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ABSTRACT
The alteration of glucose metabolism, through increased uptake of glucose and
glutamine addiction, is essential to cancer cell growth and invasion. Increased flux of
glucose through the Hexosamine Biosynthetic Pathway (HBP) drives increased cellular
O-GlcNAcylation (hyper-O-GlcNAcylation) and contributes to cancer progression by
regulating key oncogenes. However, the association between hyper-O-GlcNAcylation
and activation of these oncogenes remains poorly characterized. Here, we implement
a qualitative modeling framework to analyze the role of the Biological Regulatory
Network in HBP activation and its potential effects on key oncogenes. Experimental
observations are encoded in a temporal language format and model checking is applied
to infer themodel parameters and qualitativemodel construction. Using this model, we
discover step-wise genetic alterations that promote cancer development and invasion
due to an increase in glycolytic flux, and reveal critical trajectories involved in cancer
progression. We compute delay constraints to reveal important associations between
the production and degradation rates of proteins. O-linked N-acetylglucosamine
transferase (OGT), an enzymeused for addition ofO-GlcNAc duringO-GlcNAcylation,
is identified as a key regulator to promote oncogenesis in a feedbackmechanism through
the stabilization of c-Myc. Silencing of the OGT and c-Myc loop decreases glycolytic
flux and leads to programmed cell death. Results of network analyses also identify a
significant cycle that highlights the role of p53-Mdm2 circuit oscillations in cancer
recovery and homeostasis. Together, our findings suggest that the OGT and c-Myc
feedback loop is critical in tumor progression, and targeting these mediators may
provide a mechanism-based therapeutic approach to regulate hyper-O-GlcNAcylation
in human cancer.
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INTRODUCTION
Cancer, a diverse group of diseases caused by an accumulation of genetic alterations that
leads to abnormal cellular growth, ranks as a leading cause of death worldwide (World
Health Organization, 2014). Genetic alterations result in activating oncogenes and
inactivating tumor suppressor genes to regulate gene expression and support tumor
progression. Oncogenes such as MYC, PI3K, and EGFR, are activated through
mechanisms that include genetic translocation, amplification, DNA methylation, and
histone modifications (Negrini, Gorgoulis & Halazonetis, 2010; Hanahan &Weinberg,
2011; Jones & Baylin, 2007). Repression of tumor suppressors such as p53 and PTEN is
acquired through various chromatin modifications, deletions, and point mutations (Walsh
& King, 2007). However, understanding the role of these aberrations in tumorigenesis is
difficult as studies have shown that genomic alterations tend to be cancer-specific and
drastically differ between human tumor types.

Despite the heterogeneity and complexity of these malignancies, key functions in tumor
development are common. These hallmarks of cancer include: acquiring resistance toward
programmed cell death (PCD), uncontrolled cell proliferation, reprogramming cellular
metabolism to support chronic neoplastic proliferation, and activation of inflammatory
responses to enable tumor growth (Hanahan &Weinberg, 2000; Hanahan &Weinberg,
2011). These nearly universal capabilities of cancer cells promote tumorigenesis and
underlie the fundamentals of cancer biology. Thus, analyzing these network interactions
and mechanisms of tumorigenesis will drive therapeutic development to selectively target
these hallmark traits.

Metabolic reprogramming and oncogenesis
The capability of tumors to reprogram cellular metabolism and promote uncontrolled
proliferation has only recently emerged as a cancer hallmark (Hanahan &Weinberg, 2011;
Cairns, Harris & Mak, 2011; Dang, 2012). However, alterations of energy metabolism in
cancer cells to stimulate cell growth and division first observed by Otto Warburg date back
to the early twentieth century (Warburg, 1910; Weinhouse et al., 1956; Warburg, 1956). To
fuel growth, tumor cells flip a metabolic switch to reprogram glucose metabolism from
oxidative phosphorylation to aerobic glycolysis, and secrete lactate (‘‘Warburg-effect’’).
While glycolysis produces adenosine 5′-triphosphate (ATP) faster, this process occurs
at a less efficient rate. To compensate for this metabolic switch, neoplastic cells become
addicted to glucose and glutamine to maintain rapid cell proliferation (Potter, 1958;Vander
Heiden, Cantley & Thompson, 2009; DeBerardinis et al., 2007; Lunt & Vander Heiden, 2011;
Mullen et al., 2012; DeBerardinis et al., 2008). This phenomenon of increased glycolytic
flux and glucose uptake importantly increases flux into biosynthetic pathways, such as the
Hexosamine Biosynthetic Pathway (HBP) (Fig. 1).

Studies have also found an association between glycolytic fueling and mutant tumor
suppressors or activated oncogenes that play critical roles in evading apoptosis and
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Figure 1 Intersection of the Hexosamine Biosynthetic Pathway (HBP), Phosphoinositide 3-kinase
(PI3K)-mTOR-MYC signaling axis, and p53-MDM2 circuit. The HBP (right) generates Uridine diphos-
phate N-acetylglucosamine (UDP-GlcNAc) as the end product that is used by the O-GlcNAc transferase
(OGT) to covalently attach O-GlcNAc to hydroxyl groups of serine/threonine residues of proteins. This
dynamic process is antagonized by O-GlcNAcase (OGA). In cancer, increased HBP flux leads to hyper
O-GlcNAcylation. Hyper O-GlcNAcylation of c-Myc activates the phosphoinositide 3-kinase (PI3K)-
mTOR-MYC signaling axis (middle). The PI3K pathway cross-talks with Forkhead box M1 (FoxM1), an
oncogenic transcription factor that is regulated by levels of O-GlcNAc and OGT (middle). Inflamma-
tory responses to genotoxic stress induce activation of NF-κB that can undergo O-GlcNAcylation to me-
diate genes in the immune response (left). The loss of p53 activates NF-κB to increase aerobic glycolysis
and support tumor metabolism. Hyper O-GlcNAcylation of p53 stabilizes the tumor suppressor and de-
creases p53-MDM2 interaction to block proteolysis (bottom). In response to stress, p53 can induce cyclin-
dependent kinase inhibitor p21 to inhibit proliferation.

promoting proliferation of tumor cells (Jang, Kim & Lee, 2013; Ying et al., 2012; Gross,
Van den Heuvel & Birnbaum, 2008; Haq et al., 2013). Ying et al. (2012) found that over-
expression of Kras was implicated in tumor initiation by controlling tumormetabolism and
channeling glucose intermediates into the HBP. Kras upregulation of glycolytic enzymes,
glucose transporters, and glutamine: fructose-6-phosphate amidotransferase 1 (GFAT1),
drives increased HBP flux and cellular O-linked N-acetylglucosaminylation glycosylation
(O-GlcNAcylation) in cancer (Hsu & Sabatini, 2008;Ma & Vosseller, 2013). A fundamental
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role of the HBP is to control O-GlcNAcylation. O-GlcNAcylation is a post-translational
modification catalyzed by O-GlcNAc-transferase (OGT) that covalently adds a GlcNAc
sugar moiety to hydroxyl groups of serine/threonine residues of proteins (Torres & Hart,
1984; Hart, Housley & Slawson, 2007; Issad & Kuo, 2008). This process is antagonized by
O-GlcNAcase (OGA), which allows for dynamic regulation of O-GlcNAcylation in cells
(Fig. 1).

