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ABSTRACT
The development of craniofacial skeletal structures requires well-orchestrated tissue
interactions controlled by distinct molecular signals. Disruptions in normal function
of these molecular signals have been associated with a wide range of craniofacial
malformations. A pathway mediated by estrogens is one of those molecular signals
that plays role in formation of bone and cartilage including craniofacial skeletogenesis.
Studies in zebrafish have shown that while higher concentrations of 17-β estradiol (E2)
cause severe craniofacial defects, treatment with lower concentrations result in subtle
changes in head morphology characterized with shorter snouts and flatter faces. The
molecular basis for these morphological changes, particularly the subtle skeletal effects
mediated by lower E2 concentrations, remains unexplored. In the present study we
address these effects at a molecular level by quantitative expression analysis of sets of
candidate genes in developing heads of zebrafish larvae treated with two different E2
concentrations. To this end, we first validated three suitable reference genes, ppia2, rpl8
and tbp, to permit sensitive quantitative real-time PCR analysis. Next, we profiled the
expression of 28 skeletogenesis-associated genes that potentially respond to estrogen
signals and play role in craniofacial development. We found E2 mediated differential
expression of genes involved in extracellular matrix (ECM) remodelling, mmp2/9/13,
sparc and timp2a, as well as components of skeletogenic pathways, bmp2a, erf, ptch1/2,
rankl, rarab and sfrp1a. Furthermore, we identified a co-expressed network of genes,
including cpn1, dnajc3, esr1, lman1, rrbp1a, ssr1 and tram1 with a stronger inductive
response to a lower dose of E2 during larval head development.

Subjects Aquaculture, Fisheries and Fish Science, Biodiversity, Developmental Biology, Molecular
Biology, Toxicology
Keywords Craniofacial skeleton, Development, Estrogen, Gene expression, Zebrafish larvae,
qPCR, Reference genes, 17-β estradiol

INTRODUCTION
Craniofacial development is a critical part of embryogenesis and identification of molecular
mechanisms underlying this process is important in gaining a better understanding
of morphological diversity in vertebrates (Szabo-Rogers et al., 2010) as well as human
health (Oginni & Adenekan, 2012). The viscerocranium in humans is of interest because of
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oro-facial clefts and associatedmalformations (Marazita, 2012). The vertebrate craniofacial
skeleton, including the viscerocranium, is built fromneural-crest derived tissues. Changes in
these tissues over evolutionary time have given rise to a wide diversity of facialmorphologies
among vertebrate species (Trainor, Melton & Manzanares, 2003; Bronner & LeDouarin,
2012).

Estrogens, steroid hormones synthesized by aromatase from androgenic precursors,
have recently been shown to affect craniofacial development (Fushimi et al., 2009; Cohen
et al., 2014). Though estrogens are normally thought of as sex hormones, they affect a
variety of tissues including the cardiovascular and skeletal systems (Hall, Couse & Korach,
2001; Allgood et al., 2013; Cohen et al., 2014). Estrogens signal through classical nuclear
receptors (ER-alpha and ER-beta) (Jia, Dahlman-Wright & Gustafsson, 2015) and a G-
protein coupled receptor, GPR-30 (Jenei-Lanzl et al., 2010). These signaling proteins are
found in the chondrocytes of many vertebrate species (Tankó et al., 2008) and are present
during chondrogenesis (Jenei-Lanzl et al., 2010; Elbaradie et al., 2013). Among vertebrates,
teleost fish are highly diversified in craniofacial morphology and estrogen has been shown
to greatly affect chondrogenesis in many of the fish species studied so far, including
tilapia, fathead minnow, and zebrafish (Ng, Datuin & Bern, 2001; Warner & Jenkins, 2007;
Cohen et al., 2014). Furthermore, the teleost zebrafish is a well-developed model system
for studying both embryonic development and human disease and it can be useful in
understanding the development of the human viscerocranial skeleton as these processes
are well-conserved among vertebrates (Kuratani, Matsuo & Aizawa, 1997).

Low concentrations of estrogen cause subtle changes in craniofacial morphogenesis
during zebrafish larval development (Cohen et al., 2014). These changes are characterized
by a shorter snout, flatter face and wider angles of cartilage elements in the viscerocranium
(Cohen et al., 2014). Another recent study has also demonstrated that an estrogen mediated
signal underlies the evolution of shorter snouts and flatter faces in females of some reptilian
species (Sanger et al., 2014). These observations suggest that similar mechanisms might
underpin hormone-based phenotypic plasticity and diversity (Dufty, 2002), as well as
subtle differences in head/skeletal morphology of dimorphic sexes (Loth & Henneberg,
2001; Fujita et al., 2004; Callewaert et al., 2010). Therefore, studies offering insights into
molecular mechanisms rendering the observed phenotypes caused by hormonal changes
would be called for.

The subtle changes in craniofacial skeletogenesis mediated by low concentrations of
Estradiol (E2) are likely to be a result of differences in level and timing of the expression
of skeletogenesis-associated genes during head development (Albertson et al., 2010; Ahi et
al., 2014; Gunter, Koppermann & Meyer, 2014; Powder et al., 2015). These morphological
changes were only revealed by careful measurements of skeletal elements at zebrafish larval
stages (Cohen et al., 2014), therefore the identification of responsible genes might also
require precise expression studies in developing heads of zebrafish larvae using a sensitive
tool such as quantitative real-time PCR (qPCR) (Bustin, 2000; Kubista et al., 2006). In the
present study, we set out to quantitatively assess the effects of estrogen on the expression
dynamics of candidate genes which are known as potential targets of estrogen pathway and
also involved in craniofacial skeletogenesis in different vertebrate species (Table 1). We
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Table 1 Selected putative estrogen-regulated candidate genes, and available literature indicating their role in craniofacial development/skeletal
formation in zebrafish or other vertebrates.

