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ABSTRACT
Background. Large scale metagenomic projects aim to extract biodiversity knowledge
betweendifferent environmental conditions. Currentmethods for comparingmicrobial
communities face important limitations. Those based on taxonomical or functional
assignation rely on a small subset of the sequences that can be associated to known
organisms. On the other hand, de novo methods, that compare the whole sets of
sequences, either do not scale up on ambitious metagenomic projects or do not provide
precise and exhaustive results.
Methods. These limitations motivated the development of a new de novometagenomic
comparativemethod, called Simka. Thismethod computes a large collection of standard
ecological distances by replacing species counts by k-mer counts. Simka scales-up
today’s metagenomic projects thanks to a new parallel k-mer counting strategy on
multiple datasets.
Results. Experiments on public HumanMicrobiome Project datasets demonstrate that
Simka captures the essential underlying biological structure. Simkawas able to compute
in a few hours both qualitative and quantitative ecological distances on hundreds of
metagenomic samples (690 samples, 32 billions of reads). We also demonstrate that
analyzing metagenomes at the k-mer level is highly correlated with extremely precise de
novo comparison techniques which rely on all-versus-all sequences alignment strategy
or which are based on taxonomic profiling.

Subjects Bioinformatics, Computational Biology
Keywords Comparative metagenomics, k-mer, k-mer counting, Metagenomic, Large scale,
Ecological distance, Ngs

INTRODUCTION
It is estimated that only a fraction of 10−24–10−22 of the total DNA on earth has
been sequenced (Anonymous, 2011). In large scale metagenomics studies such as Tara
Oceans (Karsenti et al., 2011) most of the sequenced data comes from unknown organisms
and their short reads assembly remains an inaccessible task (see for instance results from the
CAMI challenge: http://cami-challenge.org/). When precise taxonomic assignation is not
feasible, microbial ecosystems can nevertheless be compared on the basis of their diversity,
inferred from metagenomic read sets. In this framework, the beta-diversity, introduced
inWhittaker (1960), measures the dissimilarities between communities in terms of species
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composition. Such compositions may be approximated by sequencing marker genes, such
as the rRNA 16S in bacterial communities (Liles et al., 2003), and clustering the sequences
into Operational Taxonomic Units (OTU) or working species. However, marker genes
surveys suffer from amplification and primer bias (Cai et al., 2013) and therefore may not
capture the whole microbial diversity of a sample. Furthermore, even within the captured
diversity, the marker may not be informative enough to discriminate between sub-species
or even species strains (Piganeau et al., 2011). Finally, this approach is impractical for
whole metagenomic sets for at least two reasons: clustering reads into putative species is
computationally costly and leaves out a large fraction of the reads (Nielsen et al., 2014).

In this context, it is more practical to ditch species composition altogether and compare
microbial communities using directly the sequence content of metagenomic read sets. This
has first been performed by using Blast (Altschul et al., 1990) for comparing read content
(Yooseph et al., 2007). This approach was successful but cannot scale up to large studies
made up of dozens or hundreds of large read sets, such as those generated from Illumina
sequencers.

In 2012, the Compareads method (Maillet et al., 2012) was proposed. The method
compares the whole sequence content of two read sets. It introduced a rough approximation
of read similarity based on the number of shared words of length k (k-mer, with k typically
around 30) and used it for providing so defined similar reads between read sets. The number
of similar reads was then used for computing a Jaccard distance between pairs of read sets.
Commet (Maillet et al., 2014) is an extended version of Compareads. It better handles the
comparison of large read sets andprovides a read sub-set representation that facilitates result
analyses and reduces the disk footprint. Seth et al. (2014) used the notion of shared k-mers
between samples for estimating dataset similarities. This is a slightly different problem as
this was used for retrieving from an indexed database, samples similar to a query sample.
More recently, two additional methods were developed to represent a metagenome by a
feature vector that is then used to compute pairwise similarity matrices between multiple
samples. For both methods, features are based on the k-mer composition of samples, but
with a feature representing more than one k-mer and using only a subset of k-mers to
reduce the dimension (Ulyantsev et al., 2016; Ondov et al., 2016). However, the approaches
for k-mer grouping and sub-sampling are radically different. In MetaFast (Ulyantsev et al.,
2016), the subset of k-mers is obtained by post-processing de novo assemblies performed
for each metagenome. A feature represents then a set of k-mers belonging to a same
assembly graph ‘‘component.’’ The relative abundance of such component in each sample is
then used to compute the Bray–Curtis dissimilarity measure. In Mash (Ondov et al., 2016),
a sub-sampling of the k-mers is performed using the MinHash (Broder, 1997) approach
(keeping by default 1,000 k-mers per sample). The method outputs then a Jaccard index
of the presence-absence of such k-mers in two samples.

All these reference-free methods share the use of k-mers as the fundamental unit used
for comparing samples. Actually, k-mers are a natural unit for comparing communities:
(1) sufficiently long k-mers are usually specific of a genome (Fofanov et al., 2004); (2)
k-mer frequency is linearly related to genome’s abundance (Wu & Ye, 2011); (3) k-mer
aggregates organisms with very similar k-mer composition (e.g., related strains from the
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same bacterial species) without need for a classification of those organisms (Teeling et al.,
2004). Dubinkina et al. (2016) conducted an extensive comparison between k-mer-based
distances and taxonomic ones (i.e., based on taxonomic assignation against a reference
database) for several large scale metagenomic projects. They demonstrate that k-mer-based
distances are well correlated to taxonomic ones, and are therefore accurate enough to
recover known biological structure, but also to uncover previously unknown biological
features that weremissed by reference-based approaches due to incompleteness of reference
databases. Importantly, the greater k, the more correlated these taxonomic and k-mer-
based distances seem to be. However, the study is limited to values of k lower than 11 for
computational reasons and the correlation for large values of k still needs to be evaluated.

