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Abstract

Background: The amount of functional genomic information has been growing rapidly but remains largely unused in
genomic selection. Genomic prediction and estimation using haplotypes in genome regions with functional elements
such as all genes of the genome can be an approach to integrate functional and structural genomic information for
genomic selection. Towards this goal, this article develops a new haplotype approach for genomic prediction and
estimation.

Results: A multi-allelic haplotype model treating each haplotype as an ‘allele’ was developed for genomic prediction
and estimation based on the partition of a multi-allelic genotypic value into additive and dominance values. Each
additive value is expressed as a function of h − 1 additive effects, where h = number of alleles or haplotypes, and
each dominance value is expressed as a function of h(h − 1)/2 dominance effects. For a sample of q individuals,
the limit number of effects is 2q − 1 for additive effects and is the number of heterozygous genotypes for dominance
effects. Additive values are factorized as a product between the additive model matrix and the h − 1 additive
effects, and dominance values are factorized as a product between the dominance model matrix and the
h(h − 1)/2 dominance effects. Genomic additive relationship matrix is defined as a function of the haplotype
model matrix for additive effects, and genomic dominance relationship matrix is defined as a function of the
haplotype model matrix for dominance effects. Based on these results, a mixed model implementation for
genomic prediction and variance component estimation that jointly use haplotypes and single markers is
established, including two computing strategies for genomic prediction and variance component estimation
with identical results.

Conclusion: The multi-allelic genetic partition fills a theoretical gap in genetic partition by providing general
formulations for partitioning multi-allelic genotypic values and provides a haplotype method based on the
quantitative genetics model towards the utilization of functional and structural genomic information for
genomic prediction and estimation.
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Background
Genomic best linear unbiased prediction (GBLUP) using
genome-wide single nucleotide polymorphism (SNP)
markers can utilize a wealth of theoretical results and
computational strategies of best linear unbiased predic-
tion (BLUP) [1] that has become a standard approach
for genetic evaluation, with dairy cattle having the most
widespread use of BLUP worldwide [2–5]. The imple-
mentation of GBLUP within the BLUP framework is
made possible by a genomic relationship matrix that re-
places the pedigree relationship matrix in BLUP [6].
With genomic relationship matrix established, genomic
estimation of variance components can also readily use
the method of restricted maximum likelihood estimation
(REML) [7], to be referred to as GREML (genomic
REML). Using a quantitative genetics model as the uni-
fying model, genomic relationship matrix is formulated
by equaling the covariance of genomic values between
two individuals to the corresponding pedigree covari-
ance [8, 9]. Previously defined genomic relationships
based on standardization of SNP coding [6, 8, 10, 11]
can be considered as special cases of this unifying
approach [9]. The quantitative genetics model parti-
tions a genotypic value as the summation of a com-
mon mean, breeding value and dominance deviation
[12–18]. Using matrix notations, this partition can be
expressed as: g = 1μ + a + d = 1μ +Wαα +Wδδ, where
μ = common mean, 1 = column vector of 1’s, a =
breeding values (additive values), d = dominance devia-
tions (dominance values), α = SNP additive effects, δ =
SNP dominance effects, Wα =model matrix of α as a
function of SNP allele frequencies, and Wδ =model
matrix of δ as a function of SNP allele frequencies. With
the factorization of a =Wαα and d =Wδδ, genomic addi-
tive relationship is a function of WαWα ' and genomic
dominance relationship is a function of WδWδ ' [9]. This
approach for defining genomic relationships was only
available for bi-allelic loci. Although SNPs are bi-allelic
loci, the issue of multi-allelic loci for genomic prediction
and estimation arises if each haplotype is treated as an ‘al-
lele’ and the haplotype block containing the haplotypes is
treated as a ‘locus’. For a multi-allelic locus, the partition
of a genotypic value into additive and dominance values
(g = 1μ + a + d) was available [17] and the multi-allelic
factorization of a =Wαα and d =Wδδ was available
for three alleles [19]. However, general factorization
formulations for an arbitrary number of alleles were
unavailable, and a method using such multi-allelic
haplotype model for genomic prediction and estima-
tion was unavailable.
Haplotype analysis is advantageous over single-locus

analysis for several reasons: a haplotype is a functional
unit [20], a haplotype contains combined effects of tightly
linked cis-acting causal variants [21, 22], a phenotype is
affected by multiple causal loci with weak LD (LD =
linkage disequilibrium) [23], or a genomic region is sub-
jected to selection with stronger LD than genome regions
unaffected by selection [24, 25]. Haplotype analysis
has been widely used in genetic and genomic studies
[22, 26–28]. Relatively limited studies were available
on using haplotypes compared to the literature on
using single SNPs for genomic prediction. Methods to
define haplotype blocks for genomic prediction in-
cluded a constant number of SNPs per SNP block
[29, 30], fixed block length [31], or LD blocks [32].
Haplotype coding methods for genomic prediction
and estimation included 2-1-0 copies of a haplotype
in the two-haplotype genotype [30, 33], or maternal
or paternal haplotype [29]. Haplotype mixed model
methods based on the quantitative genetics model
with multi-allelic factorization of additive and domin-
ance values were unavailable for genomic prediction and
estimation. Functional genomic information has been
growing rapidly but remains largely unused in genomic se-
lection. Simulation study showed that genomic prediction
using causal mutations could substantially improve pre-
diction accuracy [34], and using SNPs in transcriptional
regions [35] or location specific priors based on QTL
mapping results [36] improved prediction accuracy.
Haplotype analysis can be a useful tool to account for
joint allelic effects unaccounted for by single-SNP
analysis and we have obtained encouraging prelimin-
ary results of using haplotype analysis of functional
genomic information [37, 38].
The purpose of this article is to develop a quantita-

tive genetics based multi-allelic haplotype model as
an alternative method to single-SNP analysis towards
the integration of functional and structural genomic
information for genomic selection. This development
includes deriving general multi-allelic partition of
genotypic values with factorization for defining gen-
omic relationships using haplotypes, and deriving
mixed model formulations for genomic prediction and
estimation that can use haplotypes separately or
jointly with single SNPs.

Methods
Allelic mean and population mean of multi-allelic
genotypic values
A set of m SNP markers are assumed available, and
r haplotype blocks are defined from some of the m
SNPs across the genome. Each haplotype block is
treated as a ‘locus’ and each haplotype within the
haplotype block is treated as an ‘allele’. Each locus
(haplotype block) is assumed to have h alleles (haplo-
types) denoted by Ai,…, Ah, with allele frequency of
pi for Ai, i = 1,…, h, and ∑i = 1

h pi = 1. The allelic array
in the population is ∑i = 1

h piAi. Let Pij = frequency of
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AiAj genotype, ∑i = 1
h ∑j = 1

h PijAiAj = the genotypic array
of the population, and gij = genotypic value of AiAj geno-
type, i,j = 1,…,h. Hardy-Weinberg equilibrium (HWE) is
assumed so that the genotypic array of the population is
the squared allelic array, i.e., ∑i = 1

h ∑j = 1
h PijAiAj = (∑i = 1

h piAi)
2.