Gene symbol Related function Viscerocranial
expression
during
zebrafish
development

Potential
estrogen
responsive*

Craniofacial skeletogenesis References

Shortened
snout**

Other
effects

alx4 Patterning and
development of
craniofacial skeleton

+ + + + (Qu et al., 1999; Joshi, Chang & Hamel,
2006; Lours-Calet et al., 2014)

bmp2 (a/b) Induction
of bone and
cartilage formation

+ + ? + Thisse et al. (2001), Thisse et al. (2004),
Zhou et al. (2003), Nie, Luukko & Ket-
tunen (2006), Hu, Colnot & Marcucio
(2008), and Yamamoto, Saatcioglu &
Matsuda (2013)

col2a1a Extracellular matrix
formation in
cartilaginous tissues

+ + + + Maddox et al. (1997), Eames et al.
(2010) andManeix et al. (2014)

ctsk Bone remodelling and
resorption

+ + + + Thisse et al. (2004), Troen (2006), Pe-
trey et al. (2012) and Ahi et al. (2014)

dlk1 Differentiation of
skeletal cells

? + + + Abdallah et al. (2011)

erf Regulation of cellular
senescence

? + + + Frasor et al. (2003) and Twigg et al.
(2013)

esrra Regulation
of estrogen
mediated pathway

+ + ? + Bonnelye & Aubin (2005), Bonnelye et
al. (2007) and Auld et al. (2012)

esr1 A ligand-activated
receptor for estrogen

? + ? + O’Lone et al. (2004) and Syed et al.
(2005)

ets2 Regulation of
developmental
genes and apoptosis

? + + + Sumarsono et al. (1996), Deblois et al.
(2009) and Ahi et al. (2014)

mmp (2/9/13) Extracellular matrix
formation and signal
transduction

+ + + + Breckon et al. (1999), Tüshaus et al.
(2003),Marin-Castaño et al. (2003),
Lu et al. (2006), Hillegass et al. (2007a),
Hillegass et al. (2007b),Mosig et al.
(2007) and Nilsson, Garvin & Dabrosin
(2007)

opg Negative regulation of
bone resorption

? + ? + Bord et al. (2003) andWhyte et al.
(2002)

pbx1 (a/b) Co-ordination
of chondrocyte
proliferation and
differentiation

+ + + + Selleri et al. (2001), Thisse & Thisse
(2005) andMagnani et al. (2011)

ptch (1/2) Receptors for
hedgehog
signalling pathway

+ + + + (Fushimi et al., 2009; Roberts et al.,
2011)

(continued on next page)
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Table 1 (continued)

Gene symbol Related function Viscerocranial
expression
during
zebrafish
development

Potential
estrogen
responsive*

Craniofacial skeletogenesis References

Shortened
snout**

Other
effects

rankl Osteoclast
differentiation
and activation

? + ? + Bord et al. (2003) and Lézot et al.
(2015)

rarab A receptor for
retinoic acid
signalling pathway

+ + + + (Lohnes et al., 1994; O’Lone et al., 2004;
Linville et al., 2009)

runx2b Osteoblast
differentiation
and skeletal
morphogenesis

+ + + + Sears et al. (2007),McCarthy et al.
(2003) and Flores et al. (2006)

sfrp1a A soluble modulator
of Wnt signalling
pathway

? + + + Satoh et al. (2006), Trevant et al.
(2008), Yokota et al. (2008), Fukuhara
et al. (2013) and Ahi et al. (2014)

Shh (a/b) Activators
of hedgehog
signalling pathway

+ ? ? + Hu & Helms (1999) and Swartz et al.
(2012)

sox9b Chondrocyte
differentiation

+ + ? + Yan et al. (2005), Bonnelye et al. (2007)
and Lee & Saint-Jeannet (2011)

sparc Extracellular matrix
synthesis and
regulation of cell
growth

+ + + + Lehane et al. (1999), Renn et al. (2006)
and Rotllant et al. (2008)

spp1 Attachment of
osteoclasts to ECM in
bone

+ + + + Craig & Denhardt (1991), Vanacker et
al. (1998) and Venkatesh et al. (2014)

timp2a Inhibition of
mmps and
regulation of tissue
homeostasis

? + + ? Dew et al. (2000), Lam et al. (2009),
Letra et al. (2012),Wang & Ma (2012)
and Ahi et al. (2014)

Notes.
*The estrogen responsiveness indicates either transcriptional regulation or transactivation and the related information are mainly obtained from different model vertebrates, such
as human and mouse, than teleost fishes.