Recently, O-GlcNAcylation has been proposed as a novel cancer hallmark and approach
for cancer treatment due to its significant regulatory role in tumorigenesis (Fardini et al.,
2013). Increased O-GlcNAcylation, termed hyper O-GlcNAcylation, and elevated OGT
levels have been observed in various tumor types, including cancers of the breast, lung,
liver, bladder, endometrial, prostate, pancreas, and colon (Ying et al., 2012; Gu et al., 2010;
Mi et al., 2011; Zhu et al., 2012; Rozanski et al., 2012; Krześlak et al., 2012b; Lynch et al.,
2012). Importantly, the inhibition of OGT has been associated with decreased proliferation
of breast and prostate cancer cells (Caldwell et al., 2010; Itkonen et al., 2013). Understanding
the proteins that control deregulation of cellular energy metabolism and hyper O-
GlcNAcylation is needed to elucidate the mechanisms of metabolic switch in cancer
cells, characterize the glycolytic phenotype, and decipher the link to cellular growth and
apoptotic pathways.

Signaling pathways
The ability of tumors to promote an inflammatory response and escape immune destruction
also enables cellular proliferation and evasion of innate immunity (Dvorak, 1986; Colotta
et al., 2009; Hanahan &Weinberg, 2011; Markert, Levine & Vazquez, 2012; Kroemer &
Pouyssegur, 2008). Inflammation is the protective response of the innate immune system to
a physiological, physical, and/or oxidative stress. The development of innate immunity is
associated with the NF-κB signaling cascade, where NF-κB is activated through subunits of
the IKK complex in response to stimuli (Karin, 2009; Hoesel & Schmid, 2013). Activation
of NF-κB targets and eliminates transformed cells, Disis (2010) supporting subsequent
increases in apoptotic processes as an inflammatory response (Ernst, 1999; Cordon-
Cardo & Prives, 1999). Further studies revealed additional roles of NF-κB in controlling
normal cellular and malignant processes, such as proliferation, apoptosis, and metabolism
(Guttridge et al., 1999; La Rosa, Pierce & Sonenshein, 1994; Perkins, 1997; Moretti et al.,
2012; Kawauchi et al., 2009; Kawauchi et al., 2008).

The subunits of NF-κB contain sites for post-translational modifications to promote
cross-talk with signaling pathways. O-GlcNAcylation of the c-Rel subunit of NF-κB was
recently demonstrated to mediate the expression of various cytokine-encoding genes
involved in the immune response (Alexandrov et al., 2013). More recent studies have noted
that expression of OGT, the enzyme that catalyzes O-GlcNAcylation, is correlated with
c-Myc protein levels and may be involved in protein stabilization (Itkonen et al., 2013).

c-Myc belongs to the PI3K-mTOR-MYC signaling pathway, one of the most commonly
mutated pathways in cancer (Fig. 1). Activation of this signaling cascade has been shown to
increase hyper O-GlcNAcylation activity in breast cancer (Sodi et al., 2015). Notably,
treatment of tumor cells with PI3K and mTOR inhibitors led to decreased protein
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expression of OGT and overall lower levels of O-GlcNAcylation. The PI3K pathway has also
been reported to cross-talk with Forkhead box M1 (FoxM1), an oncogenic transcription
factor (Major, Lepe & Costa, 2004). FoxM1 plays a critical role in cancer metabolism, as
the reduction of O-GlcNAc levels and OGT in cancer cells is associated with a decrease in
protein expression of FoxM1 in breast cancer (Caldwell et al., 2010). However, studies to
date have not detected O-GlcNAc modifications on FoxM1.

In addition toNF-κB and c-Myc, p53 has also been shown to be directlyO-GlcNAcylated.
p53 plays critical roles in DNA damage repair and apoptosis, and is one of the most
frequently mutated genes in cancer. Hyper O-GlcNAcylation of p53 stabilizes the tumor
suppressor and decreases p53-MDM2 interaction to block proteolysis (Fig. 1) (Yang et al.,
2006). In contrast, overexpression of OGA, the antagonist to OGT, stimulates MDM2-p300
interaction and degrades p53 (Soesanto et al., 2008). Consequently, loss of p53 activates
NF-κB to increase aerobic glycolysis and support tumor metabolism (Kawauchi et al.,
2008). Under stress, p53 can induce cyclin-dependent kinase inhibitor p21 to arrest the cell
cycle and inhibit proliferation (Gartel & Tyner, 1999). Taken together, disentangling the
complex interplay between NF-κB, c-Myc, p53, MDM2, FoxM1, p21, and OGT is critical
to understanding the roles of hyper O-GlcNAcylation, pathway signaling and cross-talk,
metabolism, and programmed cell death in cancer.

Our contribution
In this study, we examine the role of hyper O-GlcNAcylation in cancer progression by
regulating the activation of oncogenes. We construct a qualitative Biological Regulatory
Network (BRN) comprised of important entities involved in O-GlcNAc signaling to
demonstrate activation and inhibition relationships. Model parameters are computed
from known experimental observations by using a formal verification technique, called
model checking. These parameters are used to translate BRN into a qualitative model
which highlights important behaviors as trajectories, stable states, and cycles. Network
analysis of the qualitative model is performed to identify important trajectories involved
in oncogenic activation, cancer progression, and recovery. We identify significant cycles
that represent normal behavior of the overall system and use hybrid modeling to compute
delay constraints, which limit the system to maintain homeostasis. A similar modeling
approach has been used in the past for formal modeling of biological networks, including
the MAL-Associated Biological Regulatory Network (BRN) (Ahmad et al., 2012), the
regulatory network of dengue virus pathogenesis and clearance (Aslam et al., 2014), the
mechanism of tail resorption in tadpoles (Khalis et al., 2009), and the immunity control
mechanism in bacteriophage lambda (Richard, Comet & Bernot, 2006). The results of our
study highlight that O-GlcNAc transferase (OGT) plays an important regulatory role
in oncogenic activation. The qualitative model reveals that persistent over-expression
of OGT and c-Myc leads to deadlock state, from which the system cannot proceed to
a recovery state. Another important insight obtained from the model is that silencing
of the OGT and c-Myc loop decreases glycolytic flux and results in programmed cell
death. Based on the results of network analysis carried out using Cytoscape, we identify a
significant cycle, which highlights the important role of p53-Mdm2 oscillations to bring the
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Figure 2 Flow diagram of the study showing sequence of methods.

system towards recovery state. The results of hybrid modeling suggest delay constraints to
maintain homeostasis. We compare the important insight gained through computational
modeling to show that results are in agreement with previous studies. Together, our findings
suggest that the OGT and c-Myc loop is critical in tumor progression, and targeting these
mediators may represent a novel therapeutic strategy to regulate hyper-O-GlcNAcylation
for the treatment of cancer.

METHODS
In practice, elements of a biological system interact with each other in a positive or
negative manner, that is, the expression level of an entity (gene or protein) may favor or
degrade the rate of synthesis of other entities or itself. Usually, these systems are described
using continuous modeling approaches that use a set of ordinary or partial differential
equations, which are often highly non-linear, and even simple systems involving only few
entities cannot be solved analytically (De Jong, 2002; Karlebach & Shamir, 2008). Secondly,
differential equations involve time derivatives of quantitative data (concentration levels,
reaction rates etc.), which in many cases can not be measured experimentally. These
limitations paved the way towards qualitative description of biological systems with
discrete variables, having limited expression levels, often only two (0 or 1). Thomas, in the
1970s, proposed a logical formalism based on qualitative representation of biological
regulations (Thomas, 1973; Thomas, 1991; Thieffry & Thomas, 1995). The qualitative
modeling approach, described by Thomas, employed directed graphs (also called interaction
graphs) to represent the topology of a Biological Regulatory Network (BRN).