Even if Commet and MetaFast approaches were designed to scale-up to large
metagenomic read sets, their use on data generated by large scale projects is turning
into a bottleneck in terms of time and/or memory requirements. By contrast, Mash
outperforms by far all other methods in terms of computational resource usage. However,
this frugality comes at the expense of result quality and precision: the output distances
and Jaccard indexes do not take into account relative abundance information and are not
computed exactly due to k-mer sub-sampling.

In this paper, we present Simka. Simka compares N metagenomic datasets based on
their k-mers counts. It computes a large collection of distances classically used in ecology
to compare communities. Computation is performed by replacing species counts by k-mer
counts, for a large range of kmer sizes, including large ones (up to 30). Simka is, to our
knowledge, the first method able to rapidly compute a full range of distances enabling the
comparison of any number of datasets. This is performed by processing data on-the-fly
(i.e., without storage of large temporary results). With the exception of Mash that is, thanks
to sub-sampling, approximately two to five time faster, Simka outperforms state-of-the-art
read comparison methods in terms of computational needs. For instance, Simka ran on
690 samples from the Human Microbiome Project (HMP) (Human Microbiome Project
Consortium, 2012a) (totalling 32 billion reads) in less than 10 h and using no more than 70
GB RAM.

The contributions of this manuscript are three-fold. First we propose a new method for
efficiently counting k-mers from a large number of metagenomic samples. The usefulness
of such counting is not limited to comparative metagenomics and may have applications
in many other fields. Second, we show how to derive a large number of ecological distances
from k-mer counts. And third, we show on real datasets that k-mer-based distances are
highly correlated to taxonomic distances: they therefore capture the same underlying
structure and lead to the same conclusions.

MATERIALS AND METHODS
The proposed algorithm enables to compute dissimilarity measures between read sets. In
the following, in order to simplify the reading, we use the term ‘‘distance’’ to refer to this
measure.
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Overview
Given N metagenomic datasets, denoted as S1,S2,Si,...,SN , the objective is to provide
a N×N distance matrix D where Di,j represents an ecological distance between datasets
Si and Sj . Such possible distances are listed in Table 1. The computation of the distance
matrix can be theoretically decomposed into two distinct steps:
1. k-mer count. Each dataset is represented as a set of discriminant features, in our case,

k-mer counts. More precisely, a k-mer count matrix KC of size W×N is computed.
W is the number of distinct k-mer among all the datasets. KCi,j represents the number
of times a k-mer i is present in the dataset Sj .

2. distance computation. Based on the k-mer count information, the distance matrix
D is computed. Actually, many ecological distances (cf Table 1) can be derived from
matrix KC when replacing species counts by k-mer counts.
Actually, Simka does not require to have the full KC matrix to start the distance com-

putation. However, for sake of simplicity, we will first consider this matrix to be available.
The k-mer count step splits all the reads of the datasets into k-mers and performs a

global count. This can be done by counting individually k-mers in each dataset, then
merging the overall k-mer counts. The output is the matrix KC (of size W×N ). Efficient
algorithms, such as KMC2 (Deorowicz et al., 2015), have recently been developed to count
all the occurrences of distinct k-mers in a read dataset, allowing the computation to be
executed in a reasonable amount of time andmemory even on very large datasets. However,
the main drawback of this approach is the huge main memory space it requires which is
computed as follow:MemKC =Ws∗(8+4N ) bytes, withWs the number of distinct k-mers,
N the number of samples, and 8 and 4 the number of bytes required to store respectively
31-mers and a k-mer count. For example, experiments on the HMP (Human Microbiome
Project Consortium, 2012a) datasets (690 datasets containing on average 45 millions of
reads each) would require a storage space of 260TB for the matrix KC .

However, a careful look at the definition of ecological distances (Table 1) shows that,
up to some final transformation, they are all additive over the k-mers. Independent
contributions to the distance can thus be computed in parallel from disjoint sets of
k-mers and aggregated later on to construct the final distance matrix. Furthermore, each
independent contribution can itself be constructed in an iterative way by receiving lines of
the KC matrix, called abundance vectors, one at a time. The abundance vector of a specific
k-mer simply consists of its N counts in the N datasets.

To sum up, instead of computing the complete k-mer count matrix KC , the alternative
computation scheme we propose is to generate successive abundance vectors from which
independent contributions to the distances can be iteratively updated in parallel. The great
advantage is that the huge k-mer count matrix KC does not need to be stored anymore.
However, this approach requires a new strategy to generate abundance vectors. We propose
and describe below a new efficient multiset k-mer counting algorithm (called MKC) that
can be highly parallelized on large computing resources infrastructures. As illustrated
in Fig. 1, Simka uses abundance vectors generated by MKC for computing ecological
distances.
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Table 1 Definition of some classical ecological distances computed by Simka. All quantitative distances can be expressed in terms of CS, f =
f (x,y,X ,Y ) and g = g (x), using the notations of Eq. (2), and computed in one pass. Qualitative ecological distances (resp. AB-variants of qualita-
tive distances) can also be computed in a single pass over the data by computing first a, b and c (resp. U and V ). See main text for the definition of
a, b, c , U and V .

Name Definition CSi f (x,y,X ,Y ) g (x)

Quantitative distances

Chord
√
2−2

∑
w

NSi (w)NSj (w)

CSiCSj

√∑
wNSi (w)2

xy
XY

√
2−2x

Hellinger
√
2−2

∑
w

√
NSi (w)NSj (w)
√

CSiCSj

∑
wNSi (w)

√xy
√
XY

√
2−2x

Whittaker 1
2

∑
w

∣∣∣NSi (w)CSj−NSj (w)CSi

∣∣∣
CSiCSj

∑
wNSi (w)

|xY−yX |
XY

x
2

Bray–Curtis 1−2
∑

w

min(NSi (w),NSj (w))

CSi+CSj

∑
wNSi (w)

min(x,y)
X+Y

1−2x

Kulczynski 1− 1
2

∑
w

(CSi+CSj )min(NSi (w),NSj (w))

CSiCSj

∑
wNSi (w)