**The shortened snout indicates the skeletal effects resulted from decrease in the length or changes in morphology of viscerocranial skeletal elements in different vertebrate species.
This could bear a resemblance to an estrogen mediated shorter snout and flatter face phenotype in zebrafish.

hypothesized that these genes may be critical to the estrogen modulation of craniofacial
skeletogenesis. We first identified the most stably expressed reference genes in developing
heads of zebrafish treated with two doses of estrogen (2 µM and 5 µM) across five stages in
larval development. Then, we accurately measured small changes in the expression levels of
the candidate genes. In addition, we have used available co-expression data from zebrafish
to identify a co-expressed network of genes with greater transcriptional response to the
lower dose of estrogen (2 µM) during larval head development.
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METHODS
Fish husbandry, treatment and sampling
Adult zebrafish were fed a diet of live brine shrimp supplemented with Ziegler zebrafish
diet (Pentair) and maintained on a 14/10 day/night cycle. Embryos were raised in E3B
(5 mMNaCl, 0.17 mMKCl, 0.33 mMCaCl2, 0.33 mMMgSO4, 0.00025%methylene blue).
Embryos were treated with estrogen (17β-estradiol, E2, Sigma) dissolved in ethanol and
diluted in E3B for a final ethanol concentration of 0.1%. Control fish were treated with
0.1% ethanol with no developmental malformations as described previously (Cohen et al.,
2014). For each treatment group (estrogen concentration), zebrafish larva were raised in
Petri dishes, and treatment solutions were refreshed daily until the stages indicated (3, 4,
5, 6 and 7 days post fertilization, dpf). Three biological replicates of 30 larva were collected
at each time-point (3–7 dpf) and for each treatment group (control, 2 µM E2, and 5 µM
E2) for a total of 90 larva at each time-point and treatment. The fishes were anesthetized
with 0.4% tricaine (MS-222, Sigma). Isolated heads (anterior to the yolk sac) were placed
into RNAlater (Qiagen) and stored frozen until RNA isolation. Zebrafish experiments were
performed under the Roanoke College IRB protocol #14BIO76.

RNA isolation and cDNA synthesis
Around 30 heads of zebrafish from each treatment group and larval stage were pooled in
TRI Reagent (Sigma) and homogenized with a disposable Kontes Pellet Pestle Cordless
Motor tissue grinder (Kimble Kontes). RNA was prepared according to manufacturer’s
instructions and dissolved in 50µl RNase-free water. RNA samples were treated withDNase
(New England Biolabs) to remove contaminating DNA. Quantity of the resulting RNA
samples was assessed using a NanoDrop ND-1000 UV/Vis-Spectrophotometer (NanoDrop
Technologies). The quality of the RNA samples was evaluated by agarose gel electrophoresis
and all samples displayed intact 28 S and 18 S rRNA without noticable high molecular
weight genomic DNA contamination. cDNA was prepared from 1000 ng of RNA using
the High capacity cDNA Reverse Transcription kit (Applied Biosystems), according to
manufacturer’s protocol. Several samples without addition of reverse transcriptase (-RT
samples) were prepared to confirm the absence of genomic DNA. cDNA was diluted 3 fold
in water for further use in quantitative real-time PCR.

Gene selection, Primer design and real-time qPCR
In order to validate suitable reference genes for accuratemeasurement of the transcriptional
changes of candidate genes by qPCR, we selected 7 potential reference genes based on
published studies in zebrafish (Table S1) (McCurley & Callard, 2008; Pelayo et al., 2012;
Schiller et al., 2013), none of which have been validated during development or in zebrafish
head. In addition we selected 28 target genes that are known as potential targets of the
estrogen pathway in different vertebrate species, and also involved in craniofacial skeletal
formation/morphogenesis (Table 1 andTable S1). Finally, we extended our list of candidates
by adding more genes showing co-expression with the estrogen receptor esr1 based on the
zebrafish database COXPRESdb (http://coxpresdb.jp/) version 6.0 (Obayashi & Kinoshita,
2011). To obtain the maximum number of coexpressed genes with a high degree of
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reliability, we filtered the genes by setting the mutual rank (MR) to the top-ranked 2000
and the Supportability score of minimum 1 (as described by Obayashi & Kinoshita, 2011).
This yielded 338 candidate genes, and from them, we selected 11 genes with reported
craniofacial expression during zebrafish development according to the ZFIN database
(http://zfin.org) (Bradford et al., 2011) (Table S1).

Locations overlapping exon boundaries of the genes in zebrafish were determined by
NCBI Spidey software (www.ncbi.nlm.nih.gov/spidey) and annotated genome sequences
in the Ensembl database (http://www.ensembl.org/Danio_rerio). The qPCR Primers were
designed on exon boundaries using Primer Express 3.0 software (Applied Biosystems, Foster
City, CA, USA) and checked for self-annealing, hetero-dimers and hairpin structures with
OligoAnalyzer 3.1 (Integrated DNA Technology) (Table S1).

Real-time PCR was performed in 96 well-PCR plates on an ABI 7500 real-time PCR
System (Applied Biosystems) using Maxima SYBR Green/ROX qPCR Master Mix (2X) as
recommended by the manufacturer (Thermo Fisher Scientific, St Leon-Rot, Germany).
Each biological replicate was run in duplicate together with no-template control (NTC)
in each run for each gene and experimental set-up per run followed the preferred sample
maximization method (Hellemans et al., 2007). The qPCR was run with a 2 min hold at
50 ◦C and a 10 min hot start at 95 ◦C followed by the amplification step for 40 cycles
of 15 sec denaturation at 95 ◦C and 1 min annealing/extension at 60 ◦C. A dissociation
step (60 ◦C–95 ◦C) was performed at the end of the amplification phase to identify a
single, specific product for each primer set (Table S1). Primer efficiency values (E) were
calculated with the LinRegPCR v11.0 programme (http://LinRegPCR.nl) (Ramakers et al.,
2003) analysing the background-corrected fluorescence data from the exponential phase
of PCR amplification for each primer-pair and those with E less than 0.9 were discarded
and new primers designed (Table S1).