The work presented in this paper mainly employs a qualitative framework for modeling
biological regulations. The methods used in this study (Fig. 2) are discussed in subsequent
subsections. First, we construct a qualitative Biological Regulatory Network (BRN) which
is comprised of important entities isolated from signaling pathways. The unknown model
parameters are inferred by encoding experimental observations into a model checker.
The qualitative BRN is then translated to a stategraph by using Thomas’s framework.
Important behaviors in a stategraph, such as steady states, oscillations (cycles) and
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Figure 3 Activation and Inhibition delays (adopted from Aslam et al., 2014). The clock ha measures
the time of evolution between two discrete levels. Initially the clock is set to zero and the changes in the
level occurs in a delay time d+/−.

important trajectories are identified. Finally, we use hybrid modeling to compute delay
constraints which limit the system to remain in a normal cycle (homeostasis).

Qualitative modeling framework
The qualitative modeling framework introduced by René Thomas uses a graph-theoratic
approach to model BRNs. Each BRN is modeled as a weighted directed graph in which
nodes represent biological entities such as genes or proteins, whereas the activation and
inhibition relationships between nodes are represented by edges. Here, we briefly introduce
semantics of the qualitativemodeling framework,mainly adopted fromBernot et al. (Bernot
et al., 2007; Bernot et al., 2004; Saeed & Ahmad, 2014).

‘‘

Definition 1 (Directed Graph): A directed graph G is an ordered pair G= (V ,E), where

• V is the set of all vertices or nodes
• E is an ordered pair of nodes i.e., if e ∈ E , then e= (vi,vj) and V =

{
vi,vj

}
.

The edge (vi,vj) is directed from vi to vj , where vi is called the head and vj is called the
tail. In G, the set of predecessors and successors of a node vj are denoted as G−vj and G+vj ,
respectively.
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Definition 2 (Biological Regulatory Network): A Biological Regulatory Network (BRN)
is a labeled directed graph G= (V ,E), where biological entities are represented by set of nodes
V and interactions are represented by set of edges E ⊆ V×V . Each edge (vi,vj) is labeled by a
pair (τ ,σ ), where τ is the threshold at which gene u starts regulating gene v, and σ = {+,−}
is called sign of interaction (+ for activation and− for inhibition).

Each node vi ∈ V has its abstract expression level in the set δvi = {0...`vi} where
`vi ≤

∣∣G+vi ∣∣. The state of a BRN is a configuration of expression levels of all entities at a
particular time instant.

Definition 3 (State): A State of BRN is n-tuple S=
{
sv1,..,svn

}
, ∀svi ∈ δvi , where svi is the

abstract expression level of vi.

In a given state, each vi is regulated by its predecessors G−vi , formally denoted as set of
resources, ωvi , defined as follows:

Definition 4 (Resources): Let G= (V ,E) be a BRN. The set of resources Wvj at level svj ,
is defined as; ωvj = vi ∈G−vj | (svi ≥ τvi,vj and σvi,vj =+) or (svi <τvi,vj and σvi,vj =−).

Definition 5 (Parameters of a BRN): The logical parameters of a BRN are indexed by its set
of resources. The parameter set is a Cartesian product of each variable’s resources and its ele-
ments are of the form Kωvi . The evolution from one qualitative state to another state is deter-
mined by an evolution operator which compares discrete values of resources and parameters.

Definition 6 (Evolution Operator, Bernot et al. (2007) �): Let svi ∈N and Kωvi ∈N, the
evolution operator (�) is defined as follows;

sνi �Kωvi =


svi+1 iff svi <Kωνi
svi−1 iff svi >Kωνi
svi otherwise.

(1)

Definition 7 (State Graph): Let G= (V ,E) be a BRN and svx is expression level of vx in
a state s ∈ S. Then the state graph R= (S,T ) is a directed graph, where S represents set of
states, and T ⊆ S×S is a relation between states, also called the transition relation, such that
s→ s′ ∈T iff :

• ∃ a unique vxεV such that svx 6= s′vx and s′vx = svx �Kx(ωvx ), and
• ∀ vyεV \{x}s′vy = svy .’’

Parameter inference using model checking
The dynamics of Thomas’s method are generated by translating the interaction graph to a
state transition graph using a set of logical parameters, which are not known in advance. The
estimation of model parameters constitutes an important step in qualitative modeling of
biological networks. Bernot et al. (2004) introduced a method to decipher these parameters
by employing a formal verification approach, called model checking. In this approach,
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known experimental observations are encoded in a temporal logic framework, called
Computation Tree Logic (CTL), and then using the model checker, different parameter
combinations are evaluated to finally select parameters which satisfy CTL observations. In
CTL, experimental observations are encoded into formulas by using a set of quantifiers
which define criteria to explore different states or paths originating from a given state.
Here, we provide a brief description of these quantifiers, the detailed semantics of which
can be found in Clarke, Grumberg & Peled (1999).

• A: This is a path quantifier which enforces that a given property should hold in all paths
originating from the given state. The quantifier itself is read as ‘‘For all paths.’’

• E: Known as the ‘‘Existential Quantifier,’’ this is also a path quantifier which enforces
that a given property must hold in at least one path originating from the given state. The
quantifier is read as: ‘‘There exists a path.’’

• G: This quantifier is known as the ‘‘Global Quantifier’’ and is a state quantifier which
enforces that a property holds in all states of a path originating from the given state,
inclusive of the given state as well. It is read as: ‘‘Globally.’’

• F: The ‘‘Future Quantifier’’ is the second state quantifier and enforces that a given
property must hold in one of the future states in the path originating from the given
state. It is read as: ‘‘In future’’ or ‘‘Eventually.’’ The Future Quantifier also covers the
current/given state as well when checking the property.

• X: The ‘‘Next Quantifier’’ is the third state quantifier and enforces that a given property
must hold in the immediate successor state. It is read as: ‘‘Next.’’

SMBioNet (Khalis et al., 2009; Bernot et al., 2004) is a tool for the parameter estimation
of biological networks, based on the qualitative formalism of René Thomas (Thomas,
1978; Atkinson, 1965). Given a model of a BRN in the form of Thomas’s network and
behavioral properties (observations), expressed as CTL formulas, SMBioNet exhaustively
enumerates all compatible parameterizations by generating a state graph for each parameter
combination and by verifying the formulas on each state graph. The verification of the
CTL property is performed by invoking model checker NuSMV (Cimatti et al., 2002). The
parameter combinations are reduced by applying Snoussi and observability constraints
(Snoussi & Thomas, 1993). Finally, all the models that satisfy the CTL properties are
shortlisted. SMBioNet has been applied in studies such as: tail resorption in tadpole
metamorphosis (Khalis et al., 2009), and immunity control in bacteriophage lambda
(Richard, Comet & Bernot, 2006).

Network analysis
Graph Theory (Bondy & Murty, 1976) plays an important role in the modeling and analysis
of processes in several application areas, including systems biology (Pavlopoulos et al., 2011;
Barabasi & Oltvai, 2004; Mason & Verwoerd, 2007). The graph-theoratic approaches are
employed to analyze topological and structural parameters of biological networks to
discover key properties that provide meaningful insights into the functionality of biological
systems. Identification of important nodes in a large biological regulatory network is
critical in the understanding of cellular mechanisms. The most widely used measure to
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compute the ranking of nodes in graph-theoraticmodels, based on the concept of Centrality
(Aittokallio & Schwikowski, 2006; Mason & Verwoerd, 2007), mainly originate from Social
Network Analysis (Wasserman, 1994). Centrality Analysis has also been employed to
investigate important properties of complex biological regulatory networks (Koschützki &
Schreiber, 2008).