(X+Y )min(x,y)
XY

1− x
2

Jensen–Shannon
√√√√√√√√√

1
2

∑
w

[
NSi (w)
CSi

log
2CSjNSi (w)

CSjNSi (w)+CSiNSj (w)
+

NSj (w)

CSj
log

2CSiNSj (w)

CSjNSi (w)+CSiNSj (w)

]
∑

wNSi (w) x
X log

2xY
xY+yX +

y
Y log

2yX
xY+yX

√ x
2

Canberra 1
a+b+c

∑
w

∣∣∣∣NSi (w)−NSj (w)

NSi (w)+NSj (w)

∣∣∣∣ −
∣∣∣ x−yx+y

∣∣∣ 1
a+b+c x

Qualitative distances

Chord/Hellinger
√
2
(
1− a

√
(a+b)(a+c)

) – – –

Whittaker 1
2

( b
a+b +

c
a+c +

∣∣ a
a+b −

a
a+c

∣∣) – – –
Bray–Curtis/Sorensen b+c

2a+b+c – – –
Kulczynski 1− 1

2

( a
a+b +

a
a+c

)
– – –

Ochiai 1− a
√
(a+b)(a+c) – – –

Jaccard b+c
a+b+c – – –

Abundance-based (AB) variants of qualitative distances
AB-Jaccard 1− UV

U+V−UV – – –
AB-Ochiai 1−

√
UV – – –

AB-Sorensen 1− 2UV
U+V – – –
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S1	   S2	   …	   SN	  

S1	   0	   0.2	   …	   0.1	  

S2	   0.2	   0	   …	   0.4	  

…	   …	   …	   …	   …	  

SN	   0.1	   0.4	   …	   0	  

Read	  
set	  S1	  

Read	  
set	  S2	  

Read	  
set	  SN	  

Accumulate	  
contribu:ons	  and	  
compute	  final	  
distance	  matrix	  

…	  
Generate	  
abundance	  
vectors	  

Update	  par:al	  contribu:on	  
to	  the	  distance	  

Update	  par:al	  contribu:on	  
to	  the	  distance	  

Update	  par:al	  contribu:on	  
to	  the	  distance	  

Update	  par:al	  contribu:on	  
to	  the	  distance	  

…	  

Figure 1 Simka strategy. The first step takes as input N datasets and generates multiple streams of abun-
dance vector from disjoint sets of k-mers. The abundance vector of a k-mer consists of its N counts in the
N datasets. These abundance vectors are taken as input by the second step to iteratively update indepen-
dent contributions to the ecological distance in parallel. Once an abundance vector has been processed,
there is no need to keep it on record. The final step aggregates each contribution and computes the final
distance matrix.

Multiset k-mer Counting
Starting from N datasets of reads, the aim is to generate abundance vectors that will feed
the ecological distance computation step. This task is divided into two phases:
1. Sorting Count,
2. Merging Count.

Sorting Count. Each k-mer of a dataset is extracted and its canonical representation is
stored (the canonical representation of a k-mer is the smallest lexicographic value between
the k-mer and its reverse complement). Canonical k-mers are then sorted in lexicographical
order. Distinct k-mers can thus be identified and their number of occurrences computed.

As the number of distinct k-mers is generally huge, the sorting step is divided into
two sub-tasks and proceeds as follows: the k-mers are first separated into P partitions,
each stored on disk. After this preliminary task, each partition is sorted and counted
independently, and stored again on disk. Conceptually, at the end of the sorting count
process, we dispose of N×P sorted partitions. As the same distribution function is applied
to all datasets, a partition Pi contains a specific subset of k-mers common to all datasets.
Figure 2A illustrates the Sorting Count phase.

The Sorting Count phase has a high parallelism potential. A first parallelism level is given
by the independent counts of each dataset. N processes can thus be run in parallel, each
one dealing with a specific dataset. A second level is given by the fine grained parallelism
implemented in software such as DSK (Rizk, Lavenier & Chikhi, 2013) or KMC2 (Deorowicz
et al., 2015) that intensively exploit today multicore processor capabilities. Thus, the overall
Sorting Count process is especially suited for grid infrastructuresmade of hundred of nodes,
and where each node implements 8 or 16-core systems.

Furthermore, to limit disk bandwidth and avoid I/O bottleneck, partitions are
compressed. A dictionary-based approach, such as the one provided in zlib (Deutsch
& Gailly, 1996), is used. This type of compression is very well suited here since it efficiently
packs the high redundancy of sorted k-mers.
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Read	  
set	  S1	  

Read	  
Set	  S2	  

Read	  
set	  SN	  

CAT 1

ATC 4

AAG 2
TTA 4

AAG 8
GGC 1

GGC 9
TTA 1

ACG 4
TTG 2

ATC 8

ACG 1

ATC 2
CGG 4

S1 S2 SN
ACG 0 4 1

P	  
pa
r3
3o

ns
	  

CAG 7 CAG 3
CAG 1
GAC 6

(A)	  Sort	  and	  Count	  k-‐mers	  

(B)	  Merge	  k-‐mer	  
counts	  

S1 S2 SN
CAT 1 0 0

S1 S2 SN
TTG 0 2 0

S1 S2 SN
ATC 4 8 2

S1 S2 SN
CGG 0 0 4

S1 S2 SN
AAG 2 8 0

S1 S2 SN
GGC 0 1 9

S1 S2 SN
TTA 4 0 1

S1 S2 SN
CAG 7 3 1

S1 S2 SN
GAC 0 0 6

Streams	  of	  abundance	  vectors	  

Figure 2 Multiset k-mer Counting strategy with k = 3. (A) The sorting counting process, represented
by a blue arrow, counts datasets independently. Each process outputs a column of P partitions (red
squares) containing sorted k-mer counts. (B) The merging count process, represented by a green arrow,
merges a row of N partitions. It outputs abundance vectors, represented in green, to feed the ecological
distance computation process.