Data analysis
To detect the most stably expressed reference genes, three ranking algorithms; BestKeeper
(Pfaffl et al., 2004), NormFinder (Andersen, Jensen & Ørntoft, 2004) and geNorm
(Vandesompele et al., 2002) were employed. The standard deviation (SD) based on Cq
values of the larval stages and treatment groups was calculated by BestKeeper to determine
the expression variation for each reference gene. In addition, BestKeeper determines the
stability of reference genes based on correlation to other candidates through calculation
of BestKeeper index (r). GeNorm measures mean pairwise variation between each gene
and other candidates, the expression stability orM value, and it excludes the gene with the
highest M value (least stable) from subsequent analysis in a stepwise manner. Moreover,
geNorm determines the optimal number of reference genes through calculation of pairwise
variation coefficient (Vn/n+ 1) between two sequential normalisation factors (NFn
and NFn+ 1) and extra reference genes are added until the variation drops below the
recommended threshold of 0.15 (Vandesompele et al., 2002). NormFinder identifies the
most stable genes (lowest expression stability values) based on analysis of the sample
subgroups (stage and treatment group) and estimation of inter- and intra-group variation
in expression levels.
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For the analysis of qPCR data, the difference between Cq values (1Cq) of the reference
genes and the target genes was calculated for each gene;1Cqtarget=Cqtarget−Cqreference. The
geometric mean of Cq values of three best ranked reference genes, ppia2, rpl8 and tbp (see
the ranking algorithms above), was used as Cq reference in the1Cq calculations. All samples
were then normalized to the 1Cq value of a calibrator sample to obtain a 11Cq value
(1Cqtarget−1Cqcalibrator). For each primer pair a biological replicate in the control group
at 3dpf was selected as the calibrator sample. Relative expression quantities (RQ) were
calculated based on the expression level of the calibrator sample (E−11Cq) (Pfaffl, 2001).
The RQ values were then transformed to logarithmic base 2 values (or fold differences;
FD) for statistical analysis (Bergkvist et al., 2010). A two-way analysis of variance (ANOVA)
followed by post hoc Tukey’s honest significant difference (HSD) test was implemented
for each reference or target gene with larval stages and treatment groups as categorical
variables. To assess similarities in expression patterns of the genes Pearson correlation
coefficients (r) were calculated for all gene pairs using the data from 3 treatments at 5 larval
stages (degree of freedom = 13). R (http://www.r-project.org) was used for all statistical
analysis.

RESULTS
tbp, ppia2 and rpl8 are the most suitable reference genes
Real-time quantitative PCR for the 7 reference gene candidates was performed on cDNA
generated from zebrafish head homogenates in three treatment groups at five larval stages.
The expression levels of the candidates varied from ppia2, with the highest expression
(lowest Cq) (Fig. 1A), to tbp with the lowest expression (highest Cq). Statistical analysis
revealed that all of the candidates except actb1 are stably expressed between the treatment
groups (Fig. 1B). However, only tbp showed constant expression during the larval stages
examined. Two genes, ppia2 and rpl8, were also stably expressed in developing heads of
zebrafish larvae except for the first stage (3dpf). Based on these results tbp followed by
ppia2 and rpl8 were found to be the overall most stable reference genes both over time
and between the treatment groups. The candidate reference genes were ranked using three
algorithms, i.e., BestKeeper, geNorm and NormFinder, and based on standard deviation
(SD) as described in Ahi et al. (2013) (Table 2). In all of the analyses three genes; ppia2, rpl8
and tbp, were the three highest ranking candidates, however their order varied between
the rankings (Table 2). Furthermore, geNorm suggested the use of the three best ranked
candidate genes as sufficient for accurate normalisation (Fig. S1). The data reflect the high
expression stability of the best ranked candidate genes and suggests the combination of
ppia2, rpl8 and tbp as a suitable and sufficient normalization factor to accurately quantify
small differences in gene expression in developing heads of zebrafish larvae across the E2
treatment groups.

Components of different signalling pathways and
skeletogenesis-associated genes are affected by estrogen during
larval head development
The selected 28 candidate target genes, listed in Table 1, can be classified into distinct
functional groups; (I) estrogen receptors with potential involvement in vertebrate
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Figure 1 Expression analysis of candidate reference genes in developing heads of zebrafish larvae
across control and E2 treated groups. (A) Expression profiles of candidate reference genes in raw Cq val-
ues for all samples (3 treatments for each of 5 larval stages and with 3 biological replicates). The middle
line denotes the median and boxes indicate the 25/75 percentiles. (B) Expression differences of candidate
reference genes in the head of zebrafish during the larval development and three E2 treatment groups. Fold
changes in expression calculated from the qPCR data, were subjected to ANOVA and Tukey’s HSD anal-
ysis to test the expression differences amongst three treatment groups (control, 2 µM and 5 µM) and
across five larval stages (3 to 7dpf). White boxes represent low expression, while black boxes represent
high expression. Two or more steps of shade differences in the boxes represent significantly different ex-
pression between the samples (alpha= 0.05). NS, not significant.

craniofacial development (esrra and esr1); (II) components of hedgehog (Hh) signaling
pathway (ptch1/2 and shha/b); (III) potential skeletogenic targets of estrogen pathway with
critical roles in viscerocranial development/morphogenesis (bmp2a/b, opg, rankl, runx2b
and sox9b); (IV) potential targets of estrogen pathway involved in ECM formation and
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Table 2 Ranking and statistical analyses of candidate reference genes using BestKeeper, geNorm and
NormFinder.