Definition 8 (Betweenness Centrality): For a state graph R= (S,T ) of an interaction
graph G = (V ,E), let x,y and z be the distinct qualitative states in R, and let σx,y be
the total number of trajectories from state x to state y, and let σy,x be the total number of
trajectories from qualitative state y to x, passing through a state z. Let Ox represents the set of
all ordered pairs, (y,x) such that x,y and z are all distinct. Then, the Betweenness Centrality
of the qualitative state z can be computed from Eq. (2):

Cb(z)=
∑

(x,y)∈O

σx,y(z)
σx,y

. (2)

Hybrid modeling with delays
Discretemodeling provides useful insights into qualitative dynamics of biological networks.
However, an increase or decrease in protein expression, described by a step function, is
not coherent with actual changes in protein expression taking place within a cell. The
concentration level of a protein, for instance, does not jump from one discrete value to
another discrete value. In order to capture the sigmoidal change of protein expressions,
Ahmad et al. (2007) introduced a new framework based on piece-wise linear equations.
In this framework, states of a system are modeled as discrete locations. Additionally,
specialized variables, called clocks, are used to specify constraints for transition from one
discrete location to another (Fig. 3). Here, we provide a brief description of the hybrid
modeling framework, adopted from Ahmad et al. (2007) and Aslam et al. (2014).

‘‘Clock variables are used to measure the ‘delays’ (the time duration) that needs to
pass between two consecutive expression levels. Thus, a clock variable h is associated with
each protein in the BRN. The initial values of each h are set to zero, which then approach
either d+ or d−. d+ signifies a production delay, that is, the delay required to increase the
concentration level of the associated protein by 1. Similarly, d− signifies the degradation
delay, that is, the delay to decrease the protein concentration by a single level. The rate
of evolution of each h is given by the first order derivative dh/dt = r where r ∈ {0,1,−1}
(Ahmad et al., 2007).

In most cases, the exact values of the delays associated with the proteins are not known,
which is why unvalued parametric delays are used. Thus, the hybrid model was constructed
using the Parametric Bio Linear Hybrid Automaton (Ahmad, 2009) defined below.

Let C=(X ,P), C≤(X ,P), and C≥(X ,P) be the set of constraints using only=,≤, and≥,
respectively. Here,X and P are the sets of real valued variables and parameters, respectively.

Definition 9 (Parametric Bio Linear Hybrid Automaton (Bio-LHA)): A parametric Bio
Linear Hybrid Automaton B is a tuple (L,l0,X ,P,E,Inv,Dif) where:
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• L is a finite set of locations,
• l0 ∈ L is the initial location,
• P is a finite set of parameters (delays),
• X is a finite set of real-valued variable (clocks),
• E ⊆ L×C=(X ,P)×2X×L is a finite set of edges with typical element e = (l,g ,R,l ′) ∈ E
representing an edge from l to l ′ with guard g and the reset set R⊆ X. The set of clocks
g ∈R,
• Inv : L→C≤(X ,P)∪C≥(X ,P) assigns an invariant to any location,
• Dif : L×X→{−1,0,1}maps each pair (l,h) to an evolution rate.
The Transition System related semantics of the parametric Bio-LHA are given below

according to the time domain T, where T∗=T\{0}.

Definition 10 (Semantics of Bio-LHA): Let γ be a valuation for the parameters P and
ν represents the values of clocks in a location. The (T,γ )-semantics of a parametric Bio-
LHA B= (L,`0,X ,P,E,Inv,Dif) is defined as a timed transition system B = (S,s0,T,→)
where: (1) S= {(`,ν) | ` ∈ L and ν |H Inv(`)}; (2) s0 is the initial state and (3) the relation
→⊆ S×T×S is defined for t ∈T as:

• discrete transitions: (`,ν)
0
→(`′,ν ′) if ∃(`,g ,R,`′)∈ E such that g (ν)= true, ν ′(h)= 0 if

h∈R and ν ′(h)= ν(h) if h 6∈R.
• continuous transitions: For t ∈T∗, (`,ν) t

→(`′,ν ′) if `′= `, ν ′(h)= ν(h)+Dif(`,h)×t ,
and for every t ′ ∈ [0,t ], (ν(h)+Dif(`,h)×t ′) |H Inv(`), where |H represents satisfaction
operator.
Using the semantics of the Bio-LHA, Ahmad et al. (2007) then defined the temporal

state space and the invariance kernel set which have been adapted below.

Definition 11 (Temporal Zone): Temporal zone is defined as a region where time elapses
until a discrete transition between states takes place.

Definition 12 (Temporal State Space): The temporal state of a BRN is composed of the
complete set of temporal zones derived from the discrete model of the said BRN.

In the hybrid model of the BRN, we denote φ(t ) for t ∈R≥ 0, while the sequence of
points of a trajectory and the set of all points in the state space is denoted by S. A particular
trajectory is said to be viable if it remains within a prescribed region known as its viability
domain. The state pace is denoted by S. A particular trajectory is said to be viable if it
remains within a prescribed region known as its viability domain.

Definition 13 (Invariance Kernel): A trajectory φ(t ) is said to be viable in S if φ(t ) ∈
S ∀ t ≥ 0. A subset K of S is the invariant if for any point p ∈ K, a trajectory starting in p is
viable in K . An invariance kernel K is the largest invariant subset of S. ’’

Saeed et al. (2016), PeerJ, DOI 10.7717/peerj.2348 11/32

https://peerj.com
http://dx.doi.org/10.7717/peerj.2348


PI3K

p21

NFκB p53

MDM2

FoxM1 c-Myc

OGT OGA

-1

-1

-1

-1 -1

-1

-1

-1

-1

+1

+1

+1

+1

+1 +1+1
+1

Figure 4 Qualitative Biological Regulatory Network (BRN). The entities are shown as nodes whereas
interactions between two entities are represented with arrows. There are two types of interactions: activa-
tions (black arrows) and inhibitions (red dashed heads).

RESULTS
Model construction
From study of the existing literature, we construct a qualitative BRN comprised of nine
genes and seventeen interactions (Fig. 4). The BRN is composed of a set of well-known
regulatory motifs, each of which give rise to a specific functionality of the system. First,
we observe an inhibitory set of genes (OGT vs OGA) that produces a positive feedback
loop, known to generate multiple stable states. In practice, a positive feedback circuit is
comprised of an even number of negative elements (Plahte, Mestl & Omholt, 1995), and
acts as a toggle-switch in which only one of the two genes is expressed at a time (Gardner,
Cantor & Collins, 2000). On the other hand, a negative circuit is comprised of an odd
number of negative interactions, such as the interaction between p53 andMdm2, that leads
to a periodic behavior or homeostasis. An important oscillatory behavior is characterized
by two nested regulatory modules involving PI3K: (i) a positive feedback loop via p21 and
NF-κB; and (ii) a positive feedback loop between FoxM1, p21 and NF-κB. The logical
analysis of these regulatory motifs provides useful information about the potential behavior
of a system. However, functional dynamics of a complex system, that involve both positive
and negative circuits, can only be rendered with proper parameter values.

Logical parameters
Table 1 enlists the final values of logical parameters which are used to generate model
trajectories as a state transition graph. These parameters are computed from known
qualitative observations expressed as CTL formulas (Eqs. (3)–(6)), the most important of
which is the change in expression levels of OGT and OGA in different types of cancers,
including tumors of the breast and colon (Singh et al., 2015; Fardini et al., 2013;De Queiroz,
Carvalho & Dias, 2014). The sub-formulas ψ1 and ψ2 represent changes in the HBP
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Table 1 Values of logical parameters estimated by using SMBioNet. The first column (Sr) indicates the serial number of each parameter with re-
spect to its order of appearance in the SMBioNet input file (Supplemental Information 1). Each parameter is listed along with resources and permis-
sible expression levels in second, third and fourth column, respectively. The fifth column (Selected) shows final values of logical parameters, com-
puted by using SMBioNet.