Allele frequency of Ai is calculated as:

pi ¼ Pii þ 1
2

X
j¼1

j≠i

h
Pij ð1Þ

The allelic mean of Ai allele is the weighted mean
of all genotypic values with the Ai allele, with each
genotypic value weighted by the number of copies of
the Ai allele the genotype carries. The general
expression of the allelic mean without requiring
HWE is a conditional mean [13] and simplifies to a
weighted average of genotypic values with allele fre-
quencies as the weights under the HWE assumption
[13, 17], i.e.,

μi ¼ 2Piigii þ
Xh

j≠i
Pijgij

h i
= 2Pii þ

Xh

j≠i
Pij

h i
¼
Xh

j¼1
pjgij ð2Þ

The population mean is the mean of all genotypic
values in the population. The general formula without
requiring HWE and its expression as a weighted average
of allelic means with allele frequencies as the weights re-
quiring HWE are:

μ ¼
Xh

i¼1

Xh

j¼1
Pijgij

¼
Xh

i¼1
p2i gii þ 2

Xh−1

i¼1

Xh

j¼iþ1
pipjgij

¼
Xh

k¼1
pkμk ð3Þ

The expressions of μi = ∑j = 1
h pjgij and μ = ∑k = 1

h pkμk
play an important role in the derivations to factorize
additive and dominance values and in defining funda-
mental genetic parameters of quantitative traits.

Multi-allelic effect, additive effect, additive value
The allelic effect (average effect) of allele Ai (i = 1,…h) is
the deviation of the allelic mean from the population
mean. From Eqs. 2 and 3, the allelic effect of Ai is:

ai ¼ μi−μ ¼
Xh

j≠i
pj μi−μj
� �

¼
Xh

j≠i
pjαij ð4Þ

where αij is the additive effect or the average effect of
gene substitution that is the difference between the
allelic effects of the two alleles defined by Eq. 4, i.e.,
αij ¼ ai−aj ¼ μi−μj ¼
Xh

k¼1
pk gik−gjk
� �

¼ −αji ð5Þ

For h alleles, h(h − 1)/2 αij parameters of Eq. 5 are pos-
sible but these parameters are not independent for all ij
values. An example of this dependency is:

αij ¼ α1j−α1i ð6Þ
Based on Eq. 6, h-1 independent additive effects can

be defined:

α1k ¼ a1−ak ¼ μ1−μk; k ¼ 2;…h ð7Þ
where μ1 = allelic mean of allele 1 that is used as the
reference allele (e.g., defining the most frequent al-
lele as ‘allele 1’). It is readily seen that αii = 0. The
derivation process will allow the presence of αii but
the final results will be based on the h−1 independ-
ent additive effects of αlk defined by Eq. 7. All the
h(h − 1)/2 possible αij parameters can be expressed
in terms of the h−1 independent αlk parameters
through Eq. 6. The additive value (breeding value) of
genotype AiAj is the summation of the two allelic ef-
fects of the genotype, i.e.,

aij ¼ ai þ aj ð8Þ
Each additive value defined by Eq. 8 will be shown to

be a function of all h−1 additive effects defined by Eq. 7.

Dominance effect and dominance value
Dominance effect of AiAj genotype (δij) is the deviation
of the heterozygous genotypic value from the average of
the two homozygous genotypic values, i.e.,

δij ¼ gij−
1
2

gii þ gjj
� �

ð9Þ

With the above definition, dominance effect is the
unique effect of a heterozygous genotype. Therefore, the
number of dominance effects is the same as number of
heterozygous genotypes, and the maximum number of
dominance effects is h(h − 1)/2. It is readily seen from
Eq. 9 that δii = 0. The derivation process will allow the
presence of δii but the final results will not have δii.
Dominance value or dominance deviation is the devi-
ation of the genotypic value from the common mean
and additive value, i.e.,

dij ¼ gij−μ−aij ð10Þ

An important difference between ‘dominance value’
and ‘dominance effect’ is that a homozygous genotype
may have non-zero dominance value but always has
zero dominance effect. Each dominance value defined by
Eq. 10 will be shown to be a function of all h(h − 1)/2
dominance effects defined by Eq. 9.
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Multi-allelic partition of genotypic value and variance
The genotypic value of a multi-allelic genotype has the
same partition as for a bi-allelic locus [17], i.e.,

gij ¼ μþ aij þ dij ð11Þ
with E(aij) = 0 and E(dij) = 0. The multi-allelic genotypic
variance (σg

2) also has the same partition as for a bi-
allelic locus [17], i.e., σg

2 = σa
2 + σd

2, where σa
2 = additive

variance, and σd
2 = dominance variance. The multi-

allelic haplotype model to be developed starts with
the factorization of the additive and dominance values
in Eq. 11.

Results and discussion
Factorization of additive and dominance values
From Eqs. 4–7, an allelic effect can be expressed as:

ai ¼ μi−μ ¼
Xh

k≠i
pkαik ¼

Xh

k≠i
pk α1k−α1ið Þ

¼ − 1−pið Þα þ1i

Xh

k≠i
pkα1k

ð12Þ
where αlk is defined by Eq. 7. Equation 12 shows that an
allelic effect is a function of all h-1 parameters of addi-
tive effects denoted by αlk. The additive values (breeding
values) of AiAj and AiAi genotypes can be expressed as:

aij ¼ ai þ aj ¼
h
− 1−pið Þα þ1i

Xh

k≠i
pkα1k

i
þ
h
− 1−pj
� �

α þ1j

Xh

k≠i
pkα1k

i
¼ − 1−2pið Þα −1i 1−2pj

� �
α þ1j 2

Xh

k≠ij
pkα1k

ð13Þ

aii ¼ 2ai ¼ −2 1−2pið Þα þ1i 2
Xh

k≠ij
pkα1k

ð14Þ
In Eqs. 13 and 14, αli = 0 if i = 1 and α1j = 0 if j = 1.

From Eqs. 1–3 and 9–10, the dominance value of the
AiAj genotype can be expressed as

dij ¼ gij−μ−ai−aj ¼ gij−μi−μj þ μ ¼ gij−μi
� �

− μj−μ
� �

¼
Xh

k≠j
pk gij−gik
� �

−
Xh

k≠j
pk μj−μk
� �

¼
Xh

k≠j
pk gij−μj
� �

− gik−μk
� �h i

¼
Xh

k≠j
pk
Xh

f≠i
pf gij−gjf
� �

−
Xh

f≠i
pf gik−gkf
� �h i

¼
Xh

k≠j
pk
Xh

f≠i
pf gij−gik−gjf þ gkf
� �

ð15Þ
In Eq. 15, the quantity gij − gik − gjf + gkf has two posi-

tive terms and two negative terms, and each subscript is
associated with a positive term and a negative term.
Using this fact and the definition of dominance effect
(δij) of Eq. 9 with δii = 0, gij − gik − gjf + gkf can be
expressed as:

gij−gik−gjf þ gkf ¼ δij−δik−δjf þ δkf ð16Þ

Combining Eqs. 15 and 16 with Eq. 10 and using
pj = 1 − ∑k ≠ j

h pk (Eq. 1) yields:

dij ¼
Xh

k≠j
pk
Xh

f≠i
pf δij−δik−δjf þ δkf
� �

¼
Xh

k≠j
pk
Xh

f≠i
pf δij−δik
� �

−
Xh

f≠i
pf δjf−δkf
� �h i

¼
Xh

k≠j
pk 1−pið Þ δij−δik

� �
−
Xh

f≠i
pfδjf þ

Xh

f≠i
pfδkf

h i
¼ 1−pið Þ 1−pj

� �
δij− 1−pið Þ

Xh

k≠j
pkδik

−
Xh

k≠j
pk
Xh

f≠i
pfδjf−

Xh

f≠i
pfδkf

� �
¼ 1−pið Þ 1−pj

� �
δij− 1−pið Þ

Xh

k≠j
pkδik− 1−pj

� �Xh

f≠i
pfδjf

þ
Xh

k≠j
pk
Xh

f≠i
pfδkf

ð17Þ

In Eq. 17,

Xh

k≠j
pk
Xh

f≠i
pfδkf ¼ pipjδij þ pi

Xh

f≠i;k
pfδjf þ pj

Xh

k≠j;f
pkδjk

þ
Xh

k≠i;j
pk
Xh

f≠k
pfδkf

¼ pipjδij þ pi
Xh

k≠i;j
pkδik þ pj

Xh

f≠i;j
pfδjf

þ 2
Xh−1

k≠i;j
pk
Xh

f¼kþ1
pfδkf

ð18Þ

Combining Eqs. 17 and 18 yields:

dij ¼ gij−μ−ai−aj ¼ 1−pi 1−pj
� �

−pj 1−pið Þ
h i

δij

− 1−2pið Þ
Xh

k≠i;j
pkδik− 1−2pj

� �Xh

f≠i;j
pfδjf

þ2
Xh−1

k≠i;j
pk
Xh

f¼kþ1
pfδkf ð19Þ

dii ¼ gii−μ−2ai

¼ −2 1−pið Þ
Xh

k≠i
pkδik

þ 2
Xh−1

k≠i
pk
Xh

f¼kþ1
pfδkf ð20Þ

Equations 13 and 14 show that each additive value is a
function of all h − 1 additive effects defined by Eq. 7, and
Eqs. 19–20 show that each dominance value is a func-
tion of all h(h − 1)/2 dominance effects defined by Eq. 9.
Equations 13 and 14 provide the additive coding and Eqs.
19 and 20 provide the dominance coding of each multi-
allelic genotype for the mixed model implementation.



Table 1 Four hypothetical haplotypes and their frequencies
(h = 4)

Haplotype 1 2 3 4

Frequency 0.4 0.3 0.2 0.1

Table 2 Genotypic values of haplotype genotypes (gij = gji)

Haplotype 1 2 3 4

1 g11 = 25 g12 = 18 g13 = 15 g14 = 10

2 g22 = 30 g23 = 33 g24 = 40

3 g33 = 17 g34 = 12

4 g44 = 35
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Multi-allelic haplotype model based on multi-allelic
genetic partition
Using the results of factorization of additive and
dominance values given by Eqs. 13–14 and 19–20,
the multi-allelic haplotype model treating each haplo-
type as an ‘allele’ by Eq. 11 can be expressed as:

gij ¼ μþ aij þ dij ¼ μþ
Xh

k¼2
wij;k

α α1k

þ
Xh−1

k¼1

Xh

f¼kþ1
wij;kf

δ δkf

ð21Þ

In wα
ij,k, superscripts ij are for the genotype of AiAj

and superscript k is for αlk. In wδ
ij,kf, superscripts ij

are for dij and superscripts kf are for δkf. From Eqs.
13 and 14, the additive coding (wα

ij,k) of a multi-allelic
genotype is:

wij;k
α ¼ 2pk for i; j≠k aij and α1k do not share allele k

� �
ð22Þ

wij;k
α ¼ − 1−2pkð Þ for i≠j but i ¼ k or j ¼ k

aij and α1k share allele k; i≠k
� �

ð23Þ
wij;k

α ¼ −2 1−pkð Þ for i ¼ j ¼ k

aij and α1k share allele k; i ¼ j
� �

ð24Þ

From Eqs. 19 and 20, the dominance coding (wδ
ij,kf ) of

a multi-allelic genotype is:

wij;kf
δ ¼ 1−pi 1−pj

� �
−pj 1−pið Þ for ij ¼ kf

dij and δkf share 2 alleles
� �

ð25Þ

wij;kf
δ ¼ −pk 1−2pið Þ for i≠j and i ¼ f

dij and δkf share allele f ; i≠j
� �

ð26Þ

wij;kf
δ ¼ −pf 1−2pj

� �
for i≠j and j ¼ k

dij and δkf share allele k; i≠j
� �

ð27Þ

wij;kf
δ ¼ −2pk 1−pið Þ for i ¼ j and i ¼ f

dij and δkf share allele f ; i ¼ j
� �

ð28Þ
wij;kf
δ ¼ 2pkpf for i; j≠k; f

ðdij and δkf share no allele; i ¼ j or i≠jÞ
ð29Þ

For convenience of computer programming, Eqs. 22–
24 can be characterized by whether aij and αlk share no
common allele (Eq. 22), or 1 common allele when i ≠ j
(Eq. 23) or 1 common allele when i = j (Eq. 24). Simi-
larly, between dij and δkf, Eq. 25 shares two common al-
leles, Eqs. 26 and 27 share 1 common allele with i ≠ j,
Eq. 28 shares one common allele with i = j, and Eq. 29
share no common allele. In Eqs. 25–29, pi or pj is the al-
lele frequency of the shared allele between dij and δkf
and pk or pf is the allele frequency of the non-shared al-
lele between dij and δkf. From Eqs. 21–29, the multi-
allelic haplotype model for h(h + 1)/2 possible genotypic
values (g) of a given haplotype block with h haplotypes
can be expressed as:

g ¼ 1μþ ah þ dh ¼ 1μþWαhαh þWδhδh ð30Þ

where μ = common mean, 1 = [h(h + 1)/2] × 1 column
vector of 1’s, ah =Wαhαh = [h(h + 1)/2] × 1 column vector
of additive values (breeding values), dh =Wδhδh = [h(h +
1)/2] × 1 column vector of dominance values (domin-
ance deviations), Wαh = [h(h + 1)/2] × (h − 1) model
matrix of αhwith wα

ij,k defined by Eqs. 22–24, dh = [h(h +
1)/2] × 1 column vector of dominance values (dominance
deviations), Wδh = [h(h + 1)/2] × [h(h − 1)/2] matrix of δh
with wδ

ij,kf defined by Eqs. 25–29, and αh = (h − 1) × 1 col-
umn vector with αlk defined by Eq. 7, and δh = [h(h − 1)/
2] × 1 column vector with δkf defined by Eq. 9.

