗, we have
𝜁
3
(𝑋, 𝑌) = ∞, but ifL(𝑋),L(𝑌) ∈ D∗, then 𝜁

3
(𝑋, 𝑌) < ∞.

The metric 𝜁
𝑠
(𝑋, 𝑌) has several properties as follows (see

[20]):

(1) For any constant 𝑐 > 0,

𝜁
𝑠
(𝑐𝑋, 𝑐𝑌) = 𝑐

𝑠

𝜁
𝑠
(𝑋, 𝑌) ; (16)

(2) if random variables 𝑌 and (𝑋
1
, 𝑋
2
) are mutually

independent, then

𝜁
𝑠
(𝑋
1
+ 𝑌,X

2
+ 𝑌) ≤ 𝜁

𝑠
(𝑋
1
, 𝑋
2
) ; (17)

(3) for random variables𝑋 and {𝑋
𝑛
, 𝑛 = 1, 2, 3, . . .},

𝜁
𝑠
(𝑋
𝑛
, 𝑋) → 0 ⇒ 𝑋

𝑛

𝑑

→ 𝑋. (18)

Now, we begin to prove the main result in this paper.

Theorem 5. Let 𝑆
𝑥
be the size of a binary interval tree. Then,

as 𝑥 → ∞,

𝑆
𝑥
− E𝑆
𝑥

√Var 𝑆
𝑥

𝑑

→ N (0, 1) . (19)
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Proof. Denote

𝑆
∗

𝑥
:=

𝑆
𝑥
− (4𝑥 − 1)

√(32 ln 2 − 20) 𝑥
, 𝑥 > 0,

ℎ (𝑥) := √
32𝑥 ln𝑥 − 16𝑥2 + 8𝑥 + 8

(32 ln 2 − 20) 𝑥
, 𝑥 > 0.

(20)

Then from Lemmas 1 and 2, we know that

𝑆
∗

𝑥
=

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

𝑆
𝑥
− E𝑆
𝑥

√Var 𝑆
𝑥

, 𝑥 ≥ 2,

𝑆
𝑥
− E𝑆
𝑥

√Var 𝑆
𝑥

⋅ ℎ (𝑥) , 1 ≤ 𝑥 < 2,

2 − 4𝑥

√(32 ln 2 − 20) 𝑥
, 0 < 𝑥 < 1.

(21)

So, we have L(𝑆
∗

𝑥
) ∈ D∗ for 𝑥 ≥ 2 and L(𝑆

∗

𝑥
) ∉ D∗ for

0 < 𝑥 < 2.
According to the correlative inequality in [21], for any

L(𝑋) ∈ D∗,L(𝑌) ∈ D∗,

𝜁
3
(𝑋, 𝑌) ≤

Γ (2)

Γ (4)

∫

R
|𝑡|
3

𝑑 |𝑃 (𝑋 < 𝑡) − 𝑃 (𝑌 < 𝑡)| , (22)

where Γ is the gamma function. Assume that the distribution
of random variable𝑍 isN(0, 1). It follows from Proposition 3
that

sup
𝑥≥4

E (𝑆∗
𝑥
)
4

< ∞. (23)

Therefore, there exists a constant 𝐶 > 0 such that

sup
𝑥≥4

𝜁
3
(𝑆
∗

𝑥
, 𝑍) ≤ 𝐶(sup

𝑥≥4

E 

𝑆
∗

𝑥






3

+ E |𝑍|3) < ∞. (24)

Denote

𝑎
𝑥
:= 𝜁
3
(L (𝑆

∗

𝑥
) , Φ) = 𝜁

3
(𝑆
∗

𝑥
, 𝑍) , (25)

where Φ is standard normal distribution and 𝑍 is standard
normal random variable; then we can see that

0 ≤ 𝑏 := lim sup
𝑥→∞

𝑎
𝑥
< ∞. (26)

Now, we just need to prove that 𝑏 = 0; then the theorem
follows.

