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Abstract

Background: Head and neck cancer is morbid with a poor prognosis that has not significantly improved in the
past several decades. The purpose of this study was to identify biological pathways underlying progressive head
and neck cancer to inform prognostic and adjuvant strategies. We identified 235 head and neck cancer patients in
The Cancer Genome Atlas (TCGA) with sufficient clinical annotation regarding therapeutic treatment and disease
progression to identify progressors and non-progressors. We compared primary tumor gene expression and
mutational status between these two groups.

Results: 105 genes were differentially expressed between progressors and nonprogressors (FDR < 0.05). Pathway
analyses revealed deregulation (FDR < 0.05) of multiple pathways related to integrin signaling as well as IL-10
signaling. A number of genes were uniquely mutated in the progressor cohort including increased frequency of
truncating mutations in CTCF (P = 0.007). An 11-gene signature derived from a combination of unique mutations
and differential expression was identified (PAGE4, SMTNL1, VTN, CA5A, C1orf43, KRTAP19-1, LEP, HRH4, PAGE5, SEZ6L,
CREB3). This signature was associated with decreased overall survival (Logrank Test; P = 0.03443). Cox modeling of
both key clinical features and the signature was significant (P = 0.032) with the greatest prognostic improvement
seen in the model based on nodal extracapsular spread and alcohol use alone (P = 0.004).

Conclusions: Molecular analyses of head and neck cancer tumors that progressed despite treatment, identified IL-
10 and integrin pathways to be strongly associated with cancer progression. In addition, we identified an 11-gene
signature with implications for patient prognostication. Mutational analysis highlighted a potential role for CTCF, a
crucial regulator of long-range chromatin interactions, in head and neck cancer progression.
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Background
The 5-year survival rate for primary locally advanced
head and neck squamous cell carcinoma (HNSCC) is
approximately 50 % [1], however recurrent disease
carries a dismal prognosis of 10.1 months with first
line chemotherapy [2]. HNSCC recurs ~30 % of the

time, most often within the first 1–2 years of defini-
tive treatment. Pathways associated with progression
have been identified using array-based gene expres-
sion analysis; however these studies are limited by the
lack of rigor using older analysis techniques and
normalization techniques, and heterogeneously treated
patients. Identification of specific pathways linked to
progression after radiation has the promise of inform-
ing targeted strategies to improve the prognosis of
head and neck cancer.
The Cancer Genome Atlas (TCGA) is a joint effort of

the National Cancer Institute and the National Human
Genome Research Institute and has revolutionized the
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ability of investigators to ask prognostic questions about
tumor biology previously limited by suboptimal sample
sizes, non-standard sample normalization, and outdated
techniques. HNSCC lends itself to this study, as there
are diverse epidemiologic risk factors (e.g. HPV vs. to-
bacco), anatomic subsites (e.g. larynx vs. oral cavity), and
issues with heterogeneity even within subpopulations of
tumor cells within a given patient. To this end, TCGA
has generated whole exome sequencing, SNP array,
DNA methylation, RNA-Seq, and miRNA-Seq data for a
large collaborative cohort of HNSCC patients. Their re-
sults have recently been published highlighting distinct
subgroups within newly diagnosed HNSCC patients e.g.
different mutational profiles between HPV-driven and
tobacco-related tumors [3]. TCGA annotated data on
these patients provides an unprecedented opportunity to
determine which molecular pathways are most associated
with disease progression and survival, in order to gain
insight into potentially targetable biology. We sought to
determine what molecular alterations were unique among
HNSCC progressors in TCGA to help inform future pa-
tient stratification and adjuvant treatment.