Numerical example of multi-allelic genetic partition
A hypothetical numerical example is used to illus-
trate the genetic partition of multi-allelic genotypic
values described by Eqs. 21–30. Four haplotypes as
‘alleles’ are assumed with frequencies in Table 1 and
genotypic values in Table 2. The common mean of
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the genotypic values using Eq. 3 is: μ = 22.09. The
additive effects of the four haplotypes defined by
Eqs. 5–7, are:

αh
0 ¼ −7:4 −1:1 −2:5½ �0;

and the dominance effects defined by Eq. 9 are:

δh
0 ¼ −9:5 −6 −20 9:5 7:5 −14½ �0:

Using Eqs. 13–14 and 22–24, the additive values
(breeding values) are:
ah ¼

a11
a22
a33
a44
a12
a13
a14
a23
a24
a34

2
666666666666664

3
777777777777775

¼

2p2 2p3 2p4
−2 1−p2ð Þ 2p3 2p4

2p2 −2 1−p3ð Þ 2p4
2p2 2p3 −2 1−p4ð Þ

− 1−2p2ð Þ 2p3 2p4
2p2 − 1−2p3ð Þ 2p4
2p2 2p3 − 1−2p4ð Þ

− 1−2p2ð Þ − 1−2p3ð Þ 2p4
− 1−2p2ð Þ 2p3 − 1−2p4ð Þ

2p2 − 1−2p3ð Þ − 1−2p4ð Þ

2
666666666666664

3
777777777777775

α12
α13
α14

2
4

3
5 ¼

0:6 0:4 0:2
−1:4 0:4 0:2
0:6 −1:6 0:2
0:6 0:4 −1:8
−0:4 0:4 0:2
0:6 −0:6 0:2
0:6 0:4 −0:8
−0:4 −0:6 0:2
−0:4 0:4 −0:8
0:6 −0:6 −0:8

2
666666666666664

3
777777777777775

−7:4
−1:1
−2:5

2
4

3
5 ¼

−5:38
9:42
−3:18
−0:38
2:02
−4:28
−2:88
3:12
4:52
−1:78

2
666666666666664

3
777777777777775

:

Using Eqs. 19–20 and 25–29, the dominance values
(dominance deviations) are:
dh ¼

d11
d22
d33
d44
d12
d13
d14
d23
d24
d34

2
666666666666664

3
777777777777775

¼

−2p2 1−p1ð Þ −2p3 1−p1ð Þ −2p4 1−p1ð Þ 2p2p3 2p2p4 2p3p4
−2p1 1−p2ð Þ 2p1p3 2p1p4 −2p3 1−p2ð Þ −2p4 1−p2ð Þ 2p3p4

2p1p2 −2p1 1−p3ð Þ 2p1p4 −2p2 1−p3ð Þ 2p2p4 −2p4 1−p3ð Þ
2p1p2 2p1p3 −2p1 1−p4ð Þ 2p2p3 −2p2 1−p4ð Þ −2p3 1−p4ð Þ
w12;12

δ −p3 1−2p1ð Þ −p4 1−2p1ð Þ −p3 1−2p2ð Þ −p4 1−2p2ð Þ 2p3p4
−p2 1−2p1ð Þ w13;13

δ −p4 1−2p1ð Þ −p2 1−2p3ð Þ 2p2p4 −p4 1−2p3ð Þ
−p2 1−2p1ð Þ −p3 1−2p1ð Þ w14;14

δ 2p2p3 −p2 1−2p4ð Þ −p3 1−2p4ð Þ
−p1 1−2p2ð Þ −p1 1−2p3ð Þ 2p1p4 w23;23

δ −p4 1−2p2ð Þ −p4 1−2p3ð Þ
−p1 1−2p2ð Þ 2p1p3 −p1 1−2p4ð Þ −p3 1−2p2ð Þ w24;24

δ −p3 1−2p4ð Þ
2p1p2 −p1 1−2p3ð Þ −p1 1−2p4ð Þ −p2 1−2p3ð Þ −p2 1−2p4ð Þ w34;34

δ

2
6666666666666664

3
7777777777777775

δ12
δ13
δ14
δ23
δ24
δ34

2
6666664

3
7777775

¼

−0:36 −0:24 −0:12 0:12 0:06 0:04
−0:56 0:16 0:08 −0:28 −0:14 0:04
0:24 −0:64 0:08 −0:48 0:06 −0:16
0:24 0:16 −0:72 0:12 −0:54 −0:36
0:54 −0:04 −0:02 −0:08 −0:04 0:04
−0:06 0:56 −0:02 −0:18 0:06 −0:06
−0:06 −0:04 0:58 0:12 −0:24 −0:16
−0:16 −0:24 0:08 0:62 −0:04 −0:06
−0:16 0:16 −0:32 −0:08 0:66 −0:16
0:24 −0:24 −0:32 −0:18 −0:24 0:74

2
666666666666664

3
777777777777775

−9:5
−6
−20
9:5
7:5
−14

2
6666664

3
7777775
¼

8:29
−1:51
−1:91
13:29
−6:11
−2:81
−9:21
7:79
13:39
−8:31

2
666666666666664

3
777777777777775
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The genotypic values calculated as the summation of
the additive and dominance values are:
g ¼ 1μþ ah þ dh ¼

1
1
1
1
1
1
1
1
1
1

2
666666666666664

3
777777777777775

22:09ð Þ þ

−5:38
9:42
−3:18
−0:38
2:02
−4:28
−2:88
3:12
4:52
−1:78

2
666666666666664

3
777777777777775

þ

8:29
−1:51
−1:91
13:29
−6:11
−2:81
−9:21
7:79
13:39
−8:31

2
666666666666664

3
777777777777775

¼

25
30
17
35
18
15
10
33
40
12

2
666666666666664

3
777777777777775

¼

g11
g22
g33
g44
g12
g13
g14
g23
g24
g34

2
666666666666664

3
777777777777775

:

By comparing with the genotypic values in Table 2, the
above result verifies that the multi-allelic partition of g =
1μ + ah + dh = 1μ +Wαhαh +Wδhδh described by Eqs. 21–
30 is correct. With the note that gij = gji, aij = aji and dij =
dji, the genotypic variance (σg

2), additive variance (σa
2) and

dominance variance (σd
2) are:

σ2g ¼
Xh

i¼1

Xh

j¼1
pipjg

2
ij−μ

2 ¼ 71:0419

σ2a ¼
Xh

i¼1

Xh

j¼1
pipja

2
ij ¼ 20:1178

σ2d ¼
Xh

i¼1

Xh

j¼1
pipjd

2
ij ¼ 50:9241

It is readily seen that σg
2 = σa

2 + σd
2.