Suppose that 𝑥 ≥ 4; by (A.1) and (21), we have

𝑆
∗

𝑥




𝑈
𝑥
=𝑡
=

𝑆
𝑥
− (4𝑥 − 1)

√(32 ln 2 − 20) 𝑥









𝑈
𝑥
=𝑡

𝑑

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑆
(1)

𝑡
− E [𝑆(1)

𝑡
]

√(32 ln 2 − 20) 𝑥
+

𝑆
(2)

𝑥−𝑡
− E [𝑆(2)

𝑥−𝑡
]

√(32 ln 2 − 20) 𝑥
, 2 ≤ 𝑡 ≤ 𝑥 − 2,

𝑆
(1)

𝑡
− E [𝑆(1)

𝑡
]

√(32 ln 2 − 20) 𝑥
+

𝑆
(2)

𝑥−𝑡
− E [𝑆(2)

𝑥−𝑡
]

√(32 ln 2 − 20) 𝑥
, 1 ≤ 𝑡 < 2,

𝑆
(1)

𝑡
− E [𝑆(1)

𝑡
]

√(32 ln 2 − 20) 𝑥
+

𝑆
(2)

𝑥−𝑡
− E [𝑆(2)

𝑥−𝑡
]

√(32 ln 2 − 20) 𝑥
, 𝑥 − 2 < 𝑡 ≤ 𝑥 − 1,

𝑆
(2)

𝑥−𝑡
− E [𝑆(2)

𝑥−𝑡
] − (4𝑡 − 2)

√(32 ln 2 − 20) 𝑥
, 0 < 𝑡 < 1

𝑆
(1)

𝑡
− E [𝑆(1)

𝑡
] − [4 (𝑥 − 𝑡) − 2]

√(32 ln 2 − 20) 𝑥
, 𝑥 − 1 < 𝑡 < 𝑥

𝑑

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑆
∗

𝑡
√

𝑡

𝑥

+ 𝑆
∗

𝑥−𝑡
√

𝑥 − 𝑡

𝑥

, 2 ≤ 𝑡 ≤ 𝑥 − 2;

𝑆
∗

𝑡
ℎ (𝑡)√

𝑡

𝑥

+ 𝑆
∗

𝑥−𝑡
√

𝑥 − 𝑡

𝑥

, 1 ≤ 𝑡 < 2,

𝑆
∗

𝑡
√

𝑡

𝑥

+ 𝑆
∗

𝑥−𝑡
ℎ (𝑥 − 𝑡)√

𝑥 − 𝑡

𝑥

, 𝑥 − 2 < 𝑡 ≤ 𝑥 − 1,

𝑆
∗

𝑥−𝑡
√

𝑥 − 𝑡

𝑥

−

4𝑡 − 2

√(32 ln 2 − 20) 𝑥
, 0 < 𝑡 < 1;

𝑆
∗

𝑡
√

𝑡

𝑥

−

4 (𝑥 − 𝑡) − 2

√(32 ln 2 − 20) 𝑥
, 𝑥 − 1 < 𝑡 < 𝑥,

(27)

where𝑈
𝑥
= 𝑡 is the first point chosen from interval (0, 𝑥) and

{𝑆
∗

𝑥
, 𝑥 > 0} is an independent copy of {𝑆∗

𝑥
, 𝑥 > 0}.

If we denote 𝑈 := 𝑈
𝑥
/𝑥, then 𝑈 ∼ 𝑈(0, 1) and we can

rewrite the above formula as

𝑆
∗

𝑥




𝑈=𝑢

=

𝑆
𝑥
− (4𝑥 − 1)

√(32 ln 2 − 20) 𝑥









𝑈=𝑢

(28)

𝑑

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑆
∗

𝑢𝑥
√𝑢 + 𝑆

∗

(1−𝑢)𝑥
√1 − 𝑢,

2

𝑥

≤ 𝑢 ≤ 1 −

2

𝑥

;

𝑆
∗

𝑢𝑥
ℎ (𝑢𝑥)√𝑢 + 𝑆

∗

(1−𝑢)𝑥
√1 − 𝑢,

1

𝑥

≤ 𝑢 <

2

𝑥

,

𝑆
∗

𝑢𝑥
√𝑢 + 𝑆

∗

(1−𝑢)𝑥
ℎ ((1 − 𝑢) 𝑥)√1 − 𝑢, 1 −

2

𝑥

< 𝑢 ≤ 1 −

1

𝑥

,

𝑆
∗

(1−𝑢)𝑥
√1 − 𝑢 −

4𝑢𝑥 − 2

√(32 ln 2 − 20) 𝑥
, 0 < 𝑢 <

1

𝑥

;

𝑆
∗

𝑢𝑥
√𝑢 −

4 (1 − 𝑢) 𝑥 − 2

√(32 ln 2 − 20) 𝑥
, 1 −

1

𝑥

< 𝑢 < 1.