Results and discussion
Patient demographics
We annotated 235 patients in TCGA with a median fol-
low up time of 530.5 days and determined that 29 % of
them had progressed (representing the “progressor” co-
hort, Table 1, Additional file 1: Table S1 and S2). The
mean age was 62 years old, 74 % of patients were male,
90 % where white, and 77 % of patients smoked. Primary
sites included the oral cavity (57 %), oropharynx (18 %),
and larynx (25 %). Unfortunately, 71 % of patients did
not have known HPV status (p16 staining or ISH). Stage
distribution included 41 % stage I-III and 57 % stage IV,
with 17 % having close or positive margins and 20 %
with gross or microscopic nodal extracapsular extension.
At the time of last follow up, 30.5 % of patients were de-
ceased with a median of 456 days to death. Radiation
treatment was part of initial treatment in 70 % of pa-
tients and was used as a single modality in 26 % of pa-
tients. Chemotherapy was used in 43 % of patients but
only in 2 % as a single modality. Among the progressor
cohort, primary sites similarly included oral cavity
(56 %), oropharynx (19 %), and larynx (25 %). Stage dis-
tribution was 36.5 % stage I-III and 62 % stage IV, with
29.5 % having close or positive margins and 36 % with
gross or microscopic nodal extracapsular extension. Ra-
diation treatment was used in 88 % of these patients.
Median follow up was 411 days and 62 % of patients
were deceased at a median of 475.5 days to death. The
overall demographics reflect what we would expect clin-
ically, and we used this sample set to make comparisons
between progressors and nonprogressors.

Differentially expressed genes
For the primary comparison of progressors versus non-
progressors, 105 differentially expressed candidate genes
were identified (Additional file 2: Table S3). To provide
biological context, we examined if curated pathway
models were enriched for any of the genes in the candi-
date gene list. There were a striking number of Integrin-
related pathways (from both PID and Reactome) that
were significantly enriched for several of the differen-
tially expressed candidate genes (Additional file 3: Table
S4, and stylized representation in Fig. 1). In addition, the
Biocarta Fibrinolysis pathway, IL-10 Anti-inflammatory
Signaling Pathway (Fig. 2), as well as the KEGG

Table 1 Demographics for TCGA HNSCC patients analyzed in
this study (progressors and nonprogressors)

Patients (n = 235)

Age (mean) 20–90 (62)

Gender (M/F) 173(74 %)/62(26 %)

Race (W/B/A/AI/NA)a 212(90 %)/12(4.5 %)/4(2 %)/2
(1 %)/5(2.5 %)

Smoke (Y/N/NA) 181(77 %)/52(22 %)/2(1 %)

Alcohol (Y/N/NA) 169(71.5 %)/61(26 %)/5(2.5 %)

HPV p16 or ISH (+/−/NA) 19(8 %)/49(21 %)/167(71 %)

Site (OC/OPX/L)b 135(57 %)/41(18 %)/59(25 %)

T Stage (T1-T2/T3/T4/TX/NA) 80(34 %)/64(27 %)/87
(37 %)/3(1.5 %)/1(0.5 %)

N Stage (N0/N+/NA) 107(45.5 %)/127(54 %)/1(0.5 %)

Tumor Stage (I-III/IV/NA) 96(41 %)/135(57 %)/4(2 %)

Margin Status (+/−/Close/NA) 17(7 %)/158(67 %)/22
(10 %)/38(16 %)

Nodal Extracapsular Spread
(GE/ME/NE/NA)c

13(6 %)/34(14 %)/114
(49 %)/74(31 %)

Curated Therapy: Therapy
(C/R/CR/CRTM/CRTMV/NA)d

5(2 %)/60(26 %)/95(40 %)/1
(0.5 %)/1(0.5 %)/73(31 %)

Radiation data: Radiation
Dose cGy (mean)

9–7380 (4720)

Follow-up data: Follow-up Days
(median)

45–4241 (530.5)

Follow-up data: Mortality
(Living/Deceased)

164(69.5 %)/71(30.5 %)

Follow-up data: Days to Death
(median)

23–5152 (456)

Follow-up data: Days to New
Tumor (median)

50–1859 (339)

Radiation Treatment (Y/N) 165(70 %)/70(30 %)