Sr. Parameter Resource Range Selected Sr. Parameter Resource Range Selected

1 KNFκB {} [0] 0 21 K P21 {p53} [0-1] 0
2 KNFκB {P21} [0-1] 0 22 K P21 {PI3K} [0-1] 0
3 KNFκB {PI3K} [0-1] 0 23 K P21 {FoxM1,p53} [0-1] 1
4 KNFκB {P21,PI3K} [1] 1 24 K P21 {p53,PI3K} [0-1] 1
5 K PI3K {} [0] 0 25 K P21 {FoxM1,PI3K} [0-1] 1
6 K PI3K {NFκB} [0-1] 0 26 K P21 {FoxM1,p53,PI3K} [0-1] 1
7 K PI3K {OGT} [0-1] 1 27 K FoxM1 {} [0] 0
8 K PI3K {p53} [0-1] 0 28 K FoxM1 {p53} [0-1] 0
9 K PI3K {NFκB,OGT} [0-1] 1 29 K FoxM1 {PI3K} [0-1] 1
10 K PI3K {OGT,p53} [0-1] 1 30 K FoxM1 {p53,PI3K} [1] 1
11 K PI3K {NFκB,p53} [0-1] 1 31 KOGT {} [0] 0
12 K PI3K {NFκB,OGT,p53} [1] 1 32 KOGT {C-Myc} [0-1] 1
13 KOGA {} [0] 0 33 KOGT {OGA} [0-1] 0
14 KOGA {OGT} [1] 1 34 KOGT {C-Myc,OGA} [1] 1
15 K p53 {} [0] 0 35 KMdm2 {} [0] 0
16 K p53 {Mdm2} [0-1] 1 36 KMdm2 {p53} [1] 1
17 K p53 {NFκB} [0-1] 1 37 KC-Myc {} [0] 0
18 K p53 {Mdm2,NFκB} [0-1] 1 38 KC-Myc {OGT} [0-1] 1
19 K P21 {} [0] 0 39 KC-Myc {p53} [0-1] 0
20 K P21 {FoxM1} [0-1] 0 40 KC-Myc {OGT,p53} [1] 1

pathway, triggered by a change in the expression level of two genes: OGT and OGA.
The sub-formula ψ1 describes behavior of the biological system under enhanced OGT
expression leading to a future state in which the expression of oncogenes remain high.
The sub-formula ψ2 describes that there is at-least one trajectory in which expression
of oncogenes remain low when OGT is initially not expressed. Finally, the sub-formula
ψ3 represents oscillatory behavior exhibited by the HBP pathway and tumor suppressor
proteins p53 and p21. We used SMBioNet software (Bernot et al., 2004; Khalis et al.,
2009) to select only those parameters that satisfy the CTL formulas. SMBioNet selected
four models (Supplemental Information 2 and 3) which show a single deadlock state
(1,0,1,1,1,1,1,0,1) and plausible biological trajectories in cancer progression and recovery.

ψ1= ((OGT= 1∧OGA= 0)⇒EF(AG(OGT= 1∧
OGA= 0∧PI3K= 1∧FOXM= 1∧P21= 0∧CMyc= 1)))

(3)

ψ2= ((OGT= 0∧OGA= 1)⇒EF(AG(OGT= 0∧
OGA= 1∧PI3K= 0∧FOXM= 0∧P21= 1∧CMyc= 0)))

(4)

ψ3= ((OGT= 0∧OGA= 1∧p53= 1∧P21= 1)⇒
EX(EF(OGT= 0∧OGA= 1∧p53= 1∧P21= 1)))

(5)

8= (ψ1)∧ (ψ2)∧ (ψ3). (6)
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The tendency of each gene to change its expression level is a function of presence or
absence of its resources. The change in expression level of a gene can be determined by
comparing its current state, at any particular time, with values of logical parameters listed
in Table 1. The inferred parameters indicate that in the presence of the PI3K activation
signal, NFκB maintains a higher expression level (if already expressed i.e., 1) or shows
an increase in its expression level. On the other hand, PI3K shows a rise in expression
even in the presence of a p53 inhibition signal when both NFκB and OGT are activating
PI3K. The expression level of tumor suppressor protein p53 shows an increase only in
the absence of the MDM2 inhibition signal. The inferred parameters show increase in
expression level of OGT and C-Myc when there is an activation signal between them. The
collective behavior of genes involved in a biological system can only be determined only by
analyzing trajectories in a state transition graph.

State transition graph
A state transition graph of the biological regulatory network with 512 nodes and 2,304
edges (Supplemental Information 4) is rendered using Cytoscape software (Shannon et al.,
2003) (Fig. 5). The graph is generated from selected logical parameters (Table 1) using
GENOTECH software (Ahmad, 2009; Aslam et al., 2014; Ahmad et al., 2012) and states are
sorted on the basis of betweenness centrality. A parameterized BRN is also attached for
the GINsim Tool software (Supplemental Information 8) (Chaouiya, Naldi & Thieffry,
2012). The deadlock state (1,0,1,1,1,1,1,0,1) (Fig. 5D) shows high expression levels of OGT
and oncogenes. The immediate predecessors (up to two levels) of the deadlock state have
low betweenness centrality, indicated with circles, having comparatively larger diameters
and darker colors. The model also shows several cycles, and rendered as an outermost
circle (Fig. 5). These states have high betweenness centrality, represented using circles
with smaller diameters and lighter colors. The cycles demonstrate normal behaviors of the
system characterized by low expression levels of oncogenes, oscillation of the p53-Mdm2
circuit, and moderate expression levels of tumor suppressor proteins. In the state graph,
the state of the system at a particular time is represented by a vector containing expression
levels of all entities. The normal state is characterized by low expression levels of OGT,
PI3K, and FoxM1 along with the presence of tumor suppressor proteins p53 and p21. This
state is represented as a vector (OGT = 0, OGA = 1, PI3K = 0, FoxM1 = 0, p53 = 1, p21
= 1). Conversely, the pathogenic state is characterized by high expression levels of OGT
along with PI3K and FoxM1. (OGT = 0, OGA = 1, PI3K = 0, FoxM1 = 0, p53 = 1, p21 =
1) represents a normal or recovery state of the system. Biological systems, under normal
circumstances, exhibit oscillatory behavior or homeostasis during which the overall state
of the system remains in a cycle of normal states. Therefore, the desirable qualitative model
should exhibit pathogenic trajectories along with normal homeostatic behavior represented
as a cycle or closed path. The normal behavior, characterized by low expression levels of
OGT and the presence of OGA, is encoded as CTL formula ψ2. It states that, under normal
circumstances, when the expression level of OGT is low, the system will always remain in
a stable state characterized by low expression of oncogenes (OGT, FoxM1, PI3K, c-Myc)
and the presence of tumor suppressors (p53 and p21).
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Figure 5 State Graph (rendered using Cytoscape) with 512 nodes and 2,304 edges. Each node in the
graph, shown as a circle, represents a unique state characterized by the expression levels of individual
genes. The size and color of each state is defined based on its betweenness centrality. (A) This outermost
circle represents the states appearing in cycles. (B) Once the system is perturbed, it diverges to several bi-
furcation states that can either lead to deadlock or recovery, dependent on signaling events. Compared to
the outermost circle, (C) neighboring states and (D) the deadlock state have lower betweenness centrality.