(29)

According to the definition of D∗ and 𝜁
3
, it could be

found that (𝑆∗
𝑥
| 𝑈
𝑥
= 𝑡) ∈ D∗ for 2 < 𝑡 < 𝑥 − 2 and 𝑆∗

𝑥
∈ D∗.
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If we define 𝑆
𝑥
:= (𝑆
∗

𝑥
| 𝑈
𝑥
< 2 or 𝑈

𝑥
> 𝑥 − 2), then we

can also see that 𝑆
𝑥
∈ D∗. Furthermore, E((𝑆

𝑥
)
4

) ≤ 𝐶
1
for

some positive constant 𝐶
1
by conditioning on 𝑈

𝑥
and using

the similar calculation in the appendix. Hence,

𝜁
3
(𝑆


𝑥
, 𝑍) ≤ 𝛽, (30)

for some positive constant 𝛽.
As we had pointed out before, the standard normal

distribution is the only distribution satisfying (10) in the set
D∗. From (25), (14), and Lemma 4, for 𝑥 > 4, we have

𝑎
𝑥
= 𝜁
3
(𝑆
∗

𝑥
, 𝑍) ≤ 𝜁

3
(𝑆


𝑥
, 𝑍) ⋅

4

𝑥

+ ∫

1−2/𝑥

2/𝑥

𝜁
3
((𝑆
∗

𝑥
| 𝑈 = 𝑢) , 𝑍) 𝑑𝑢 ≤

4𝛽

𝑥

+ ∫

1−2/𝑥

2/𝑥

𝜁
3
(𝑆
∗

𝑥𝑢
√𝑢 + 𝑆

∗

𝑥(1−𝑢)

√1 − 𝑢, 𝑍√𝑢

+ 𝑍√1 − 𝑢) 𝑑𝑢 (By (15) and (29))

≤

4𝛽

𝑥

+ ∫

1−2/𝑥

2/𝑥

𝜁
3
(𝑆
∗

𝑥𝑢
√𝑢 + 𝑆

∗

𝑥(1−𝑢)

√1 − 𝑢, 𝑍√𝑢

+ 𝑆

∗

𝑥(1−𝑢)

√1 − 𝑢) 𝑑𝑢 + ∫

1−2/𝑥

2/𝑥

𝜁
3
(𝑍√𝑢

+ 𝑆

∗

𝑥(1−𝑢)

√1 − 𝑢, 𝑍√𝑢 + 𝑍√1 − 𝑢) 𝑑𝑢

≤

4𝛽

𝑥

+ ∫

1−2/𝑥

2/𝑥

𝜁
3
(𝑆
∗

𝑥𝑢
√𝑢,𝑍√𝑢) 𝑑𝑢

+ ∫

1−2/𝑥

2/𝑥

𝜁
3
(𝑆

∗

𝑥(1−𝑢)

√1 − 𝑢, 𝑍√1 − 𝑢) 𝑑𝑢

=

4𝛽

𝑥

+ 2∫

1−2/𝑥

2/𝑥

𝜁
3
(𝑆
∗

𝑥𝑢
√𝑢,𝑍√𝑢) 𝑑𝑢

=

4𝛽

𝑥

+ 2∫

1−2/𝑥

2/𝑥

𝑢
3/2

𝜁
3
(𝑆
∗

𝑥𝑢
, 𝑍) 𝑑𝑢

=

4𝛽

𝑥

+ 2∫

1−2/𝑥

2/𝑥

𝑢
3/2

𝑎
𝑥𝑢
𝑑𝑢.