Merging Count. Here, the data partitioning introduced in the previous step is
advantageously used to generate abundance vectors. The N files associated to a partition
Pi, are taken as input of a merging process. These files contain k-mer counts sorted in
lexicographical order. A Merge-Sort algorithm can thus be efficiently applied to directly
generate abundance vectors.

In that scheme, P processes can be run independently, resulting in the generation of P
abundance vectors in parallel, allowing to compute simultaneously P contributions of the
ecological distance. Note that the abundance vectors do not need to be stored. They are
only used as input streams for the next step. Figure 2B illustrates the Merging Count phase.

k-mer abundance filter. Distinct k-mers with very low abundance usually come from
sequencing errors. As a matter of fact, a single sequencing error creates up to k erroneous
distinct k-mers. Filtering out these k-mers speeds-up the Simka process, as it greatly reduces
the overall number of distinct k-mers, but may also impact the content of the distance
matrix. This point is evaluated and discussed in the result section.

This filter is activated during the count process. Only k-mers whose abundance is equal
to or greater than a given abundance threshold are kept. By default the threshold is set to
2. The k-mers that pass the filter are called ‘‘solid k-mers.’’
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Ecological distance computation
Simka computes a collection of distances for all pairs of datasets. As detailed in the previous
section, abundance vectors are used as input data. For the sake of simplicity, we first explain
the computations of the Bray–Curtis distance. All other distances, presented later on, can
be computed in the same way, with only small adaptations.

Computing the Bray–Curtis distance. The Bray–Curtis distance is given by the following
equation:

BrayCurtisAb(Si,Sj)= 1−2

∑
w∈Si∩Sjmin(NSi(w),NSj (w))∑
w∈SiNSi(w)+

∑
w∈SjNSj (w)

(1)

where w is a k-mer andNSi(w) is the abundance of w in the dataset Si. We consider here
that w ∈ Si∩Sj if NSi(w)> 0 and NSj (w)> 0.

The equation involves marginal (or dataset specific) terms (i.e.,
∑

w∈SiNSi(w) is the total
amount of k-mers in dataset Si) acting as normalizing constants and crossed terms that
capture the (dis)similarity between datasets (i.e.,

∑
w∈Si∩Sjmin(NSi(w),NSj (w)) is the total

amount of k-mers in the intersection of the datasets Si and Sj). Marginal and crossed terms
are then combined to compute the final distance.

Algorithm 1 shows that it is straightforward to compute the distance matrix between N
datasets from the abundance vectors. Inputs of this algorithm are provided by the Multiple
k-mer Counting algorithm (MKC). These are the P streams of abundance vectors and
the marginal terms of the distance, i.e., the number of k-mers in each dataset, determined
during the first step of the MKC which counts the k-mers.

A matrix, denoted M∩, of dimension N×N is initialized (step 1) to record the final
value of the crossed terms of each pair of datasets. P independent processes are run (step
2) to compute P partial crossed term matrices, denoted M∩part (step 3), in parallel. Each
process iterates over its abundance vector stream (step 4). For each abundance vector, we
loop over each possible pair of datasets (steps 5–6). The matrix M∩part is updated (step 8)
if the k-mer is shared, meaning that it has positive abundance in both datasets Si and Sj
(step 7). Since a distance matrix is symmetric with null diagonal, we limit the computation
to the upper triangular part of the matrix M∩part . The current abundance vector is then
released. Each process writes its matrixM∩part on the disk when its stream is done (step 9).

When all streams are done, the algorithm reads each written M∩part and accumulates
it to M∩ (step 10–11). The last loop (steps 13–16) computes the Bray–Curtis distance for
each pair of datasets and fills the distance matrix reported by Simka.

The amount of abundance vectors streamed by the MKC is equal to Ws, which is also
the total amount of distinct solid k-mers in the N datasets. This algorithm has thus a time
complexity of O(Ws×N 2).

Other ecological distances. The distance introduced in Eq. (1) is a single example of
ecological distance. There exists numerous other ecological distances that can be broadly
classified into two categories (see Legendre & De Cáceres (2013) for a finer classification):
distances based on presence-absence data (hereafter called qualitative) and distances
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Algorithm 1: Compute the Bray-Curtis distance (Eq. (1)) between N datasets
Input:
- Vs: vector of size P representing the abundance vector streams
- V∪: vector of size N containing the number of k-mers in each dataset
Output: a distance matrix Dist

1 M∩← empty square matrix of size N // number of k-mers in each dataset intersec-
tion

2 In parallel: foreach abundance vector stream S in Vs do
3 M∩part ← empty squared matrix of size N // part ofM∩
4 foreach abundance vector v in S do
5 for i← 0 to N −1 do
6 for j← i+1 to N −1 do
7 if v[i]> 0 and v[j]> 0 then
8 M∩part [i,j] ←M∩part [i,j]+min(v[i],v[j])

9 WriteM∩part to disk

10 foreach each written matrix M∩part do
11 M∩←M∩ +M∩part

12 Dist ← empty squared matrix of size N // final distance matrix
13 for i← 0 to N −1 do
14 for j← i+1 to N −1 do
15 Dist [i,j] = 1−2∗M∩[i,j] / (V∪[i]+V∪[j])
16 Dist [j,i] = 1−2∗M∩[i,j] / (V∪[i]+V∪[j])

17 return Dist

based on proper abundance data (hereafter called quantitative). Qualitative distances
are more sensitive to factors that affect presence-absence of organisms (such as pH,
salinity, depth, humidity, absence of light, etc.) and therefore useful to study bioregions.
Quantitative distances focus on factors that affect relative changes (seasonal changes,
nutrient availability, concentration of oxygen, depth, diet, disease, etc.) and are therefore
useful to monitor communities over time or along an environmental gradient. Note that
some factors, such as pH, are likely to affect both presence-absence (for large changes in
pH) and relative abundances (for small changes in pH). Algorithmically, most ecological
distances, including most of those mentioned in Legendre & De Cáceres (2013), can be
expressed for two datasets Si and Sj as:

Distance(Si,Sj)= g

 ∑
w∈Si∪Sj

f
(
NSi(w),NSj (w),CSi,CSj

) (2)

where g and f are simple functions, and CSi is a marginal (i.e., dataset-specific) term of
dataset Si, usually of size 1 (i.e., a scalar). In most distances, CSi is simply the total number
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of k-mers in Si. By contrast, the value of f corresponds to crossed terms and requires
knowledge of both NSi(w) and NSj (w) (and potentially CSi and CSj as well). For instance,
for the abundance-based Bray–Curtis distance of Eq. (1), we have CSi =

∑
w∈SiNSi(w),

g (x)= 1−2x and f (x,y,X ,Y )=min(x,y)/(X+Y ). Those distances can be computed in
a single pass over the data using a slightly modified variant of Algorithm 1. The marginal
terms CSi are computed during the first step of the MKC which counts the k-mers of each
dataset. The crossed terms involving f are computed and summed in steps 7–8 (but exact
instructions depend on the nature of f ). Finally, the actual distances are computed in steps
15–16 and depend on both f and g .

Qualitative distances form a special case of ecological distances: they can all be expressed
in terms of quantities a, b and c where a is the number of distinct k-mers shared between
datasets Si and Sj , b is the number of distinct k-mers specific to dataset Si and c is the
number of distinct k-mers specific to dataset Sj . Those distances easily fit in the previous
framework as a=

∑
w∈Si∩Sj1{NSi (w)NSj (w)>0}, CSi =

∑
w∈Si1{NSi (w)>0}= a+b and similarly

CSj = a+ c . Therefore, a is a crossed term and b and c can be deduced from a and the
marginal terms.

In the same vein, Chao et al. (2006) introduced variations of presence-absence distances
incorporating abundance information to account for unobserved species. The main idea is
to replace ‘‘hard’’ quantities such as a/(a+b), the fraction of distinct k-mers from Si shared
with Sj , by probabilistic ‘‘soft’’ ones: here the probability U ∈ [0,1] that a k-mer from Si is
also found in Sj . Similarly, the ‘‘hard’’ fraction a/(a+ c) of distinct k-mers from Sj shared
with Si is replaced by the ‘‘soft’’ probabilityV that a k-mer from Sj is also found in Si.U and
V play the same role as a, b and c do in qualitative distances and are sufficient to compute
the variants named AB-Jaccard, AB-Ochiai and AB-Sorensen. However and unlike the
quantities a, b c , which can be observed from the data, U and V are not known in practice
and must be estimated from the data. Chao et al. (2006) proposed several estimates for U
and V . The most elaborate ones attempt to correct for differences in sampling depths and
unobserved species by considering the complete k-mer counts vector of a sample. Those
estimates are unfortunately untractable in our case as we stream only a few k-mer counts
at a time. Instead we resort to the simplest estimates presented in Chao et al. (2006), which
lend themselves well to the additive and distributed nature of Simka: U = YSiSj/CSi and
V = YSjSi/CSj where YSiSj =

∑
w∈Si∩SjNSi(w)1{NSj (w)>0} and CSi =

∑
w∈SiNSi(w). Note that

YSiSj corresponds to crossed terms and is asymmetric, i.e., YSiSj 6= YSjSi . Intuitively, U is
the fraction of k-mers (not distinct anymore) from Si also found in Sj and therefore gives
more weights to abundant k-mers that its qualitative counterpart a/(a+b).

Table 1 gives the definitions of the collection of distances computed by Simka
while replacing species counts by k-mer counts. These are qualitative, quantitative and
abundance-based variants of qualitative ecological distances. The table also provides their
expression in terms of Ci, f and g , adopting the notations of Eq. (2).

Finally, note that the additive nature of the computed distances over k-mers is
instrumental in achieving a linear time complexity (in Ws, the amount of distinct solid
k-mers) and in the parallel nature of the algorithm. The algorithm is therefore not amenable
to other, more complex classes of distances that account for ecological similarities between
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species (Pavoine et al., 2011), or edit distances between k-mers as those complex distances
require all versus all k-mer comparisons.

Implementation
Simka is based on the GATB library (Drezen et al., 2014), a C++ library optimized to
handle very large sets of k-mers. It includes a powerful implementation of the sorting
count algorithm with the latest improvements in terms of k-mer counting introduced by
Deorowicz et al. (2015).

Simka is usable on standard computers and has also been entirely parallelized for grid
or cloud systems. It automatically splits the process into jobs according to the available
number of nodes and cores. These jobs are sent to the job scheduling system, while the
overall synchronization is performed at the data level.

Simka is an open source software, distributed under GNU affero GPL License, available
for download at https://gatb.inria.fr/software/simka/.

RESULTS
First, Simka performances are evaluated in terms of computation time, memory footprint
and disk usage and compared to those of other state of the art methods. Then, the Simka
distances are evaluated with respect to de novo and reference-based distances and with
respect to known biological results.

We conduct our numerical experiments on data from the Human Microbiome Project
(HMP) (Human Microbiome Project Consortium, 2012a) which is currently one of the
largest publicly available metagenomic datasets: 690 samples gathered from different
human body sites (http://www.hmpdacc.org/HMASM/). The whole dataset contains
2*16 billions of Illumina paired reads distributed non uniformly across the 690 samples.
One advantage of this dataset is that it has been extensively studied, in particular the
microbial communities are relatively well represented in reference databases (Human
Microbiome Project Consortium, 2012a; Human Microbiome Project Consortium, 2012b)
(see http://hmpdacc.org/pubs/publications.php for a complete list). Article S1 details
precisely how the datasets used for each experiment were built.