BestKeeper geNorm NormFinder

Ranking r Ranking SD Ranking M Ranking SV

rpl8 0.908 tbp 0.294 ppia2 0.111 rpl8 0.137
tbp 0.863 rpl8 0.343 rpl8 0.125 ppia2 0.154
ppia2 0.862 ppia2 0.350 tbp 0.133 tbp 0.157
actb1 0.687 actb1 0.396 actb1 0.26 actb1 0.287
efl1a 0.331 efl1a 1.358 efl1a 0.739 efl1a 1.128
tuba1 0.201 gapdh 1.690 gapdh 1.084 gapdh 1.382
gapdh 0.148 tuba1 2.773 tuba1 1.482 tuba1 2.088

Notes.
Abbreviations: SD, Standard deviation; r , Pearson product-moment correlation coefficient; SV, Stability value;M , M value
of stability.

associated with shortened snout morphogenesis in vertebrates (col2a1a, ctsk, mmp2/9/13,
sparc, spp1 and timp2a); and (V) other potential targets of estrogen pathways with diverse
functions which are also involved in viscerocranial skeletogenesis (alx4, dlk1, erf, ets2,
pbx1a/b, rarab and sfrp1a). The expression levels of all candidates were measured in the
three treatment groups during larval head development (Figs. 2, 3, 4 and 5). We found
effects of different E2 concentrations on the expression of most of the target genes, except
col2a1a and pbx1a, the effects, however, were highly variable among the genes (Figs. 2, 3,
4 and 5). For instance, while some genes, i.e., esr1, ptch1/2 and rarab displayed differential
expression between the treatment groups at most of the larval stages, other genes such as
alx4, bmp2b, ctsk, ets2, opg, etc., showed expression differences at only one stage. Among
the more highly affected genes, erf, esrra, mmp9, rankl, shha, sfrp1a, sparc and timp2a
were differentially expressed in at least three larval stages (Figs. 2, 3, 4 and 5). Although
significant, most differences in expression levels of the target genes were slight between the
treatment groups (RQ < 0.5), except for esr1 at the last larval stages (Fig. 2). Moreover, for
all of the affected genes, except esr1 and mmp13, the different E2 treatments had mainly
repressive effects on transcription. These repressive effects were not, however, increased by
higher E2 concentration particularly at the last two stages when the lower E2 dose (2 µM)
repressed expression of many of the genes more than the higher dose. At the last three
stages, the expression of esr1 was induced at highest levels for 2 µM treatment groups
(Fig. 2). The transcriptional repression by E2 was also variable between the genes and it was
more pronounced for erf and ptch2 showing higher expression in control groups than both
E2 treated groups at three larval stages. Taken together, these results show significant effects
of low E2 concentrations on the expression of a variety of genes involved in skeletogenesis
and/or craniofacial development.

We calculated the Pearson’s correlation coefficient of the expression levels for the
target genes over all treatment groups and larval stages and found positive expression
correlation between many pairs of target genes (blue shadings in Fig. S2). Some of the
genes i.e., mmp9, ptch1, rarab and timp2a displayed positive expression correlation with
most of the genes whereas others such as mmp13, sfrp1a, shhb and sparc showed the least
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Figure 2 Expression differences of two estrogen receptors and components of hedgehog signaling
pathway in developing heads of zebrafish larvae across control and E2 treated groups. Expression of
esrra, esr1, ptch1, ptch2, shha and shhb was examined with qPCR and normalised using three highest
ranked reference genes (ppia2, rpl8 and tbp). For analysis of relative expression levels for each target
gene a replicate of the control group at 3dpf was set to one. The white, grey, and black bars in each
graph represent expression levels for control, 2 µM E2 treated and 5 µM E2 treated groups respectively.
Statistical differences of each treatment group versus the others are shown in white, grey, and black circles
representing higher expressed than control, 2 µM E2 treated and 5 µM E2 treated groups respectively
(P < 0.05). Error bars represent standard deviation calculated from three biological replicates. Each
biological replicate is from a homogenate of 30 heads.

correlated expression. Negatively correlated expression was only seen between esr1 and
sfrp1a, and between shhb and six genes including esr1, ets2, mmp13, opg, pbx1a and spp1
(red shadings in Fig. S2).

A co-expressed network of genes shows higher expression induction
in lower E2 treatment groups
The stronger transcriptional response of esr1 to the lower E2 treatment (Fig. 2) could
indicate a distinct regulatory mechanism associated with slight increase in estrogen
concentration during zebrafish larval head development. In order to identify additional
genes showing similar expression dynamics, we selected 11 candidate genes constructing
a co-expression network with esr1 using co-expression data for zebrafish in COXPRESdb
(Obayashi & Kinoshita, 2011) (Table S2). These candidates are also known to have
craniofacial skeletal expression during zebrafish development based on data submitted
to the ZFIN database (http://zfin.org) (Bradford et al., 2011). Strikingly, we found stronger
inductive effects of the lower E2 concentration on the expression of six genes, i.e., cpn1,
dnajc3, lman1, rrbp1a, ssr1 and tram1 (Fig. 6). The expression of these six genes followed a
similar pattern and their higher expression levels were more pronounced at the last three
stages of 2 µM treatment groups. Moreover, the gene showing strongest coexpression
relationship with esr1 among the candidates, rrbp1a, had shown higher expression levels
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Figure 3 Expression differences of six potential skeletogenic targets of estrogen pathway in developing
heads of zebrafish larvae across control and E2 treated groups. Expression of bmp2a, bmp2b, opg,
rankl, runx2b and sox9b was examined with qPCR and normalised using three highest ranked reference
genes (ppia2, rpl8 and tbp). For analysis of relative expression levels for each target gene a replicate of the
control group at 3dpf was set to one. The white, grey, and black bars in each graph represent expression
levels for control, 2 µM E2 treated and 5 µM E2 treated groups respectively. Statistical differences of
each treatment group versus the others are shown in white, grey, and black circles representing higher
expressed than control , 2 µM E2 treated and 5 µM E2 treated groups respectively (P < 0.05). Error bars
represent standard deviation calculated from three biological replicates. Each biological replicate was
made from a homogenate of 30 heads.

at the last four stages of 2 µM treatment groups (Table S2 and Fig. 6). Finally, we also
demonstrated positive expression correlations between the six candidates and esr1, but not
the rest of the non-differentially expressed genes (blue shadings in Fig. S3).