(31)

Given 𝜀 > 0, let 𝛿 > 0 be small enough such that 𝛽𝛿5/2 < 𝜀/8.
For any fixed 𝛿 > 0, when 𝑥 is sufficiently large, then

4𝛽

𝑥

<

𝜀

10

,

2

𝑥

< 𝛿,

sup
𝛿≤𝑢≤1

𝑎
𝑥𝑢

< 𝑏 + 𝜀.

(32)

Thus,

2∫

𝛿

2/𝑥

𝑢
3/2

𝑎
𝑥𝑢
𝑑𝑢 ≤ 2𝛽∫

𝛿

2/𝑥

𝑢
3/2

𝑑𝑢 ≤ 2𝛽∫

𝛿

0

𝑢
3/2

𝑑𝑢

=

4𝛽𝛿
5/2

5

<

𝜀

10

;

2 ∫

1−2/𝑥

𝛿

𝑢
3/2

𝑎
𝑥𝑢
𝑑𝑢 ≤ 2 (𝑏 + 𝜀) ∫

1−2/𝑥

𝛿

𝑢
3/2

𝑑𝑢

≤ 2 (𝑏 + 𝜀) ∫

1

0

𝑢
3/2

𝑑𝑢 <

4 (𝑏 + 𝜀)

5

,

(33)

where 𝛽 is the constant as before and 𝑥 is sufficiently large. It
implies that

𝑎
𝑥
≤

4𝛽

𝑥

+ 2∫

𝛿

2/𝑥

𝑢
3/2

𝑎
𝑥𝑢
𝑑𝑢 + 2∫

1−2/𝑥

𝛿

𝑢
3/2

𝑎
𝑥𝑢
𝑑𝑢

<

𝜀

10

+

𝜀

10

+

4 (𝑏 + 𝜀)

5

<

4𝑏

5

+ 𝜀,

(34)

when 𝑥 is sufficiently large. Therefore,

𝑏 := lim sup
𝑥→∞

𝑎
𝑥
≤

4𝑏

5

+ 𝜀. (35)

From this equation and the arbitrariness of 𝜀 > 0, we can
conclude 𝑏 = 0 and

lim
𝑥→∞

𝜁
3
(𝑆
∗

𝑥
, 𝑍) = lim

𝑥→∞

𝑎
𝑥
= 0 (36)

immediately. By (18), the theorem holds.

Appendix

Proof of Proposition 3

From the process of generating the binary interval trees, it is
obvious that, for given 𝑈

𝑥
= 𝑡, 𝑡 ∈ (0, 𝑥),

(𝑆
𝑥
− E [𝑆

𝑥
])



𝑈
𝑥
=𝑡

𝑑

=

{
{
{
{
{

{
{
{
{
{

{

(𝑆
(1)

𝑡
− E [𝑆(1)

𝑡
]) + (𝑆

(2)

𝑥−𝑡
− E [𝑆(2)

𝑥−𝑡
]) , 1 ≤ 𝑡 ≤ 𝑥 − 1;

𝑆
(2)

𝑥−𝑡
− E [𝑆(2)

𝑥−𝑡
] − (4𝑡 − 2) , 0 < 𝑡 < 1;

𝑆
(1)

𝑡
− E [𝑆(1)

𝑡
] − [4 (𝑥 − 𝑡) − 2] , 𝑥 − 1 < 𝑡 < 𝑥,

(A.1)

where𝑈
𝑥
= 𝑡 is the first point chosen from interval (0, 𝑥). For

𝑥 ≥ 1, if we denote

𝑇
𝑥
:= 𝑆
(1)

𝑥
− E [𝑆(1)

𝑥
] ,

𝑇
∗

𝑥
:= 𝑆
(2)

𝑥
− E [𝑆(2)

𝑥
] ,

(A.2)

then we have

𝑇
𝑥




𝑈
𝑥
=𝑡

𝑑

=

{
{
{
{
{

{
{
{
{
{

{

𝑇
𝑡
+ 𝑇
∗

𝑥−𝑡
, 1 ≤ 𝑡 ≤ 𝑥 − 1;

𝑇
∗

𝑥−𝑡
− (4𝑡 − 2) , 0 < 𝑡 < 1;

𝑇
𝑡
− [4 (𝑥 − 𝑡) − 2] , 𝑥 − 1 < 𝑡 < 𝑥.