The graphs presented in Figs. 6–7 are sub-graphs, extracted from the complete state graph
and show step-by-step changes towards progression of cancer and recovery, respectively.
Since the complete state graph obtained from qualitative modeling is too complex to
analyze each trajectory manually, we used the idea of betweenness centrality to identify
important trajectories.

HyTech results
Hybridmodelingwas carried out using theHyTech (HYbrid TECHnology) tool (Henzinger,
Ho & Wong-Toi, 1997). The Bio-LHA of the significant cycle [(0,1,0,0,0,0,0,1,0)→
(0,1,0,0,1,0,0,1,0)→ (0,1,0,0,1,1,0,1,0)→ (0,1,0,0,0,1,0,1,0)→ (0,1,0,0,0,0,

Saeed et al. (2016), PeerJ, DOI 10.7717/peerj.2348 15/32

https://peerj.com
http://dx.doi.org/10.7717/peerj.2348


LEGEND
Order of Qualitative States: NFKB,P21,FoXM1,PI3K,P53,MDM2,OGT,OGA,CMyc
Start State: 100000100 
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Figure 6 Subgraph isolated from the state transition graph (Fig. 5), highlighting tumor progression
from the start state (1,0,0,0,0,0,1,0,0) leading to the deadlock state (1,0,1,1,1,1,1,0,1). Each node in the
graph represents a unique state of the system characterized by qualitative expression of genes in the fol-
lowing order: NF-κB, p21, FoxM1, PI3K, p53, MDM2, OGT, OGA, c-Myc. Activation of a particular
gene/entity is indicated with ‘‘1’’, whereas ‘‘0’’ indicates that the expression level of a gene is below the ac-
tivation threshold. Nodes are shaded based on the level of betweenness centrality. Nodes and trajectories
associated with tumor progression and recovery are denoted using red and green arrows, respectively.

Table 2 Invariance Kernel of the significant cycle. The invariance kernel dictates the delay constraints
that are being followed in this cycle.

Qualitative cycle (0,1,0,0,0,0,0,1,0)→ (0,1,0,0,1,0,0,1,0)→ (0,1,0,0,1,1,0,1,0)→
(0,1,0,0,0,1,0,1,0)→ (0,1,0,0,0,0,0,1,0)

Invariance kernel Conjunction of constraint I–IV:
I. d+p53+

∣∣d−Mdm2

∣∣≤ d+Mdm2+
∣∣d−p53∣∣

II. d+Mdm2+
∣∣d−p53∣∣≤ 0

III.
∣∣d−Mdm2

∣∣≤ d+Mdm2+
∣∣d−p53∣∣

0,1,0)] defines invariants and clock rates for each qualitative state in the cycle (Fig. 8).
The invariance kernel for the cycle (HyTech code in Supplemental Information 6) is
composed of three conjuncted delay constraints, (Table 2). These delay constraints define
necessary and sufficient conditions in a way such that the resulting trajectories maintain
cyclic stability (homeostasis). If these delay constraints are violated, the trajectories will
deviate from the significant cycle and may follow a path to the deadlock state. In Table 3,
a pair-wise matrix represents an association between these delay constraints with the help
of logical relations (≤, <, >, ≥, =).

The delay constraints from the start state (1,0,0,0,0,0,1,0,0) to the deadlock state
(1,0,1,1,1,1,1,0,1) are computed (HyTech code in Supplemental Information 7) and
presented in the form of a relation matrix in Table 4, which highlight important relations
between the production and degradation rates of important proteins. The degradation
delay of OGT is greater than the activation delays of MDM2, PI3K and p53, meaning that
during progression towards deadlock state, depletion of OGT takes place at a much slower
rate compared to MDM2, PI3K and p53 (Table 4). Similarly, production delay of c-Myc
remains higher than PI3K and p53-MDM2 circuitry, thus reinforcing the results of our
qualitative modeling which suggest that once c-Myc and OGT form a positive feedback
loop, the overall system eventually moves to the deadlock state.
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Order of Qualitative States: NFKB,P21,FoXM1,PI3K,P53,MDM2,OGT,OGA,CMyc
Start State: 100000100 
Deadlock State: 101111101
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Figure 7 Important trajectories involved in Recovery. Each node in the graph represents a unique
state of the system characterized by the expression level of genes in the following order: NF-κB, p21,
FoxM1, PI3K, p53, MDM2, OGT, OGA, c-Myc. Activation of a particular gene/entity is indicated with
‘‘1’’, whereas ‘‘0’’ indicates that the expression level of a gene is below the activation threshold. Nodes are
shaded based on the level of betweenness centrality. Nodes and trajectories involved in oscillations are
denoted using green arrows. SCC highlights strongly connected components. (A) Transition from the
start state (1,0,0,0,0,0,1,0,0) to the recovery state (0,0,0,0,0,0,0,0,0). (B) Possible transition from advanced
tumor progression to the recovery state. (C) Transition from the recovery state (0,0,0,0,0,0,0,0,0) to
attractor. The deadlock state is represented as (1,0,1,1,1,1,1,0,1).
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Table 3 Relation matrix of the significant cycle which depicts binary relations between the states. Each
entry of the matrix represents whether a delay ‘a’ would be greater than, equal to, or less than a delay ‘b.’
The matrix is read as drow∼ dcolumn where∼∈ {≤,<,>,≥,=}.

Relation matrix∣∣d−Mdm2

∣∣ ∣∣∣d−p53∣∣∣ d+Mdm2 d+p53∣∣d−Mdm2

∣∣ = =≥,≤ =≥,≤ =≥∣∣d−p53∣∣ – = ≥ ≥,≤

d+Mdm2 – – = >,<

d+p53 – – – =

(0,1,0,0,0,0,0,1,0) (0,1,0,0,1,0,0,1,0)

(0,1,0,0,1,1,0,1,0)(0,1,0,0,0,1,0,1,0)

hNFKB

hP53 < dP53
+

= 0
hP21 = 0
hFOXM1= 0
hPI3K = 0
hP53 = 1

hMDM2 = 1
hOGT = 0
hOGA = 0
hc-Myc = 0
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<
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<
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Figure 8 The parametric Bio Linear Hybrid Automaton (Bio-LHA) of the significant cycle
(0,1,0,0,0,0,0,1,0)→ (0,1,0,0,1,0,0,1,0)→ (0,1,0,0,1,1,0,1,0)→ (0,1,0,0,0,1,0,1,0)→
(0,1,0,0,0,0,0,1,0). The states are represented by a vector containing expression level of genes in
the order: NfκB, P21, FoXM1, Mdm2, OGT, OGA, C-Myc. The significant cycle is characterized by
low expression of OGT and oncogenes, and oscillatory behavior of the p53-Mdm2 circuit resulting in
homeostasis. Here, each location represents a qualitative state of the cycle with invariants (conjunction
of constraints) and clock rates. The transitions are labeled with guards and the clock resets of evolving
entities. The initial state (0,0,0,0,0,0,0,0,0) is represented by a small arrow shown in upper left corner.
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Table 4 Relation matrix computed from delay constraints that lead to the deadlock state (1,0,1,1,1,1,1,0,1) from starting state
(1,0,0,0,0,0,0,1,0,0). Each entry of the matrix represents whether a delay ‘a’ would be greater than, equal to, or less than a delay ‘b.’ The matrix
is read as drow∼ dcolumn where∼∈ {≤,<,>,≥,=}.