Progression (Y/N) 68(29 %)/167(71 %)
aW white, B black, A asian, AI American Indian
bOC oral cavity, OPX oropharynx, L larynx
cGE gross extension, ME microscopic extension, NE no extranodal Extension
dC chemotherapy only, R radiation only, CR chemotherapy & radiation, CRTM
chemotherapy, radiation & targeted molecular therapy, CRTMV chemotherapy,
radiation, targeted molecular therapy & vaccine
Gray Shaded rows indicate significant differences between progressors and
nonprogressors (P < 0.05)

Bornstein et al. BMC Genomics  (2016) 17:38 Page 2 of 9



Fig. 1 Examination of Differentially expressed (Progressors vs NonProgressors) and mutated genes in TCGA HNSCC subjects in the context of a
stylized pathway representation of the Reactome Integrin Cell Surface Interactions Pathway, which was significantly enriched for the putative DE
candidate genes (False Discovery Rate Adjusted P-value = 0.00424). Note that three of these genes are also CTCF binding sites: VTN, FGG, and FGB

Fig. 2 The IL-10 Anti-inflammatory Signaling Pathway is enriched for putative differentially expressed genes (Progressors vs NonProgressors
Enrichment False Discovery Rate adjusted P-value = 0.0287) Figure is a stylized representation of the Biocarta pathway. Note the following
synonyms: JAK: JAK1, HO-1: HMOX1, IL-1: IL1A. Also note that STAT4 is also a CTCF binding site
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Complement and Coagulation Cascades were among
other pathways identified as significantly enriched
(Additional file 3: Table S4). We then were interested in
determining whether these pathways were reflected in
progressors assigned to radiation treatment, as this is the
primary adjuvant treatment modality in HNSCC.

Radiation treatment assignment
We examined differential expression in progressors and
nonprogressors assigned to radiation treatment to deter-
mine the extent of overlap in enriched pathways be-
tween this subset and the entire group. There were 60
progressors assigned radiation treatment and 105 non-
progressors. From the 492 differentially expressed genes
(based on FDR < 0.05, data not shown), the overlap of
differentially expressed genes from the 105 list with the
492 list was 15.2 %., With respect to shared pathways,
we identified that the KEGG Complement and Coagula-
tion Cascades pathway was also enriched in the progres-
sors assigned to radiation treatment (Additional file 3:
Table S4 and S5). Other pathways enriched in progres-
sors assigned to radiation included MAPK signaling
(KEGG), Cell Adhesion (KEGG), FGFR Ligand Binding
and Activation, GPCR ligand binding, PI-3 K Cascades,
and Cell-Cell Junction Organization (all Reactome)
(Additional file 3: Table S5). Of note, in this cohort as
well, interactions with the extracellular environment ap-
peared to be important for progression. While this was
an interesting finding, given our modest sample size
after stratification by treatment assignment, we carried
out the rest of our analyses with the entire cohort. We
next moved to look at somatic mutations in the entire
cohort, comparing progressors and nonprogressors.

Somatic mutations
We examined the somatic mutations in progressors and
nonprogressors to examine both shared and “unique”
mutations at both the variant and gene level (Additional
file 4: Table S6). We note that “unique” is defined as a
mutation only being seen in one group and could reflect
sampling issues. When we examined the ratio of variant
to gene level mutation for the unique mutations, the

ratio was higher for progressors than for nonprogressors
(7.97 to 4.99). This is in contrast to the larger range of
mutations seen in nonprogressors as well a higher me-
dian number of mutations (Additional file 4: Table S6).
This suggests that even though there are more muta-
tions seen in the nonprogressors (also a larger sample
size), there appears to be higher variability relative to the
number of genes mutated in progressors compared to
nonprogressors. When pathways were examined for
enrichment of somatic mutations (where the frequency
of mutations between progressors and nonprogressors
was >5 %), pre-NOTCH Transcription and Translation
(Reactome), as well as ECM Receptor Interaction
(KEGG) were among those identified (Table 2), again
highlighting the significance of microenvironment
interactions.
Among the somatic mutations, the distribution for