(A.3)
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We need to calculate E𝑇3
𝑥
first before we get E𝑇4

𝑥
. For 𝑥 > 3,

we have

E [𝑇
𝑥
]
3

= E [E (𝑇3
𝑥
| 𝑈
𝑥
)] =

1

𝑥

∫

1

0

E [𝑇
𝑥−𝑡

− (4𝑡 − 2)]
3

𝑑𝑡 +

1

𝑥

∫

𝑥

𝑥−1

E {𝑇
𝑡

− [4 (𝑥 − 𝑡) − 2]}
3

𝑑𝑡 +

1

𝑥

∫

𝑥−1

1

E [𝑇
𝑡
+ 𝑇
∗

𝑥−𝑡
]
3

𝑑𝑡

=

2

𝑥

∫

𝑥

𝑥−1

E {𝑇
𝑡
− [4 (𝑥 − 𝑡) − 2]}

3

𝑑𝑡 +

1

𝑥

⋅ ∫

𝑥−1

1

E [𝑇
𝑡
+ 𝑇
∗

𝑥−𝑡
]
3

𝑑𝑡 = (−

2

𝑥

⋅ ∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]
3

𝑑𝑡 +

6

𝑥

⋅ ∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]
2 E [𝑇
𝑡
] 𝑑𝑡 −

6

𝑥

⋅ ∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]E [𝑇2
𝑡
] 𝑑𝑡 +

2

𝑥

⋅ ∫

𝑥

𝑥−1

E [𝑇3
𝑡
] 𝑑𝑡) +

1

𝑥

∫

𝑥−1

1

(E [𝑇
𝑡
]
3

+ 3E [(𝑇
𝑡
)
2

𝑇
∗

𝑥−𝑡
] + 3E [𝑇

𝑡
(𝑇
∗

𝑥−𝑡
)
2

]

+ E [𝑇∗
𝑥−𝑡

]
3

) 𝑑𝑡.

(A.4)

In view of the independence between 𝑇
𝑡
and 𝑇

∗

𝑥−𝑡
and that

E[𝑇
𝑡
] = E[𝑇∗

𝑡
] = 0 holds for any 1 ≤ 𝑡 ≤ 𝑥 − 1, we have

E [𝑇
𝑥
]
3

= −

2

𝑥

∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]
3

𝑑𝑡

−

6

𝑥

∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]E [𝑇2
𝑡
] 𝑑𝑡

+

2

𝑥

∫

𝑥

𝑥−1

E [𝑇3
𝑡
] 𝑑𝑡 +

2

𝑥

∫

𝑥−1

1

E [𝑇3
𝑡
] 𝑑𝑡

= −

2

𝑥

∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]
3

𝑑𝑡

−

6

𝑥

∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]E [𝑇2
𝑡
] 𝑑𝑡

+

2

𝑥

∫

𝑥

1

E [𝑇3
𝑡
] 𝑑𝑡

:= 𝑀
1
+𝑀
2
+

2

𝑥

∫

𝑥

1

E [𝑇3
𝑡
] 𝑑𝑡.

(A.5)

It is easy to see that

𝑀
1
= −

1

2𝑥

∫

2

−2

𝑢
3

𝑑𝑢 = 0, (A.6)

and when 𝑥 > 3, for the part𝑀
2
, we have

𝑀
2
= −

6

𝑥

∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]Var [𝑆
𝑡
] 𝑑𝑡

= −

6

𝑥

∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2] [(32 ln 2 − 20) 𝑡] 𝑑𝑡

= −

6 (32 ln 2 − 20)
𝑥

∫

1

0

(4𝑡 − 2) (𝑥 − 𝑡) 𝑑𝑡

=

2 (32 ln 2 − 20)
𝑥

.