Mixed model and multi-allelic genomic relationship
matrices
A mixed model to implement the multi-allelic haplo-
type model of Eq. 30 can be established with appro-
priate changes of matrix dimensions for Wαh, Wδh,
ah, dh, αh and δh in Eq. 30. A set of m SNP markers
are assumed available, and r haplotype blocks of the
m SNPs are defined across the genome. Haplotypes of
all individuals are assumed known (e.g., constructed
using a phasing or imputing software). Each haplotype
block is treated as a ‘locus’ and each haplotype within
a haplotype block is treated as an ‘allele’. The ith
haplotype block has hi haplotypes, hi−1 additive effects,
and nδi dominance effects or heterozygous genotypes.
Let nα = total number of additive effects of all r
haplotype blocks, nδ = total number of dominance effects
(or heterozygous genotypes) of all r haplotype blocks.
Then, nα = ∑i = 1

r hi − r, and nδ = ∑i = 1
r nδi. For a given

sample of q individuals, the limit number of effects is
2q-1 for additive effects and is the number of
heterozygous genotypes for dominance effects. For a
sample with N observations on q individuals, the
mixed model to implement the multi-allelic haplotype
model of Eq. 30 can be expressed as:

y ¼ Xbþ Z Wαhαh þWδhδhð Þ þ e ð31Þ

where Z =N × q incidence matrix allocating phenotypic
observations to each individual = identity matrix for one
observation per individual (N = q), αh = nα × 1 column
vector of haplotype additive effects, Wαh = q × nα model
matrix of αh, δh = nδ × 1 column vector for dominance
effects of haplotype genotypes, Wδh = q × nδ model
matrix of δh, αs = m × 1 column vector of single-SNP
additive effects, b = c × 1 column vector of fixed effects
such as heard-year-season in dairy cattle (c = number
of fixed effects), and X = N × c model matrix of b. To
define two equivalent models with complementary
computing advantages and identical GBLUP and
GREML results, the mixed model of Eq. 31 needs to
be expressed as [8]:

y ¼ Xbþ Z Tαhαh þ Tδhδhð Þ þ e
¼ Xbþ Z ah þ dhð Þ þ e ð32Þ

where ah = Tαhαh = multi-allelic genomic breeding
values, dh =Tδhδh = multi-allelic genomic dominance
values, and each T matrix can be defined by any of the
six definitions of genomic relationships we previously
discussed and implemented [9]. For simplicity of nota-
tions, the T matrices are defined as: Tαh =Wαh/kαh

1/2,
Tδh =Wδh/kδh

1/2, where kαh = the average of diagonal
elements of WαhWαh ', and kδh = the average of diag-
onal elements of WδhWδh '. The genomic relationship
matrices of Eq. 31 can thus be defined as:
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Ah ¼ TαhTαh
0

¼ multi‐allelic genomic additive relationship matrix

ð33Þ
Dh ¼ TδhTδh

0

¼ multi‐allelic genomic dominance relationship matrix

ð34Þ

Interpretation of multi-allelic and haplotype genomic
relationship matrices
The multi-allelic genomic relationships of Eqs. 33 and
34 using multi-allelic markers such as microsatellite
markers have the same interpretation and theoretical ex-
pectation as using SNP markers that are bi-allelic, e.g., a
genomic additive relationship is expected to be twice the
coancestry coefficient [8, 9]. Using either multi-allelic or
bi-allelic markers under the assumption of no inbreed-
ing, the theoretical expectation of genomic additive rela-
tionships is 0.5, 0.5, 0.25 and 0 for parent-offspring, full-
sibs, half-sibs and unrelated individuals respectively, and
the corresponding theoretical expectation of genomic
dominance relationships is 0, 0.25, 0 and 0.
It is important to distinguish between single-locus

multi-allelic markers such as microsatellite markers from
haplotypes where each haplotype is treated as an ‘allele’
and each haplotype block is treated as a ‘locus’, because
recombination between loci within a haplotype block
generally exists, leading to lowered haplotype similarity
than single-locus similarity among relatives. As the num-
ber of loci increases in each haplotype block, genomic
relationships using haplotypes are expected to decrease
from those using single-locus markers. Therefore, the
utility of haplotype genomic relationships using Eqs. 33
and 34 is for genomic prediction using haplotypes, not
for measuring relationships among individuals. The opti-
mal block size and hence the number of haplotypes per
block is an important issue for genomic prediction and
could be determined by validation studies, as to be fur-
ther discussed towards the end of this article.

Two equivalent mixed models with complementary
computing strategies
To establish mixed models using multi-allelic markers or
haplotypes, assumptions for the first and second moments
of the mixed model of Eq. 32 are: E(y) = Xb, E(αh) =
E(δh) = E(αs) = E(δs) = 0, Var(αh) = σαh

2 Inα, Var(ah) =
Gαh = σαh

2 Ah, Var(δh) = σδh
2 Inδ, Var(dh) =Gδh = σδh

2 Dh,
and Var(e) = R = σe

2IN, where σαh
2 = variance of multi-

allelic additive effects, σδh
2 = variance of multi-allelic

dominance effects, σe
2 = residual variance, and Inα,

Inδ, Im and IN are identity matrices of orders nα, nδ,
m and N, respectively. All random effects are as-
sumed to be uncorrelated so that the phenotypic
variance-covariance matrix is:
V ¼ Var yð Þ ¼ Z Gαh þGδhð ÞZ0 þ σ2eIN
¼ Z σ2αhAh þ σ2δhDh

� �
Z0 þ σ2eIN ð35Þ

To simply notations for the two equivalent mixed
models, terms in Eqs. 32–35 are re-written as αh = τ1,
δh = τ2; Tαh = T1, Tδh = T2; ui = Tiτi, i = 1,2; Ah = S1,
Dh = S2; and σαh

2 = σ1
2, σδh

2 = σ2
2. Then, Eqs. 32 and 35

can be expressed as:

y ¼ Xbþ Z
X2

i¼1
Tiτi þ e ¼ Xbþ Z

X2

i¼1
ui ð36Þ

V ¼ Var yð Þ ¼ Z
X2

i¼1
σ2i Si

� �
Z0 þ σ2eIN: ð37Þ

By defining Zi = ZTi, an equivalent model of Eqs. 36
and 37 can be re-written as:

y ¼ Xbþ
X2

i¼1
Ziτi þ e ð38Þ

V ¼ Var yð Þ ¼
X2

i¼1
σ2i ZiZi

0 þ σ2eIN: ð39Þ

Equations 36 and 37 will be referred to as Model-I,
and Eqs. 38 and 39 as Model-II. Model-I and Model-II
are equivalent models because both models have identi-
cal E(y) and V, but these two models have different com-
putational advantages that can be complementary to
each other. For each model, two methods can be estab-
lished for genomic prediction and estimation: the
method of conditional expectation (CE) and the method
of mixed model equations (MME), yielding a total of
four methods for the two equivalent models. Model-I
using CE is the best method for large numbers of SNP
markers and multiple genetic factors, Model-II using
MME is the best method for large numbers of individ-
uals, and Model-I using MME and Model-II using CE
have no computing advantage. Therefore, Model-I using
CE and Model-II using MME will be used for genomic
prediction and estimation. Using our previous naming of
these two methods, GBLUP and GREML of Model-I
using CE will be referred to as the CE set of formula-
tions, and GBLUP and GREML of Model-II using MME
as the QM set of formulation, where QM means ‘q >m’.
These two methods yield identical results of prediction
and estimation and are applicable to singular genomic
relationship matrices. Assuming one observation per in-
dividual, CE based on Eqs. 36 and 37 is approximately
easier to compute than QM based on Eqs. 38 and 39 if
q < c + nα + nδ according to the size of the largest
matrix to invert for each method (Table 3). Model-I
using MME has no computing advantage over Model-I
using CE due to the large coefficient matrix of MME
and the requirement for full-rank relationship matrices;
and Model-II using CE has no computing advantage
over Model-I using CE due to the large T matrices to
store in memory.