Performance evaluation
Performances on small datasets. The scalability of Simkawas first evaluated on small subsets
of the HMP project, where the number of compared samples varied from 2 to 40. When
computing a simple distance, such as Bray–Curtis for instance, Simka running time shows
a linear behavior with the number of compared samples (Fig. 3A). As expected, counting
the kmers for each sample (MKC-count) consumes most of the time. This task has a
theoretical time complexity linear with the number of kmers, and thus the number of
samples, and this explains the observed linear behavior of the overall program. In fact,
most steps of Simka, namely MKC-count, MKC-merge and simple distance computation,
show a linear behavior between running time and the number of compared samples. The
only exception is the computation of complex distances, where the time devoted to this task
increases quadratically. Both simple and complex distance computation algorithms have

Benoit et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.94 11/25

https://peerj.com
https://gatb.inria.fr/software/simka/
http://www.hmpdacc.org/HMASM/
http://hmpdacc.org/pubs/publications.php
http://dx.doi.org/10.7717/peerj-cs.94/supp-1
http://dx.doi.org/10.7717/peerj-cs.94


0

25

50

75

100

2 5 10 20 40
Samples

C
P

U
 ti

m
e 

(m
in

)

Simka
Complex distances   

Simple distances   

MKC−Merge   

MKC−Count   

A

● ● ● ●
●

0

100

200

300

400

500

2 5 10 20 40
Samples

C
P

U
 ti

m
e 

(m
in

)

● Simka

Commet

Metafast

Mash

B

● ● ● ● ●

0

5

10

15

20

25

2 5 10 20 40
Samples

M
em

or
y 

(G
B

)

● Simka

Commet

Metafast

Mash

C

●
●

●

●

●

0

5

10

15

2 5 10 20 40
Samples

D
is

k 
(G

B
)

● Simka

Commet

Metafast

Mash

D

Figure 3 Simka performances with respect to the numberN of input samples. Each dataset is com-
posed of two million reads. All tools were run on a machine equipped with a 2.50 GHz Intel E5-2640 CPU
with 20 cores, 264 GB of memory. (A) and (B) CPU time with respect to N . For (A), colors correspond to
different main Simka steps. (C) Memory footprint with respect to N . (D) Disk usage with respect to N .
Parameters and command lines used for each tool are detailed in Table S1.

theoretical worst case quadratic time complexity relatively to N (the number of samples).
The difference of execution time comes then from the amount of operations required, in
practice, to calculate the crossed terms of the distances. For a given abundance vector, the
simple distances only need to be updated for each pair (Si,Sj) such thatNSi > 0 andNSj > 0
whereas complex distances need to be updated for each pair such that NSi > 0 or NSj > 0,
entailing a lot more update operations. It is noteworthy that among all distances listed
in Table 1, all distances are simple, except the Whittaker, Jensen–Shannon and Canberra
distances.

When compared to other state of the art tools, namely Commet, Metafast and Mash,
we parameterized Simka to compute only the Bray–Curtis distance, since all other tools
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Table 2 Simka performances and k-mer statistics of the whole HMP project (690 samples). Simka was
run on a machine equipped with a 2.50 GHz Intel E5-2640 CPU with 20 cores, 264 GB of memory, with
k = 31. Numbers of distinct k-mers are computed before and after the MKC-Merge algorithm: the before
merging number is obtained by summing over all samples the distinct k-mers computed for each sample
independently, whereas in the after merging number, k-mers shared by several samples are counted only
once. Line ‘‘Total time’’ does not include complex distances whose computation is optional.

HMP-690 samples-3727 GB-2×16 billion paired reads

Without filter With filter

Number of k-mers 2471× 109 2331× 109

Number of distinct k-mers before merging 251× 109 111× 109

Number of distinct k-mers after merging 95× 109 15× 109

Memory (GB) 62 62
Disk (GB) 1,661 795
Total time (min) 1,338 862

MKC-Count (min) 758 573
MKC-Merge (min) 148 77
Simple distances (min) 432 212

Complex distances (min) 8,957 4,160

compute only one such simple distance. The Figs. 3B–3D shows respectively the CPU time,
the memory footprint and the disk usage of each tool with respect to an increasing number
of samples N . Mash has definitely the best scalability but limitations of its computed
distance are shown in the next section. Commet is the only one to show a quadratic time
behaviour with N . For N = 40, Simka is 6 times faster than Metafast and 22 times faster
than Commet. All tools, except Metafast, have a constant maximal memory footprint with
respect to N . For metafast, we could not use its max memory usage option since it often
created ‘‘out of memory’’ errors. The disk usage of the four tools increases linearly with N .
The linear coefficient is greater for Simka and MetaFast, but it remains reasonable in the
case of Simka, as it is close to half of the input data size, which was 11 GB for N = 40.

In summary, Simka and Mash seems to be the only tools able to deal with very large
metagenomics datasets, such as the full HMP project.

Performances on the full HMP samples. Remarkably, on the full dataset of the HMP project
(690 samples), the overall computation time of Simka is about 14 h with very low memory
requirements (see Table 2). By comparison, Metafast ran out of memory (it also ran out of
memory while considering only a sub-sample composed of the 138 HMP gut samples) and
Commet took several days to compute one 1-vs-all distance matrix and therefore would
require years of computation to achieve the N×N distance matrix. Conversely, Mash ran
in less than 5 h (255 min) and is faster than Simka. This was expected since Mash outputs
an approximation of a simple qualitative distance, based on a sub-sample of 10,000 k-mers.
By comparison, Simka computes numerous distances, including quantitative ones, over
15 billion distinct k-mers (see Table 2). Note that Simka is also designed for coarse-grain
parallelism, and such computation took less than 10 h on a 200-CPU platform.
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These results were obtained with default parameters, namely filtering out k-mers seen
only once. On this dataset, this filter removes only 5 % of the data: solid k-mers (k-mers
seen at least twice) account for 95% of all base pairs of the whole dataset (see Table 2). But
interestingly, when speaking in terms of distinct k-mers, solid distinct k-mers represent
less than half of all distinct k-mers before merging across all samples and only 15%
after merging. Consequently, Simka performances are greatly improved, both in terms of
computation time and disk usage when considering only solid k-mers. Notably, this does
not degrade distance quality, at least for the HMP dataset, as shown in the next section.
Additional tests on the impact of k on the performances show that the disk usage increases
sub-linearly with k whereas the computation time and the memory usage stay constant
(see Fig. S1).