dnOGT dpCMYC dpFOXM dpP21 dpNFκB dnMDM2 dnP53 dpMDM2 dnNFκB dpPI3K dpP53

dnOGT = >= =<> =>< >=< > > > =<> > >

dpCMYC = <= <= =< > > > <=> > >

dpFOXM = =>< >=< > > > =>< > >

dpP21 = >=< > > > =<> > >

dpNFκB = > > > <=> > >

dnMDM2 = >= >= <=> >= >=

dnP53 = = <= = =

dpMDM2 = <= = =

dnNFκB = >= >=

dpPI3K = =

dpP53 =

DISCUSSION
Previous studies have demonstrated a link between increased cellular O-GlcNAcylation
(hyper-O-GlcNAcylation) and cancer progression in multiple tumor types (Caldwell et al.,
2010; Fardini et al., 2013; Slawson, Copeland & Hart, 2010). For example, recent findings
in breast cancer have shown that breast tumor tissues and cell lines have increased mRNA
expression of OGT and decreased mRNA expression of mRNA as compared to the adjacent
normal (Krześlak et al., 2012a; Caldwell et al., 2010). Additional studies have observed that
reduction of OGT expression in prostate cancer cells inhibits metastatic tumor progression
to bone (Lynch et al., 2012). Similarly in lung and colon tumor tissues, OGT expression
was elevated compared with surrounding normal tissue (Mi et al., 2011). Importantly,
our present quantitative model validates the critical role of OGT in regulating cancer
development and recovery in multiple tumor types.

Qualitative dynamics
The qualitative model, rendered as a state transition graph (Fig. 5), highlights important
behaviors in the form of trajectories to represent temporal evolution of the overall system
from one qualitative state to another. These behaviors mainly include cycles that represent
homeostasis, stable states (deadlock), and several bifurcation states from where the system
can evolve either in the direction of tumor invasion or recovery. Three bifurcation states
[(1,0,1,1,0,0,1,0,0), (1,0,1,1,1,0,1,0,0), and (1,0,1,1,1,1,1,0,0)] were observed to lead to
both a deadlock state (1,0,1,1,1,1,1,0,1) and a typical reset state (0,0,0,0,0,0,0,0,0). Network
analysis carried out using Cytoscape (Shannon et al., 2003) helped to identify important
trajectories based on betweenness centrality and highlight step-by-step alterations that
systematically lead to cancer metastasis from the starting state. Here, we discuss two cases
that focus on important trajectories of the qualitative model involved in tumor progression
and recovery.
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Case 1: cancer initiation and progression
Under normal physiological conditions, proto-oncogenes play basic roles in signaling
pathways that control cellular growth (Pall, 1981). Activation of a proto-oncogene into an
oncogene, through gain-of-function mutations, increases the expression of these proteins
and leads to alterations in signaling pathways, increases glycolytic flux through theHBP, and
elicits an inflammatory response (Ma, Vocadlo & Vosseller, 2013; Karin, 2009; Fardini et al.,
2013). Important trajectories that originate from a starting state (1,0,0,0,0,0,1,0,0) show
increased expression of the pro-inflammatory NF-κB pathway and O-GlcNAc transferase
(OGT) (Fig. 6). Supplemental Information 9 highlights changes in the expression level of
genes along each transition that lead to the deadlock state. Enhanced OGT expression is
considered an indicator of metabolic switch from oxidative phosphorylation to glycolysis,
and can occur under oxidative stress. Cellular response to this stress has been shown
to activate a p53 transcriptional response (Gambino et al., 2013), leading to a qualitative
state (1,0,0,0,1,0,1,0,0). The subsequent trajectories, mapped in Fig. 6, show that p53
is over-expressed in several states that lead to a deadlock state, thereby reinforcing the
growing evidence that suggests the divergent role of p53 in response to increased cellular
metabolism (Puzio-Kuter, 2011;Maddocks & Vousden, 2011).

Despite its original classification as a tumor suppressor gene, recent evidence is accruing
to reveal p53 also carries oncogenic properties (Soussi & Wiman, 2015). The majority of
p53 germline and somatic alterations are missense mutations which synthesizes a stable
mutant p53 protein that accumulates in the nucleus of tumor cells and can result in
an oncogenic phenotype (Dittmer et al., 1993). Indeed, over-expression of p53 has been
reported in various breast cancer studies, and induced a metabolic shift toward glycolysis
(Won et al., 2012). Similar findings have also been reported in other tumor types, including
cancers of the colon, cervix, and pancreas (Al-Khayal et al., 2016; Rajeshkumar et al., 2015;
Hernández-Reséndiz et al., 2015; Kruiswijk, Labuschagne & Vousden, 2015).

In addition to accumulation of p53, significant increase in the expression of NF-κB
has been reported in different tumor types, including breast and prostate cancers (Arora
et al., 2014; Mak et al., 2015). Recent studies have shown the anti-apoptotic properties
of hyper O-GlcNAcylation in tumor cells and the contribution of this post-translational
modification for oncogenic activation of NF-κB in pancreatic cancers (Ma & Vosseller,
2013). In corroboration with these studies, our qualitative model demonstrates a sustained
activation of NF-κB, which contributes to increased glycolytic flux and tumorigenesis.

The qualitative model reveals activation of FoxM1 and PI3K in response to continuous
activation of OGT, thus leading to qualitative states (1,0,0,1,0,1,0,0) and (1,1,1,1,1,0,1,0,0).
As expected, FoxM1 over-expression has been implicated in cancer. Although the
mechanism of FoxM1 and OGlcNAcylation is poorly characterized, sentinel studies
suggest that hyper O-GlcNAcylation of FoxM1 mediators in breast cancer prevent the
degradation of FoxM1, to promote transformation of cells in breast cancer (Caldwell et al.,
2010). From the initial state, betweenness centrality of states decreases as systems get closer
to the deadlock state (Fig. 6). This drop in betweenness centrality is indicative of fewer
chances for transition to recovery, particularly once FoxM1 and PI3K are over-expressed.
Importantly, these results highlight the critical role of c-Myc to reach the deadlock state
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in the qualitative model. Prior to the activation of c-Myc, several bifurcation states exist
for possible transitions to a typical reset or recovery state (0,0,0,0,0,0,0,0,0). However,
qualitative modeling demonstrates that activation of c-Myc promotes the stability of
hyper- O-GlcNAcylation. We observed that c-Myc activation forms a positive feedback
loop with OGT, which plays a critical role in uncontrolled proliferation of tumor cells.
Our findings are consistent with current literature that hypoxia-inducible factor (HIF), a
transcription factor that activates aerobic glycolysis under cellular stress, cooperates with
c-Myc to flip the metabolic switch and fuel glycolysis (Semenza, 2007; Dang et al., 2008;
Kroemer & Pouyssegur, 2008). Together these proteins also upregulate glucose transporters,
glycolytic intermediates, and induce angiogenesis in the tumor microenvironment to
maintain glycolytic conditions (Kroemer & Pouyssegur, 2008).

Constitutive activation of c-Myc and p53 mutation contribute to uncontrolled cellular
proliferation associated with upregulated glycolysis and metabolic re-programming in
tumors. Further, activation of NF-κB downregulates oxidative phosphorylation in various
tumor types (Markert, Levine & Vazquez, 2012). Together, our findings further characterize
the critical roles of these oncogenes and tumor suppressor genes in support cancer
progression through the regulation of biological networks.