DISCUSSION
Estrogen signaling, through both canonical nuclear estrogen receptors and G-protein
coupled receptors, is important in embryonic development (Griffin et al., 2013; Shi et al.,
2013). Estrogens can act at autocrine, paracrine, and endocrine distances in the embryo and
the adult (Boon, Chow & Simpson, 2010). Aromatase, the enzyme that synthesizes estrogens,
is present in the developing brain of many species, including zebrafish (Lassiter & Linney,
2007) and would be a local source of the hormone during head development. In fact,
the teleost brain produces relatively high levels of estrogen compared to other vertebrates
(Forlano et al., 2001). Estrogens are thus present in the cranium of developing embryos
and modulate viscerocranial development (Fushimi et al., 2009; Marquez Hernandez et al.,
2011; Cohen et al., 2014). Estrogen signalling has been implicated in the sexual dimorphism
of cranial bones in the Anolis lizard (Sanger et al., 2014). Hence, it may play a role in
craniofacial morphological divergence among species and within sexes of the same species.

A previous attempt to identify mechanisms underlying the effects of estrogen on
zebrafish craniofacial development was conducted with a high concentration of 17-β
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Figure 4 Expression differences of eight potential targets of estrogen pathway involved in skeletal
ECM formation examined during zebrafish larval head development across control and E2 treated
groups. Expression of col2a1a, ctsk,mmp2,mmp9,mmp13, sparc, spp1 and timp2 was examined with
qPCR and normalised using three highest ranked reference genes (ppia2, rpl8 and tbp). For analysis of
relative expression levels for each target gene a replicate of the control group at 3dpf was set to one. The
white, grey, and black bars in each graph represent expression levels for control, 2 µM E2 treated and
5 µM E2 treated groups respectively. Statistical differences of each treatment group versus the others are
shown in white, grey, and black circles representing higher expressed than control, 2 µM E2 treated and
5 µM E2 treated groups respectively (P < 0.05). Error bars represent standard deviation calculated from
three biological replicates. Each biological replicate was made from a homogenate of 30 heads.

estradiol (10 µM) giving rise to major disruptions of chondrogenesis followed by severe
morphological defects (Fushimi et al., 2009). In the same study, analysis of gene expression
after high dose estrogen treatment was limited to a semi-quantitative method (in situ
hybridization) and a few chondrogenic genes belonging to only one molecular pathway
(Fushimi et al., 2009). We hypothesized that many other candidate genes would be involved
and hence, in the present study, we sought to quantitatively assess the expression of genes
that could play role in the subtle effects of estrogen on the development of the craniofacial
skeleton in zebrafish larvae (Cohen et al., 2014). Since our expression analysis depended on
accurate qPCR, a prior step of careful validation of reference genes was essential to acquire
reliable results (Bustin, 2000;Kubista et al., 2006). An increasing number of stably expressed
reference genes have been validated for qPCR studies in a variety of fish species (Ahi et
al., 2013; Fuentes et al., 2013; Liu et al., 2014; Altmann et al., 2015; Wang et al., 2015), and
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Figure 5 Expression differences of eight other potential targets of estrogen pathway involved in jaw
skeletal elongation examined during zebrafish larval head development across control and E2 treated
groups. Expression of alx4, dlx1, erf, ets2, pbx1a, pbx1b, rarab and sfrp1a was examined with qPCR
and normalised using three best ranked reference genes (ppia2, rpl8 and tbp). For analysis of relative
expression levels for each target gene a replicate of the control group at 3dpf was set to one. The white,
grey, and black bars in each graph represent expression levels for control, 2 µM E2 treated and 5 µM E2

treated groups respectively. Statistical differences of each treatment group versus the others are shown
in white, grey, and black circles representing higher expressed than control, 2 µM E2 treated and 5 µM
E2 treated groups respectively (P < 0.05). Error bars represent standard deviation calculated from three
biological replicates. Each biological replicate was made from a homogenate of 30 heads.

also in zebrafish at different developmental stages, body parts/tissues, and treatments
(Tang et al., 2007; McCurley & Callard, 2008; Lin et al., 2009; Casadei et al., 2011). There
is however a necessity for validation of reference genes depending on the experimental
conditions under study. Here, we found three genes, ppia2, rpl8 and tbp, to be the most
stably expressed candidate genes by all the methods of analysis used (Table 2 and Fig. 1)
and their combination could ensure robust qPCR data normalisation (Fig. S1). We next
selected candidate genes that are shown to be potential estrogen pathway targets, and at
the same time, differential regulation of many of them is associated with morphological
changes resembling shortened snout in different vertebrates (many found in mammalian
species) (see publications referenced in Table 1). The underlying mechanisms by which
these candidate genes could affect skeletogenesis are different from each other. For instance,
genes like bmp2a/b, rankl, runx2b and sox9b are major factors in differentiation of skeletal
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Figure 6 Expression differences of esr1 coexpressed genes in developing heads of zebrafish larvae
across control and E2 treated groups. Expression levels of eleven candidate genes coexpresed with esr1,
based on data from COXPRESdb in zebrafish, were examined with qPCR and normalised using three
best ranked reference genes (ppia2, rpl8 and tbp). For analysis of relative expression levels for each target
gene a replicate of the control group at 3dpf was set to one. The white, grey, and black bars in each graph
represent expression levels for control, 2 µM E2 treated and 5 µM E2 treated groups respectively.
Statistical differences of each treatment group versus the others are shown in white, grey, and black circles
representing higher expressed than in control, 2 µM E2 treated and 5 µM E2 treated groups respectively
(P < 0.05). Error bars represent standard deviation calculated from three biological replicates. Each
biological replicate is based on a homogenate of 30 heads.