Evaluation of the distances
We evaluate the quality of the distances computed by Simka answering two questions. First,
are they similar to distances between read sets computed using other approaches? Second,
do they recover the known biological structure of HMP samples? For the first evaluation,
two types of other approaches are considered, either de novo ones (similar to Simka but
based on read comparisons), or taxonomic distances, e.g. approaches based on a reference
database.

Correlation with read-based approaches. In this section, we focus on comparing Simka
k-mer-based distance to two read-based approaches: Commet (Maillet et al., 2014) and
an alignment-based method using BLAT (Kent, 2002). Both these read-based approaches
define and use a read similarity notion. They derive the percentage of reads from one
sample similar to at least one read from the other sample as a quantitative similarity
measure between samples. Commet considers that two reads are similar if they share at
least t non-overlapping k-mers (here t = 2, k = 33). For BLAT alignments, similarity
was defined based on several identity thresholds: two reads were considered similar if
their alignment spanned at least 70 nucleotides and had a percentage of identity higher
than 92%, 95% or 98%. For ease of comparison, Simka distance was transformed to a
similarity measure, such as the percentage of shared kmers (see Article S1 for details of
transformation).

Looking at the correlation with Commet is interesting because this tool uses a heuristic
based on shared k-mers but its final distance is expressed in terms of read counts. As shown
in Fig. 4, on a dataset of 50 samples from the HMP project, Simka and Commet similarity
measures are extremely well correlated (Spearman correlation coefficient r = 0.989).

Similarly, clear correlations (r > 0.89) are also observed between the percentage of
matched k-mers and the percentage of similar reads as defined by BLAT alignments
(Fig. 5). Interestingly, the correlation depends on the k-mer size and the identity threshold
used for BLAT: larger k-mer sizes correlate better with higher identity thresholds and vice
versa. The highest correlation is 0.987, obtained for Simka with k= 21 compared to BLAT
results with 95% identity.

These results demonstrate that we can safely replace read-based metrics by a kmer-based
one, and this enables to save huge amounts of time when working on large metagenomics
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Figure 4 Comparison of Simka and Commet similarity measures. Commet and Simka were both used
with Commet default k value (k = 33). In this scatterplot, each point represents a pair of samples, whose
X coordinate is the % of matched k-mers computed by Simka, and the Y coordinate is the % of matched
reads computed by Commet.

projects. Moreover, the k-mer size parameter seems to be the counterpart of the identity
threshold of alignment-based methods if one wants to tune the taxonomic precision level
of the comparisons.

Correlation with taxonomic distances on the gut sample. A traditional way of comparing
metagenomics samples rely on so called taxonomic distances that are based on sequence
assignation to taxons by mapping to reference databases. To compare Simka to such
traditional reference-based method, we used the HMP gut samples, which is a well studied
dataset comprising 138 samples. The HMP consortium provides a quantitative taxonomic
profile for each sample on its website. These profiles were obtained by mapping the reads
on a reference genome catalog at 80% of identity. From these profiles, we computed the
Bray–Curtis distance, latter used as a reference. The complete protocol to obtain taxonomic
distances is given in Article S1. Only Mash and Simka results have been considered for this
experiment. As previously mentioned, Commet and MetaFast could not scale this dataset.

Simka k-mer-based distance appears very well correlated to the traditional taxonomic
distance (r = 0.89, see Fig. 6). On this figure, one may also notice that Simka measures are
robust with the whole range of distances. On the other hand,Mash distances correlate badly
with taxonomic ones (r = 0.51, see Fig. S3 and the comparison protocol in Article S1). This
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Figure 5 Comparison of Simka and BLAT distances for several values of k and several BLAT identity
thresholds. Spearman correlation values are represented with respect to k. The scatterplots obtained for
each point of this figure are shown in Fig. S2.

is probably due to the fact that gut samples differ more in terms of relative abundances
of microbes than in terms of composition (see next section). As Mash can only output a
qualitative distance, it is ill equipped to deal with such a case. Additionally, as shown in
Fig. S3, this conclusion stands for the HMP samples from other body sites for which one
disposes of high quality taxonomic distances.

Interestingly, these Simka results are robust with the k-mer filtering option and the
k-mer size, as long as k is larger than 15 and with an optimal correlation obtained with
k = 21 (see Fig. S4). Notably, with very low values of k (k < 15), the correlation drops
(r = 0.5 for k = 12). This completes previous results suggesting that the larger the k the
better the correlation, that were limited to k values smaller than 11 (Dubinkina et al., 2016).

Visualizing the structure of the HMP samples. We propose to visualize the structure of the
HMP samples and see if Simka is able to reproduce known biological results. To easily
visualize those structures, we used the Principal Coordinate Analysis (PCoA) (Borg &
Groenen, 2013) to get a 2-D representation of the distance matrix and of the samples:
distances in the 2-D plane optimally preserve values of the distance matrix.

Figure 7 shows the PCoA of the quantitative Ochiai distance computed by Simka on the
full HMP samples. We can see that the samples are clearly segregated by body sites. This
is in line with results from studies of the HMP consortium (Human Microbiome Project
Consortium, 2012a; Costello et al., 2009; Koren et al., 2013). Moreover, one may notice that
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Figure 6 Correlation between taxonomic distance and k-mer based distance computed by Simka on
HMP gut samples. On this density plot, each point represents one or several pairs of the gut samples. The
X coordinate indicates the Bray–Curtis taxonomic distance, and the Y coordinate the Bray–Curtis dis-
tance computed by Simka with k = 21. The color of a point is function of the amount of sample pairs with
the given pair of distances (log-scaled).

different distances can lead to different distributions of the samples, with some clusters
being more or less discriminated (see Fig. S5). This confirms the fact that it is important
to conduct analyses using several distances as suggested in (Koren et al., 2013; Legendre &
De Cáceres, 2013) as different distances may capture different features of the samples.