Case 2: recovery from advanced tumor progression
In our qualitative model, important trajectories involved in cancer recovery suggest
that the p53-Mdm2 circuit undergoes a series of cycles first to restore the system back
to recovery state and subsequently, maintain homeostasis. These cycles are depicted as
strongly connected components (SCC) in Fig. 7 (SCC1, SCC2, and SCC3). Supplemental
Information 10 highlights change in expression level of genes along each transition that
lead to the recovery state. In Fig. 7, the initial state (1,0,1,1,0,0,1,0,0) is a bifurcation state
characterized by high expression of oncogenes and increased glycolytic flux. The initial state
may lead to both recovery and deadlock states depending on genetic alterations regulating
the expression of genes involved in signaling. The qualitative model shows that, in response
to oncogene activation and increased glycolytic flux, p53 remains constitutively active
in several successor states. Increased expression of p53 mediates the down-regulation of
OGT by inhibiting c-Myc, thus leading to a state (1, 0, 1, 1, 0, 0, 0, 0, 0). Subsequently,
down-regulation of PI3K is also triggered by p53- mediated inhibition through p21 and
low expression of OGT, resulting in a qualitative state (1, 0, 1, 0, 1, 1, 0, 0, 0). In subsequent
trajectories, the p53-Mdm2 circuit acts as a repair mechanism to systematically reduce the
expression of oncogenes through a series of oscillations.

• The first cycle (SCC-1) shows an oscillation of the p53-Mdm2 circuit, whilemaintaining
increased expression of FoxM1 throughout the cycle.
• In the second cycle (SCC-2), the p53-Mdm2 circuit oscillates to down-regulate the
expression of FoxM1 until the system reaches to recovery state (0,0,0,0,0,0,0,0,0).

These findings are in agreement with previous experimental studies, which suggest
that p53 levels showed a series of pulses in response to DNA damage. Uri Alon, in 2000,
first reported that the p53-Mdm2 circuit show dampened oscillations in irradiated breast
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cancer cells (Bar-Or et al., 2000). Later studies confirmed these results by showing that
the p53-Mdm2 circuit undergoes a series of pulses at regular intervals (Lahav et al., 2004;
Lahav, 2009). The results presented in our study illustrate the role of the p53-Mdm2
circuit in a series of oscillations that lead to recovery state, consistent with previous studies
(Poltz & Naumann, 2012; Abou-Jaoudé, Ouattara & Kaufman, 2009). A similar behavior
is exhibited by our qualitative model in the form of two important cycles, shown as
SCC-1 and SCC-2 (Fig. 7) before reaching a recovery state. However, this model does not
provide any information about the number of iterations or time spent within each cycle.
Depending on the extent of DNA damage, two scenarios are possible: (1) the recovery state
(0,0,0,0,0,0,0,0,0) may also serve as an unperturbed stable state where the p53 level remains
low; or (2) the system reaches a ‘limit cycle’/attractor (SCC-3) where it continues to oscillate
indefinitely with constant time period and amplitude. In practice, the systems comprised
of negative feedback loops, like circadian rhythms, are fully capable of producing sustained
oscillations to maintain homeostasis.

Hybrid modeling
Cellular metabolism and intracellular signaling converge into a complex regulatory
network that is regulated by key interactions. Importantly, these interactions that
regulate these pathways vary in speed. While changes in gene expression occur at a
slower rate, post-translational protein modifications tend to occur rapidly (Chubukov et
al., 2014). In our study, the behavior of the p53-Mdm2 circuit is dependent on the time
delay between p53-dependent induction and Mdm2-controlled repression. The delay
constraints computed using HyTECH for the significant cycle [(0,1,0,0,0,0,0,1,0)→
(0,1,0,0,1,0,0,1,0)→ (0,1,0,0,1,1,0,1,0)→ (0,1,0,0,0,1,0,1,0)→ (0,1,0,0,0,0,0,
1,0)] with lowest betweenness centrality, serves as an important attractor. It represents
normal homeostasis characterized by low expression of oncogenes and p53-Mdm2
oscillations. Therefore, it is important to know the necessary and sufficient conditions
that limit the system to maintain a homeostatic behavior.

The first state observed in the cycle (0,0,0,0,0,0,0,0,0) represents an initial configuration
of the system. This state also represents a typical reset state after recovery. Different
trajectories have been outlined that lead to this state (Fig. 7). The results of qualitative
modeling (Fig. 7) show that once the system reaches the reset state, it enters into
an attractor (SCC3). This cycle [(0,1,0,0,0,0,0,1,0)→ (0,1,0,0,1,0,0,1,0)→
(0,1,0,0,1,1,0,1,0)→ (0,1,0,0,0,1,0,1,0)→ (0,1,0,0,0,0,0,1,0)], characterized by
p53-Mdm2 oscillatory behavior and low expression levels of OGT and oncogenic proteins,
represents the normal homeostatic behavior of the overall system. Moreover, network
analysis reveals that this cycle has the lowest betweenness centrality among all the cycles in
the qualitative model, which makes it an attractive cycle. Once the system enters into this
cycle (attractor), it tends to limit itself only within the cycle. Therefore, it is important to
compute delay constraints that enforce the system to maintain this cyclic behavior.

Table 2 presents the invariance kernel of this important cycle. It is composed of
four conjuncted delay constraints, which remain true within the cycle. Apparently,
(d−p53 ≥ d+Mdm2) is the most significant constraint which states that the degradation delay
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of p53 is greater than the production delay of Mdm2. That is, the rate of p53 synthesis
must be greater than or equal to the production rate of Mdm2 for the system to maintain
homeostasis. Experimental studies corroborate that a long time delay between the increase
in p53 and the increase in Mdm2 would lead to oscillatory behavior (Tyson, 2004; Ciliberto,
Novák & Tyson, 2005). Additional work demonstrated that the amplitude of oscillations in
the p53-Mdm2 negative feedback loop are more variable than the period as a result of low-
frequency noise in rates of protein production (Geva-Zatorsky et al., 2006). Fluctuations
in the behavior of protein circuits produces biological response variations even between
individual cells. In our study, we elucidated differences in the rate of cellular functions and
identified the requirements needed for a system to maintain homeostasis. Taken together,
these results provide a deeper understanding of the modulation of biological networks that
play critical roles in tumorigenesis.

CONCLUSION
Hyper O-GlcNAcylation is known to upregulate key oncogenes and play an important role
in cancer metabolism and tumorigenesis. However, the precise mechanism of oncogenic
activation by O-GlcNAcylation resulting in enhanced cancer progression, has not yet been
clearly established. In this paper, we used a computational modeling approach to study the
function of the Hexosamine Biosynthetic Pathway, which triggers hyper O-GlcNAcylation.
Within the p53-Mdm2 circuit, we found that p53 synthesis must occur at a greater than or
equal rate toMdm2 production in order to restore the system to a cancer recovery state and
preserve homeostasis. We analyzed different simulation trajectories, which showed that
enhanced expression of O-GlcNAc-transferase (OGT) consistently upregulates NF-κB,
PI3K and FoxM1. Moreover, when OGT forms a positive feedback loop with c-Myc, the
overall system converges to a deadlock state from where recovery is not possible. These
findings suggest that OGT is acting as a critical mediator of various oncogenic and tumor
suppressor proteins implicated in tumor growth and development. We acknowledge that
our findings are derived from a qualitative approach and could be dependent on cellular
dynamics and environment. However, these discoveries form the foundation and direction
of future translational research studies to design a quantitative model with additional
tools and experimental verification for the development of molecular therapeutics. Taken
together, mechanism-based therapies that are designed to target hyper O-GlcNAcylation
and OGT may hold clinical benefits in the treatment of cancer.
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