Table 3 Comparison of computational feasibility of four methods from the two equivalent models with haplotypes and SNPs for
GBLUP and GREML

Method of for calculating GBLUP

Conditional expectation (CE) Mixed model equations (MME)

Model I, Eqs. 36 and 37 Largest matrix to invert V, phenotypic variance-covariance
matrix

C, coefficient matrix of MME

Size of largest matrix to invert q × q, assuming one observation
per individual

c + 2q for C

Largest matrix to store in memory q × q P matrix c + 2q for C

Applicable to singular genomic
relationship matrices

Yes, inverse relationship matrices
avoided

No, inverse relationship matrices
required

Model II, Eqs. 38 and 39 Largest matrix to invert V, phenotypic variance-covariance
matrix

C, coefficient matrix of MME

Size of largest matrix to invert q × q, assuming one observation
per individual

c + nα + nδ for C

Largest matrix to store in memory q × nα and q × nδ T matrices, q × q
P matrix

c + nα + nδ for C

Applicable to singular genomic
relationship matrices

Yes, inverse relationship matrices avoided Yes, inverse relationship matrices
avoided
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Genomic best linear unbiased prediction of genetic
values (GBLUP)
Using the CE method of Model-I (Eqs. 36 and 37),
GBLUP of the ith type of genetic values for individuals in
the training population is obtained as:

ûi ¼ σ2i SiZ
0V−1 y−Xb̂

� �
¼ σ2i SiZ

0Py ¼ Siεi; i ¼ 1; 2

ð40Þ

where b̂ ¼ X0V−1X
� �−

X0V−1y = best linear unbiased
estimator (BLUE) of fixed non-genetic effects, P =V− 1 −
V− 1X(X 'V− 1X)−X 'V− 1, and εi ¼ σ2i Z

0V−1 y−Xb̂
� �

¼ Z0

Py ¼ q� 1 column vector of regressed phenotypic
values of the training population as a regression of the
ith type of genetic values on the phenotypic values in the
training population. Two equivalent methods with iden-
tical results can be used to predict genetic values of indi-
viduals without phenotypic observations (validation
population): placing all individuals with or without re-
cords in the same mixed model by setting to zero the Z
matrix for the validation population, or calculate predic-
tions separately based on the regressed phenotypic
values of the training population [8, 39]. Using this sec-
ond method, GBLUP of the ith type of genetic values for
individuals in the validation population is calculated as:

ûi0 ¼ σ2i Si01Z
0V−1 y−Xb̂

� �
¼ σ2i Si01Z

0Py ¼ Si01εi

ð41Þ

where Si01 = q0 × q genomic relationship matrix between
the training and validation populations for the ith type of
genetic values (q0 = number of individuals in the valid-
ation population).
Using the QM method (MME method of Model-II of
Eqs. 38 and 39), genomic prediction first calculates the
GBLUP of haplotype effects and then calculates GBLUP
of genetic values. GBLUP of haplotype effects is obtained
from solving the following MME:

X0X X0Zg

Zg
0X Zg

0Zg þ ⊕
2

i¼1
λiItið Þ

0
@

1
A b̂

τ̂

 !
¼ X0y

Zg
0y

� �
ð42Þ

where τ̂ ¼ τ̂1; ; τ̂2ð Þ, Zg = (Z1, Z2), λi = σe
2/σi

2, t = nα, nδ, m
and N for i = 1,2, respectively, and ⊕ denotes direct sum
that defines a block diagonal matrix. With haplotype and
SNP effects from Eq. 42, GBLUP of the ith type of gen-
etic values for individuals in the training and validation
populations are obtained as:

ûi ¼ Tiτ̂i ð43Þ

ûi0 ¼ Ti0τ̂i ð44Þ

where Ti0 = the Ti matrix calculated using SNPs of the
validation population. Equations 43 and 44 yield identi-
cal results as those of Eqs. 40 and 41. The prediction of
total genotypic values in either training or validation
population can be obtained from Eqs. 40 and 41 or 43
and 44 as: ĝ = ∑i = 1

2 ûi = predicted genotypic values of all
individuals, and ĝ0 = ∑i = 1

2 ûi0 = predicted genotypic
values of the validation population. Prediction reliabil-
ities of additive, dominance and genotypic predictions as
the squared correlations between the genomic and true
values has the same formulations as the Rai

2 , Rdi
2 and Rgi

2

formulae in [8], and prediction accuracy is obtained as
the square root of the reliability estimate.
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Genomic restricted maximum likelihood estimation
(GREML) of variance components
Using the CE method of Model-I (Eqs. 36 and 37), the
EM type GREML estimates of variance components are:

σ2i
kþ 1ð Þ¼ σ2i

kð ÞyP kð ÞZSiZ0P kð Þy=tr P kð ÞZSiZ0
� �

;
i ¼ 1; 2

ð45Þ

σ2e
kþ 1ð Þ¼ σ2e

kð ÞyP kð ÞP kð Þy=tr P kð Þ
� �

ð46Þ

where k = iteration number. Using the QM method (Eqs.
38 and 39), the EM type GREML estimates of variance
components are

σ2i
kþ 1ð Þ ¼ τ̂ kð Þ

i τ̂ kð Þ
i = m� tr Cii kð Þ

� �
λ kð Þ
i

h i
ð47Þ

σ2e
kþ 1ð Þ ¼ ê kð Þ0ê kð Þ= N� r�

X4

i¼1
tr Cii kð Þλ kð Þ

i

� �h in o
ð48Þ

where r is the rank of the coefficient matrix of Eq.
42, ê ¼ y−Xb̂−

X2

i¼1
Ziτ̂i, and Cii is defined by:

H−1 ¼ �Zg
0MZg þ ⊕

2

i¼1
λiIti

�−1 ¼ C11 C12

C21 C22

� 	

where M = IN −X(X 'X)−X ', and ti = nα for i = 1 and
ti = nδ for i = 2.
The EM-REML of Eqs. 45–48 are known to be slow

but reliable to yield non-negative estimates of variance
components. The AI-REML algorithm is fast but may be
sensitive to starting values of variance components and
may fail for extreme heritability levels. Formulations of
AI-REML for the multi-allelic haplotype model in this
Fig. 1 Integration of functional and structural genomic information for genom
information and are analyzed using the multi-allelic haplotype model in this a
genomic information can be used jointly with the haplotype analysis. (DHS =
article are straightforward extensions of the formulations
we implemented for GVCBLUP [40].