We conduct the same experiment on the 138 gut samples from the HMP project.
Arumugam et al. (2011) showed that the gut samples are organized in three groups, known
as enterotypes, and characterized by the abundance of a few genera: Bacteroides, Prevotella
and genera from the Ruminococcaceae family. The original enterotypes were built from
Jensen–Shannon distances on taxonomic profiles. The Fig. 8 shows the PCoA of the
Jensen–Shannon distances obtained with Simka. Mapping the relative abundance of those
genera in each sample, as provided by the HMP consortium, on the 2-D representation
reveals a clear gradient in the PCoA space. Simka distances therefore recover biological
features it had no direct access to: here, the fact that gut samples are structured along
gradients of Bacteroides, Prevotella and Ruminococcaceae. The fact that Simka is able
to capture such subtle signal raises hope of drawing new interesting biological insights
from the data, in particular for those metagenomics project lacking good references (soil,
seawater for instance).
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Figure 7 Distribution of the diversity of the HMP samples by body sites. PCoA of the samples is based
on the quantitative Ochiai distance computed by Simka with k = 21. Each dot corresponds to a sample
and is coloured according to the human body site it was extracted from. The green color shades corre-
spond to three different subparts of the Oral samples: Tongue dorsum, Supragingival plaque, Buccal mu-
cosa (from top to down).

DISCUSSIONS
In this article, we introduced Simka, a newmethod for computing a collection of ecological
distances, based on k-mer composition, between many large metagenomic datasets. This
was made possible thanks to the Multiple k-mer Count algorithm (MKC), a new strategy
that counts k-mers with state-of-the-art time, memory and disk performances. The novelty
of this strategy is that it counts simultaneously k-mers from any number of datasets, and
that it represents results as a stream of data, providing counts in each dataset, k-mer per
k-mer.

The distance computation has a time complexity in O(W×N 2), with W is the number
of considered distinct k-mers and N is the number of input samples. N is usually limited
to a few dozens or hundreds and cannot be reduced. However, W may range in the
hundreds of billions. The solid filter already provides large speed improvement without
affecting the results, at least on the tests performed on the HMP datasets. However, the
HMP dataset is not representative of all metagenomics projects and, in some cases, this
filter may not be desired; for instance, in the case of samples with low coverage or when
performing qualitative studies where the rare species have more impact. As a matter of fact,
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Figure 8 Relative abundances of main genera in HMP gut samples.Distribution of the gut samples
from the HMP project is shown in a PCoA of the Jensen–Shannon distance matrix. This distance matrix
was computed by Simka with k = 21. Relative abundances (0–100%) of (A) Bacteroides, (B) Prevotella
and (C) Ruminococcaceae, as computed with Metaphlan (Segata et al., 2012), are mapped onto the sample
points as color shades.
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it is notable that Simka is able to scale large datasets even with the solid filter disabled as
shown in the performance section. Interestingly, when applied on a low coverage dataset,
namely the Global Ocean Sampling (Yooseph et al., 2007), Simka was able to capture the
essential underlying biological structure with or without the k-mer solid filter (see Fig. S6).
However, an important incoming challenge is to precisely measure the impact of applied
thresholds together with the choice of k, depending on the input dataset features such as
community complexity and sequencing effort.

Sincemetagenomic projects are constantly growing, it is important to offer the possibility
to add new sample(s) to a set for which distances are already computed, without starting
back the whole computation from scratch. It is straightforward to adapt theMKC algorithm
to such operation, but the merging step and distance computation step have to be done
again. However, adding a new sample does not modify previously computed distances and
only requires to compute a single line of the distance matrix, it can thus be achieved in
linear time.

The motivation for computing a collection of distances rather than just one is two folds:
different distances capture different features of the data (Koren et al., 2013; Legendre &
De Cáceres, 2013; Pavoine et al., 2011) and all the distances computed by Simka have in
common that they are additive over k-mers and can thus be computed simultaneously using
the same algorithm. To support the first point, we have seen that Mash performed badly
when considering HMP samples per body sites since this tool can only take into account
presence/absence information and not relative abundances in contrast to Simka. As amatter
of fact, differences in relative abundances are subtler signals that are often at the heart of
interesting biological insights in comparative genomics studies. For instance, Boutin et al.
(2015) showed that the structure between different samples from lung disease patients was
visible with the Bray Curtis (quantitative) distance and absent with the qualitative Jaccard
distance, highlighting the role of the abundances of certain pathogenic microbes in the
disease. In other studies, the response of bacterial communities to stress or environmental
changes was shown to be driven by the increase in abundance of some rare taxa (Shade et al.,
2014; Genitsaris et al., 2015; Coveley, Elshahed & Youssef, 2015; Gomez-Alvarez et al., 2016).

A notable key point of our proposal is to estimate beta-diversity using k-mers diversity
only. We are conscious this may lead to biased estimates of the beta-diversities defined
from species composition data. The bias can run both ways: on the one hand, shared
genomic regions or horizontal transfers between species will bias the k-mer-based distance
downwards. On the other hand, genome size heterogeneity and k-mer composition
variation along a microbe genome will bias the k-mer-based distance upwards. However,
species composition based approaches are not feasible for large read sets from complex
ecosystems (soil, seawater) due to the lack of good references and/or mapping scaling
limitations. Moreover, our proposal has the advantage of being a de novo approach,
unbiased by reference banks inconsistency and incompleteness. Finally, numerical
experiments on the HMP datasets show that k-mer based and taxonomic distances are well
correlated (r > 0.8 for k ≥ 21) and consequently that Simka recovers the same biological
structure as taxonomic studies do.
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There is nevertheless room for improving Simka distances. For instance, recently,
Břinda, Sykulski & Kucherov (2015) showed that spaced seeds can improve the k-mer-
basedmetagenomic classification obtained with the popular tool Kraken (Wood & Salzberg,
2014). Spaced seeds can be seen as non-contiguous k-mers allowing therefore a certain
number of mismatches when comparing them. Being less stringent when comparing
k-mers could lead to more accurate distances, especially for viral metagenomic fractions
which contain a lot of mutated sequences.
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