(A.7)

Therefore,

E [𝑇3
𝑥
] =

2

𝑥

∫

𝑥

1

E [𝑇3
𝑡
] 𝑑𝑡 +

2 (32 ln 2 − 20)
𝑥

, 𝑥 > 3. (A.8)

That is,

𝑥E [𝑇3
𝑥
] = 2∫

𝑥

1

E [𝑇3
𝑡
] 𝑑𝑡 + 2 (32 ln 2 − 20) ,

𝑥 > 3.

(A.9)

Via differentiation with respect to 𝑥, we get the differential
equation:

(E [𝑇3
𝑥
])



−

1

𝑥

E [𝑇3
𝑥
] = 0, 𝑥 > 3. (A.10)

The solution to this differential equation is

E [𝑇3
𝑥
] = 𝑘
0
𝑥, 𝑥 > 3, (A.11)

where 𝑘
0
is a constant real number.

Similarly, for E[𝑇
𝑥
]
4, when 𝑥 > 4, we have

E [𝑇
𝑥
]
4

=

2

𝑥

∫

𝑥

𝑥−1

E {𝑇
𝑡
− [4 (𝑥 − 𝑡) − 2]}

4

𝑑𝑡

+

1

𝑥

∫

𝑥−1

1

E [𝑇
𝑡
+ 𝑇
∗

𝑥−𝑡
]
4

𝑑𝑡.

(A.12)

Because 𝑇
𝑡
is independent of 𝑇∗

𝑥−𝑡
, and E𝑇

𝑡
= 0 holds for any

1 ≤ 𝑡 ≤ 𝑥 − 1, we get

E [𝑇
𝑥
]
4

=

2

𝑥

∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]
4

𝑑𝑡

+

12

𝑥

∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]
2 E [𝑇2

𝑡
] 𝑑𝑡

−

8

𝑥

∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]E [𝑇3
𝑡
] 𝑑𝑡
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+

2

𝑥

∫

𝑥

𝑥−1

E [𝑇4
𝑡
] 𝑑𝑡

+

1

𝑥

∫

𝑥−1

1

(E [𝑇4
𝑡
] + E [𝑇∗

𝑥−𝑡
]
4

+ 6E [𝑇
𝑡
𝑇
∗

𝑥−𝑡
]
2

) 𝑑𝑡

=

2

𝑥

∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]
4

𝑑𝑡

+

12

𝑥

∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]
2 E [𝑇2

𝑡
] 𝑑𝑡

−

8

𝑥

∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]E [𝑇3
𝑡
] 𝑑𝑡

+

2

𝑥

∫

𝑥

1

E [𝑇
𝑡
]
4

𝑑𝑡 +

6

𝑥

∫

𝑥−1

1

E [𝑇
𝑡
𝑇
∗

𝑥−𝑡
]
2

𝑑𝑡 := 𝐼
1

+ 𝐼
2
+ 𝐼
3
+ 𝐼
4
+ 𝐼
5
.

(A.13)

In particular, for the part 𝐼
1
, we have

𝐼
1
=

32

5𝑥

. (A.14)

When 𝑥 > 3, for the part 𝐼
2
, we have

𝐼
2
=

12

𝑥

∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]
2 E [𝑇2

𝑡
] 𝑑𝑡

=

12

𝑥

∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]
2 Var [𝑆

𝑡
] 𝑑𝑡

=

12

𝑥

∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]
2

[(32 ln 2 − 20) 𝑡] 𝑑𝑡

=

12 (32 ln 2 − 20)
𝑥

∫

1

0

(4𝑡 − 2)
2

(𝑥 − 𝑡) 𝑑𝑡

=

48

3

(32 ln 2 − 20) − 24 (32 ln 2 − 20)
3𝑥

:= 12𝑘
1
−

6𝑘
1

𝑥

,

(A.15)

where 𝑘
1
:= 4(32 ln 2 − 20)/3 is a constant.

When 𝑥 > 4, for the part 𝐼
3
, we have

𝐼
3
= −

8

𝑥

∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]E [𝑇3
𝑡
] 𝑑𝑡

= −

8

𝑥

∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2] 𝑘
0
𝑡𝑑𝑡

= −

8𝑘
0

𝑥

∫

1

0

(4𝑡 − 2) (𝑥 − 𝑡) 𝑑𝑡 =

8𝑘
0

3𝑥

,

(A.16)

where 𝑘
0
is the same as that in (A.11).