Integration of haplotype and single SNP effects in
genomic prediction and estimation
Haplotype analysis and single SNP analysis can be ana-
lyzed jointly for genomic prediction in the same mixed
model by adding single SNP effects from our previous
work [8] to the mixed model of Eq. 31, i.e.,

y ¼ Xbþ Z Tαhαh þ Tδhδh þ Tαsαs þ Tδsδsð Þ þ e

ð49Þ

V ¼ Var yð Þ
¼ Z σ2αhAh þ σ2δhDh þ σ2αsAs þ σ2δsDs

� �
Z0 þ σ2eIN

ð50Þ
where αs = m × 1 column vector of SNP additive effects,
Tαs = q ×m model matrix of αs, δs = m × 1 column vec-
tor of SNP dominance effects, Tδs = q ×m model matrix
of δs, Var(αs) = σαs

2 Im, Var(as) =Gαs = σαs
2 As, Var(δs) = σδs

2 Im,
Var(ds) =Gδs = σδs

2 Ds, As = genomic additive relationship
matrix, and Ds = SNP genomic dominance relationship
matrix, and where As = TαsTαs ' and Ds = TδsTδs '. Let
αs = τ3, δ = τ4; ui = Tiτi, i = 1,…,4; As = S3, Dh = S4; and
σαs
2 = σ3

2, σδs
2 = σ4

2. The GBLUP and GREML formula-
tions to jointly include haplotype and single SNP
additive and dominance effects essentially entails to
extending the range of the subscript i from 2 to 4 for
Eqs. 38–50.
GREML estimation using the joint mixed model with

haplotype and SNP effects offer flexibility to estimate
the heritability for various types of functional genomic
information in any given autosome regions based on
ic selection. Haplotype blocks are defined using functional genomic
rticle for genomic prediction and estimation. Single SNPs as structural
DNase I hypersensitive site)
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formulations we implemented in GVCBLUP [40], e.g.,
the additive and dominance heritabilities of haplotype
blocks of all genes, all LD blocks, or all single SNPs. The
heritability estimate for each type of genetic effects is:
hi
2 = σi

2/σy
2, where σy

2 = ∑i = 1
4 σi

2 + σe
2 = phenotypic variance.

The total heritability of all types of genetic effects is the
summation of all effect heritabilities, i.e., H2 = ∑i = 1

4 hi
2.

Genomic heritability estimation has flexibility unavail-
able from heritability estimation using pedigree relation-
ships: the heritability estimation for a single SNP, a
chromosome region, or a set of selected SNPs. Using the
GREML formulae of Eqs. 35 and 36, the heritability for
haplotype block j or SNP set j can be estimated as:
h2ij ¼ τ̂ij

0τ̂ij=τ̂i0τ̂i
� �

h2i , where τ̂ij= subset j of τ̂i , i = 1,…,4.

Given sufficient computing power and sample sizes for ex-
tensive validation studies, these heritability estimates
could help identify genomic regions and genes relevant to
phenotypes within the framework of genomic prediction.

Defining haplotype blocks using functional genomic
information
The multi-allelic haplotype model can be used for the
integration of functional genomic information with gen-
omic prediction and estimation. This integration defines
haplotype blocks using functional genomic information
under the hypothesis that a chromosome region with
functional information required more than a single point
to affect a phenotype, followed by genomic prediction
and estimation using a haplotype analysis such as the
methods developed in this article. Each gene could be a
‘natural haplotype block’ and the use of gene blocks im-
proved the prediction accuracy for some human pheno-
types in our preliminary results [37]. Other types of
functional information can also be used to define haplo-
type blocks, including ChIP-seq sites, DNA methylation
sites, CNV, protein interaction, pathway information,
GWAS results and selection signatures (Fig. 1). Other
than ‘natural haplotype blocks’, the optimal block sizes
for functional information with best prediction accuracy
could be determined by extensive validation studies.

Rare haplotypes, missing genotypic values
The mixed model approach outlined above allows rare
haplotypes. In the extreme case of rare haplotypes with
one observation per haplotype or haplotype frequency of
1/h when h is large, the multi-allelic model with the
mixed model implementation still is applicable for addi-
tive effects and values. Missing genotypic values is a
problem for dominance effects and values. The domin-
ance effect defined by Eq. 9 requires the availability of
all three genotypic values of a haplotype pair. Conse-
quently, dominance effect is undefined with any missing
genotypic value. We currently recommend ignoring any
haplotype pair with missing genotypic value or values
for defining dominance effects. For large haplotype
blocks, nearly all individuals could be heterozygous so
that such large blocks may not contribute to genomic
prediction and estimation of dominance effects and
values. This loss of dominance information should be a
factor to consider in defining the block size.

Conclusions
A multi-allelic haplotype model for genomic prediction
and estimation is established using the quantitative gen-
etics model that partitions a multi-allelic genotypic value
into additive and dominance values, factorizes each addi-
tive value into a product between a function of allele
frequencies and additive effect, and factorizes each dom-
inance value into a product between a function of allele
frequencies and dominance effect. Haplotype genomic
additive and dominance relationship matrices and formu-
lations are then derived for GBLUP and GREML utilizing
haplotypes in haplotype blocks. These results fill a gap in
the theory of quantitative genetics for multi-allelic genetic
partition and provide a haplotype approach within the
theory of quantitative genetics towards the integration of
functional and structural genomic information for gen-
omic selection.

Availability of supporting data
The only data set used in this article is shown in
Tables 1–2.

Abbreviations
SNP: single nucleotide polymorphism; BLUP: best unbiased linear prediction;
GBLUP: genomic BLUP; REML: restricted maximum likelihood estimation;
GREML: genomic REML; EM: expectation-maximization; AI-REML: average
information REML; CE: conditional expectation; MME: mixed model
equations.

Competing interests
The author declares to have no competing interests.

Acknowledgements
This research was supported by USDA National Institute of Food and
Agriculture Grant no. 2011-67015-30333 and by project MN-16-043 of the
Agricultural Experiment Station at the University of Minnesota. Dzianis
Prakapenka and Chunkao Wang implemented the methodology in this
article by the GVCHAP computer program. Cheng Tan and Dzianis Prakapenka
evaluated the methodology. John R. Garbe provided summary and discussion
of human functional genomic information. Li Ma processed a dataset for
methodology evaluation.

Received: 6 May 2015 Accepted: 27 November 2015

References
1. Henderson C. Applications of Linear Models in Animal Breeding. Guelph:

University of Guelph; 1984.
2. Fikse W, Philipsson J. Development of international genetic evaluations of

dairy cattle for sustainable breeding programs. Anim Genet Resour Inf. 2007;
41:29–43.

3. Powell R, VanRaden P. International dairy bull evaluations expressed on
national, subglobal, and global scales. J Dairy Sci. 2002;85(7):1863–8.



Da BMC Genetics  (2015) 16:144 Page 12 of 12
4. VanRaden P. Invited Review: Selection on Net Merit to Improve Lifetime
Profit. J Dairy Sci. 2004;87(10):3125–31.

5. Wiggans G, Misztal I, Van Vleck L. Implementation of an animal model for
genetic evaluation of dairy cattle in the United States. J Dairy Sci. 1988;71:
54–69.

6. VanRaden P. Efficient methods to compute genomic predictions. J Dairy Sci.
2008;91(11):4414–23.

7. Patterson HD, Thompson R. Recovery of inter-block information when block
sizes are unequal. Biometrika. 1971;58(3):545–54.

8. Da Y, Wang C, Wang S, Hu G. Mixed model methods for genomic
prediction and variance component estimation of additive and dominance
effects using SNP markers. PLoS One. 2014;9(1):e87666.

9. Wang C, Da Y. Quantitative genetics model as the unifying model for defining
genomic relationship and inbreeding coefficient. PLoS ONE. 2014;9:e114484.

10. Hayes B, Goddard M. Genome-wide association and genomic selection in
animal breeding. Genome. 2010;53(11):876–83.

11. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al.
Common SNPs explain a large proportion of the heritability for human
height. Nat Genet. 2010;42(7):565–9.