cells and some others such as col2a1a, ctsk, mmp2/9/13, spp1 and sparc are critical for the
formation of ECM in craniofacial skeletal structures (see Table 1).

The treatments with the two different doses of E2 (2 and 5 µM) resulted in differential
expression of many of the candidates during the zebrafish larval head development (Figs. 2,
3, 4 and 5). Consistent with a previous study in zebrafish using higher E2 concentration
(10µM) (Fushimi et al., 2009), we also found significant down-regulation of ptch1 and ptch2
in the heads of fish receiving lower dose estrogen treatments during larval development.
These two genes are the receptors (and the upstream mediators) of the hedgehog (Hh)
signaling pathway which plays a crucial role in developmental patterning and skeletal
morphogenesis (Eberhart et al., 2006; Swartz et al., 2012). Interestingly, slight changes in
expression of ptch1 were shown to be associated with subtle craniofacial skeletal divergence
(shorter snout and flatter face) in cichlid fish (Roberts et al., 2011; Hu & Albertson, 2014).
In addition, we found a strong positive expression correlation between ptch1 and ptch2
(Fig. S2), indicating potential estrogen mediated co-regulation of the two Hh receptors.
In the above mentioned study of high dose E2 treatment, the upstream activators of the
Hh pathway, sonic hedegehog genes, shha and shhb (twhh), did not show significant
changes in expression (Fushimi et al., 2009). However, this could be due to technical
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limitations such as the use of a semi-quantitative method that is unable to reveal small
differences in gene expression (Fushimi et al., 2009). In this study we found small and yet
significant down-regulation of shha, but not shhb, in E2 treated groups, as well as positive
co-expression of only shha with the two Hh receptors. An important role of the shh in
craniofacial skeletogenesis through activation of Hh signalling has been described (Hu &
Helms, 1999), but it is not clear whether estrogen directly regulates its expression during
development. The small reduction of shha transcripts in developing larval heads might be
a result of a decreased number of cells expressing shha and not a direct estrogen mediated
transcriptional regulation.

Extracellular matrix remodelling is a critical process in the developmental program
of bone and cartilage differentiation and morphogenesis (Werb & Chin, 1998). The
spatio-temporal expression of genes encoding matrix metalloproteinases and their tissue
inhibitors plays a pivotal role in orchestrating the ECM remodelling process (Werb &
Chin, 1998; Page-McCaw, Ewald & Werb, 2007). Moreover, many ECM remodelling genes
are downstream targets of pathways mediated by nuclear receptors, including estrogen
signalling (Cox & Helvering, 2006; Heldring et al., 2007; Ganesan et al., 2008). The selected
ECM remodelling factors (mmp2/9/13, timp2a and sparc) were all reported to be regulated
by estrogen signalling (Lehane et al., 1999; Tüshaus et al., 2003; Marin-Castaño et al., 2003;
Lu et al., 2006; Nilsson, Garvin & Dabrosin, 2007; Lam et al., 2009; Wang & Ma, 2012) and
play role in craniofacial skeletal morphogenesis (Dew et al., 2000;Renn et al., 2006;Hillegass
et al., 2007a; Hillegass et al., 2007b;Mosig et al., 2007; Rotllant et al., 2008; Letra et al., 2012;
Ahi et al., 2014). Our results revealed slight but significant effects of the estrogen treatments
on expression of the selected ECM remodelling genes during larval head development
(Fig. 4). It is interesting to note that previous investigations have shown association
between differential expression of these genes and craniofacial phenotypes with flatter
face and shorter snout (Hillegass et al., 2007a; Hillegass et al., 2007b; Ahi et al., 2014). The
mechanism by which estrogen regulates the expression of ECM remodelling genes is not
well understood. The estrogen dependent regulation might be exerted through interaction
between estrogen-receptors and transcription factors that regulate ECM remodelling
genes such as members of Ap-1 complex and ETS factors (Lu et al., 2006; Ahi et al., 2014;
Cao et al., 2015). The binding motifs for Ap-1 and ETS transcription factors are present
in the promoters of many ECM remodelling genes across vertebrate species (Ahi et al.,
2014). Additionally, we found the expression of erf, an ETS repressor and estrogen target
(Sgouras et al., 1995) to be down-regulated in both E2 treated groups at three larval stages.
Remarkably, a recent study showed that small reduction in expression of erf causes complex
craniosynostosis with shortened snout in both human and mice (Frasor et al., 2003; Twigg
et al., 2013). The same study also demonstrated regulatory elements containing Ap-1, ETS
and Runx motifs as preferential erf binding sites (Twigg et al., 2013). Taken together, the
results of the present and previous studies suggest potential estrogen mediated regulation
of ECM remodelling genes possibly through interaction with other transcription factors.
Other estrogen mediated processes than direct transcriptional regulation cannot, however,
be ruled out, as the slight changes in transcript levels of ECM related genes could be due
to reduced proportion of skeletal cells expressing these genes in larval heads. It is also
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important to emphasize that the selected ECM genes can be expressed in other tissues of
the head (though at considerably lower levels), thus their expression differences in other
tissues might affect the overall changes in expression.