When 𝑥 > 4, for the part 𝐼
5
, we have

𝐼
5
=

6

𝑥

∫

𝑥−1

1

E [𝑇
𝑡
𝑇
∗

𝑥−𝑡
]
2

𝑑𝑡

=

6

𝑥

∫

2

1

E [𝑇2
𝑡
]E [𝑇∗

𝑥−𝑡
]
2

𝑑𝑡

+

6

𝑥

∫

𝑥−1

𝑥−2

E [𝑇2
𝑡
]E [𝑇∗

𝑥−𝑡
]
2

𝑑𝑡

+

6

𝑥

∫

𝑥−2

2

E [𝑇2
𝑡
]E [𝑇∗

𝑥−𝑡
]
2

𝑑𝑡

=

12

𝑥

∫

2

1

E [𝑇2
𝑡
]E [𝑇∗

𝑥−𝑡
]
2

𝑑𝑡

+

6

𝑥

∫

𝑥−2

2

E [𝑇2
𝑡
]E [𝑇∗

𝑥−𝑡
]
2

𝑑𝑡.

(A.17)

Noting that E[𝑇2
𝑡
] = Var[𝑆

𝑡
] and (6), we can see that

∫

𝑥

1

E [𝑇2
𝑡
]E [𝑇∗

𝑥−𝑡
]
2

𝑑𝑡

= 2∫

2

1

(32𝑡 ln 𝑡 − 16𝑡2 + 8𝑡 + 8)

⋅ ((32 ln 2 − 20) (𝑥 − 𝑡)) 𝑑𝑡

+ ∫

𝑥−2

2

((32 ln 2 − 20) 𝑡)

⋅ ((32 ln 2 − 20) (𝑥 − 𝑡)) 𝑑𝑡 = 1

6

(32 ln 2 − 20)2

⋅ 𝑥
3

−

4

3

(32 ln 2 − 20)2 𝑥2 + 1

3

(32 ln 2 − 20)

⋅ (256 ln 2 − 168) 𝑥 + 16

9

(32 ln 2 − 20) := 𝑎
3
𝑥
3

+ 𝑎
2
𝑥
2

+ 𝑎
1
𝑥 + 𝑎
0
,

(A.18)

where

𝑎
0
=

16

9

(32 ln 2 − 20) ;

𝑎
1
=

1

3

(32 ln 2 − 20) (256 ln 2 − 168) ;

𝑎
2
= −

4

3

(32 ln 2 − 20)2 ;

𝑎
3
=

1

6

(32 ln 2 − 20)2 .

(A.19)
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Therefore,

E [𝑇
𝑥
]
4

=

2

𝑥

∫

𝑥

1

E [𝑇
𝑡
]
4

𝑑𝑡 + 𝐼
1
+ 𝐼
2
+ 𝐼
3
+ 𝐼
5
,

𝑥 > 4.

(A.20)

That is,

𝑥E [𝑇4
𝑥
] = 2∫

𝑥

1

E [𝑇
𝑡
]
4

𝑑𝑡 + (𝐼
1
+ 𝐼
2
+ 𝐼
3
+ 𝐼
5
) 𝑥,

𝑥 > 4.

(A.21)

Via differentiation with respect to 𝑥, we get the differential
equation:

(E𝑇4
𝑥
)



−

1

𝑥

E𝑇4
𝑥
= 12

𝑘
1

𝑥

+ 6 (3𝑎
3
𝑥 + 2𝑎

2
+ 𝑎
1

1

𝑥

) ,

𝑥 > 4.

(A.22)

The solution to this differential equation is

E𝑇4
𝑥
= 18𝑎

3
𝑥
2

+ 12𝑎
2
𝑥 ln𝑥 + 𝑐𝑥 − 6𝑎

1
− 12𝑘

1
,

𝑥 > 4,

(A.23)

where 𝑐 is a constant and the constants 𝑘
1
, 𝑎
1
, 𝑎
2
, 𝑎
3
are real

numbers as defined before. From this equation, Proposition 3
follows.
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