12. Fisher RA. The Correlation between Relatives on the Supposition of
Mendelian Inheritance. Trans Roy Soc Edinb. 1918;52(02):399–433.

13. Fisher RA. Average excess and average effect of a gene substitution. Ann
Eugen. 1941;11(1):53–63.

14. Cockerham CC. An extension of the concept of partitioning hereditary
variance for analysis of covariances among relatives when epistasis is
present. Genetics. 1954;39(6):859.

15. Kempthorne O. The correlation between relatives in a random mating
population. Proc R Soc Lond B Biol Sci. 1954;143(910):103–13.

16. Lynch M, Walsh B. Genetics and analysis of quantitative traits, Sinauer
Sunderland, Massachusetts; 1998.

17. Kempthorne O. An introduction to genetic statistics. New York: Wiley; 1957.
18. Falconer DS, Mackay TFC. Introduction to Quantitative Genetics. 4th ed.

Harlow, Essex: Longmans Green; 1996.
19. Álvarez-Castro JM, Yang R-C. Multiallelic models of genetic effects and

variance decomposition in non-equilibrium populations. Genetica. 2011;
139(9):1119–34.

20. Vormfelde SV, Brockmöller J: On the value of haplotype-based genotype–
phenotype analysis and on data transformation in pharmacogenetics and-
genomics. Nature Reviews Genetics 2007, 8(12), doi:10.1038/nrg1916-c1.

21. Balding DJ. A tutorial on statistical methods for population association
studies. Nat Rev Genet. 2006;7(10):781–91.

22. Garnier S, Truong V, Brocheton J, Zeller T, Rovital M, Wild PS, et al.
Genome-wide haplotype analysis of cis expression quantitative trait loci in
monocytes. PLoS Genet. 2013;9(1):e1003240.

23. Morris RW, Kaplan NL. On the advantage of haplotype analysis in the
presence of multiple disease susceptibility alleles. Genet Epidemiol. 2002;
23(3):221–33.

24. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of
LD and haplotype maps. Bioinformatics. 2005;21(2):263–5.

25. Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, et al.
Genome-wide detection and characterization of positive selection in human
populations. Nature. 2007;449(7164):913–8.

26. Browning BL, Browning SR. A unified approach to genotype imputation and
haplotype-phase inference for large data sets of trios and unrelated
individuals. Am J Hum Genet. 2009;84(2):210–23.

27. Scheet P, Stephens M. A fast and flexible statistical model for large-scale
population genotype data: applications to inferring missing genotypes and
haplotypic phase. Am J Hum Genet. 2006;78(4):629–44.

28. Von Holdt BM, Pollinger JP, Lohmueller KE, Han E, Parker HG, Quignon P,
et al. Genome-wide SNP and haplotype analyses reveal a rich history
underlying dog domestication. Nature. 2010;464(7290):898–902.

29. Calus M, De Roos A, Veerkamp R. Accuracy of genomic selection using
different methods to define haplotypes. Genetics. 2008;178(1):553–61.

30. Villumsen T, Janss L, Lund M. The importance of haplotype length and
heritability using genomic selection in dairy cattle. J Anim Breed Genet.
2009;126(1):3–13.

31. Sun X, L. FR, Garrick DJ, Dekkers JCM: Improved accuracy of genomic
prediction for traits with rare QTL by fitting haplotypes. Proceedings, 10th
World Congress of Genetics Applied to Livestock Production Vancouver, BC,
Canada https://asas.org/docs/default-source/wcgalp-proceedings-oral/209_
paper_9178_manuscript_1682_0.pdf?sfvrsn=2 [Last accessed December 8
2015].

32. Cuyabano BC, Su G, Lund MS. Selection of haplotype variables from a high-
density marker map for genomic prediction. Genet Sel Evol. 2015;47(1):1–11.

33. Mulder HA, Calus MP, Veerkamp RF. Prediction of haplotypes for
ungenotyped animals and its effect on marker-assisted breeding value
estimation. Genet Sel Evol. 2010;42:10.

34. Meuwissen T, Goddard M. Accurate prediction of genetic values for
complex traits by whole-genome resequencing. Genetics. 2010;185(2):
623–31.

35. Erbe M, Hayes B, Matukumalli L, Goswami S, Bowman P, Reich C, et al.
Improving accuracy of genomic predictions within and between dairy
cattle breeds with imputed high-density single nucleotide polymorphism
panels. J Dairy Sci. 2012;95(7):4114–29.

36. Brøndum RF, Su G, Lund MS, Bowman PJ, Goddard ME, Hayes BJ. Genome
position specific priors for genomic prediction. BMC Genomics. 2012;
13(1):543.

37. Da Y, Wang C, Tan C, Prakapenka D, Shigematsu M, Garbe J, Ma L: Multi-
allelic haplotype model for genomic prediction and estimation. Abstract
P1176. Plant and Animal Genome XXIII, January 10–14, 2015. San Diego.
https://pag.confex.com/pag/xxiii/webprogram/Paper14435.html [Last
accessed December 8 2015].

38. Tan C, Prakapenka D, Wang C, Ma L, Garbe JR, Hu X, Da Y: Integration of
haplotype analysis of functional genomic information with single SNP
analysis improved accuracy of genomic prediction. ADSA/ASAS 2015,
Orlando, July 12–16 2015. Abstract M84. http://m.jtmtg.org/abs/t/65063.
[Last accessed December 8 2015].

39. Henderson C. Best linear unbiased prediction of breeding values not in the
model for records. J Dairy Sci. 1977;60(5):783–7.

40. Wang C, Prakapenka D, Wang S, Pulugurta S, Runesha HB, Da Y. GVCBLUP:
a computer package for genomic prediction and variance component
estimation of additive and dominance effects. BMC bioinformatics. 2014;
15(1):270.
•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

http://dx.doi.org/10.1038/nrg1916-c1
https://asas.org/docs/default-source/wcgalp-proceedings-oral/209_paper_9178_manuscript_1682_0.pdf?sfvrsn=2
https://asas.org/docs/default-source/wcgalp-proceedings-oral/209_paper_9178_manuscript_1682_0.pdf?sfvrsn=2
https://pag.confex.com/pag/xxiii/webprogram/Paper14435.html
http://m.jtmtg.org/abs/t/65063

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Allelic mean and population mean of multi-allelic �genotypic values
	Multi-allelic effect, additive effect, additive value
	Dominance effect and dominance value
	Multi-allelic partition of genotypic value and variance

	Results and discussion
	Factorization of additive and dominance values
	Multi-allelic haplotype model based on multi-allelic �genetic partition
	Numerical example of multi-allelic genetic partition
	Mixed model and multi-allelic genomic relationship matrices
	Interpretation of multi-allelic and haplotype genomic �relationship matrices
	Two equivalent mixed models with complementary computing strategies
	Genomic best linear unbiased prediction of genetic values (GBLUP)
	Genomic restricted maximum likelihood estimation (GREML) of variance components
	Integration of haplotype and single SNP effects in genomic prediction and estimation
	Defining haplotype blocks using functional genomic information
	Rare haplotypes, missing genotypic values

	Conclusions
	Availability of supporting data
	Abbreviations
	Competing interests
	Acknowledgements
	References