The E2 treatments caused small and variable repressive effects on expression of other
selected target genes (Figs. 2, 3, 4 and 5). The genes, bmp2a and rankl, are well characterized
skeletogenic markers (Nie, Luukko & Kettunen, 2006; Hu, Colnot & Marcucio, 2008; Lézot
et al., 2015) and their regulation by estrogen signalling has been reported in other vertebrate
species (Bord et al., 2003; Zhou et al., 2003). It has been shown that treatment with high
doses of E2 can reduce the number of skeletal cells in the craniofacial skeleton (Cohen et
al., 2014), hence the small changes in transcript levels of skeletogenic markers (e.g., sox9b)
may again be caused by a decreased proportion of skeletal cells in the heads. We also
found components of retinoic acid and Wnt/β-catenin signalling patways, rarab and
sfrp1a, to be transcriptionally affected by E2 treatment indicating the potential crosstalk
of these pathways with estrogen signalling during larval head development (Lohnes et al.,
1994; O’Lone et al., 2004; Trevant et al., 2008; Yokota et al., 2008). Although, the selected
components of the pathways and transcription factors in this study (Fig. 5) are known
to have markedly high levels of expression in the craniofacial skeleton, they might also
be expressed to a lesser extent in other tissues within the larval head. Therefore, the
observed small changes in expression can not be readily attributed to viscerocranial skeletal
elements and further gene expression studies using dissected skeletal elements are essential
to confirm this.

In addition to skeletogenic genes, we were interested in investigating the effects of
different doses of E2 on the expression of estrogen receptors. Therefore, we assessed
the expression of two estrogen receptors, esrra and esr1, that could mediate estrogen
signal during the development of skeletal tissues (Bonnelye & Aubin, 2005; Bonnelye et
al., 2007; Auld et al., 2012). While the E2 treatments had small and variable repressive
effects on expression of esrra, the increased expression of esr1 was observed in both E2
treated groups. Strikingly, the lower E2 concentration (2 µM) resulted in higher induction
of esr1 expression. This suggests that the distinct effects of lower doses of estrogen on
craniofacial skeletogenesis, described by Cohen et al. (2014), might be mediated by esr1,
however further functional studies are required to demonstrate such a role. To identify
genes sharing regulatory mechanisms in response to slight increases in estrogen levels,
we further explored the expression of 11 genes constructing a co-expression network
with esr1 (Table S2 and Fig. 6). These candidate genes were selected by using a vertebrate
co-expression database (Obayashi & Kinoshita, 2011) which we have successfully used
for identification of gene networks associated with subtle craniofacial morphological
divergence in another teleost (Ahi et al., 2014; Ahi et al., 2015). Our results indicate higher
transcriptional induction of six genes, i.e., cpn1, dnajc3, lman1, rrbp1a, ssr1 and tram1
in the lower (2 µM), than the moderate (5 µM) treatment groups, during craniofacial
development. The genes also showed positive expression correlation with esr1 suggesting a
common regulatory mechanism mediated by estrogen during head development. To our
knowledge, a mechanism by which a lower concentration of estrogen can have stronger
inductive effects on expression of certain genes than higher concentrations is not known.
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Such a mechanism might be involved in distinct regulation of estrogen receptors by
different concentrations of estrogen hormone, which in turn could lead to recruitment
of the receptors to distinct genomic binding sites and/or with different binding affinity
(Stender et al., 2010). Among the six genes only dnajc3, a gene encoding protein kinase
inhibitor P58 (P58IPK), has been shown to be involved in skeletogenesis through regulation
of a cytokine-dependent cartilage degradation (Gilbert et al., 2014). Although all of the six
genes have recorded developmental expression patterns in zebrafish craniofacial elements
based on data in the ZFIN zebrafish database (Thisse et al., 2001; Thisse et al., 2004), their
roles in craniofacial morphogenesis have yet to be investigated. Finally, an unbiased
approach such as transcriptome sequencing rather than candidate gene-based study would
be warranted to provide better knowledge of estrogen mediated effects on expression of
genes with unknown roles in craniofacial morphogenesis as well as links between already
identified genes and molecular pathways involved.

CONCLUSIONS
In this study we quantitatively assessed the effects of two doses of estrogen (2 µM and
5µM)on gene expression during zebrafish larval head development.We performed a highly
sensitive and specific qPCR analysis and carefully validated reference genes. We assessed
the expression of a selected set of genes involved in craniofacial skeletal development
as well as genes coexpressed with esr1, an estrogen receptor showing stronger inductive
response to 2 µM than 5 µM estrogen concentration. The results implicate estrogen in
the expressional regulation of genes belonging to distinct signalling pathways such as
hedgehog and retinoic acid pathways, as well as genes involved in ECM remodelling during
craniofacial development. Furthermore, estrogen mediated transcriptional changes in a
few tested major skeletogenic factors (e.g., bmp2a and rankl), and a transcription factor, erf,
with a demonstrated role in the formation of a shortened snout phenotype in human and
mouse. Finally, we identified a gene network showing positive expression correlation with
esr1 and higher induction in response to treatment with 2 µM than with 5 µM estrogen.
This could suggest a co-regulated module of genes mediating the effects of low doses of
estrogen during craniofacial development which is required to be further investigated at
functional level.
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