only the truncating mutations was examined (Additional
file 4: Table S6). Again a larger ratio of variants to gene
level mutations was seen in progressors compared to
nonprogressors (1.68 to 1.52). We then examined
which genes had a significant increase in truncating
mutations in progressors compared to nonprogressors.
We filtered the list of genes examined to those genes
significant by Mutsig annotation (i.e. gene mutated
above what would be expected for background muta-
tional processes). For the gene CCCTC-binding factor
(CTCF), zinc finger chromatin-binding factor and
transcriptional regulator, there was a significant oc-
currence of truncating mutations (P = 0.007) in pro-
gressors, as well as an increased overall frequency of
mutations in the progressors compared to the non-
progressors (P = 0.02). All of the truncating mutations
were seen in progresssors (Fig. 3). CTCF was ranked
21st of all mutations in the HNSCC complete TCGA
cohort based on MutSig2CV analysis (FDR adjusted
P-value = 0.04). We then examined the differentially
expressed candidate genes for those with CTCF bind-
ing sites (Additional file 2: Table S3). When only
these genes were utilized in the pathway enrichment
analysis, Integrin-related pathways were again identi-
fied from both PID and Reactome (Table 3). After

Table 2 Pathways enriched for genes with increased frequency of mutations in the Progressor cohort (Differential > 5 %) compared
to NonProgressors

Pathway (Source) FDR adjusted P-value Gene Members

Pre-NOTCH Transcription and Translation (Reactome) 0.00853 CREBBP, NOTCH2, TP53*

Ion transport by P-type ATPases (Reactome) 0.00853 ATP10B, ATP2C1, ATP8B4**

ECM Receptor Interaction (KEGG) 0.0432 RELN, LAMA2, ITGA7

Glycosaminoglycan metabolism (Reactome) 0.049 CHSY3, CSGALNACT1, B3GNT7

Bold indicates genes found mutated only in the Progressor cohort
FDR false discovery rate
*Same genes are also enriched in Pre-NOTCH Expression and Processing (Reactome, FDR adjusted P-value = 0.0125)
**Same genes are also enriched in Ion Channel Transport (Reactome, FDR adjusted P-value =0.0183)
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curating the differential expression and mutational
analysis for progressors and nonprogressors, we chose
to focus on Integrin and IL-10 pathways, given these
pathways were clearly enriched in the entire progressor
cohort.

Integrin signaling deregulation in HNSCC progressors
As mentioned above, the Reactome Integrin Cell Surface
Interaction pathway was significantly enriched for the
putative differentially expressed candidate genes (FDR
adjusted P-value = 0.00424, Fig. 1). In addition, the

TCGA ID Classification Variant
Type

Variant Class Days to New
Tumor

TCGA-BA-5151 Progressor INS Frame Shift
Insertion

517

TCGA-CQ-5334 Progressor SNP Nonsense
Mutation

50

TCGA-CQ-6228 Progressor SNP Nonsense
Mutation

273

TCGA-CR-7382 Progressor SNP Missense
Mutation

618

TCGA-H7-7774 Progressor DEL Frame Shift
Deletion

252

TCGA-CQ-5327* NonProgressor SNP Missense
Mutation

NA

TCGA-CQ-5327* NonProgressor SNP Missense
Mutation

NA

TCGA-HL-7533* NonProgressor SNP Missense
Mutation

NA

TCGA-HL-7533* NonProgressor SNP Missense
Mutation

NA

Fig. 3 Lollipop plot highlighting mutations on a linear protein and its domains to examine somatic mutations within the CTCF gene in TCGA
HNSCC Annotated Progressors and NonProgressors. Green indicates Missense mutations and Red indicates a truncating mutation. Note 2 silent
mutations (one in Progressor TCGA-CQ-5334 who also had a frame shift insertion and one in a NonProgressor (TCGA-CN-A63T) are not shown.
Plot was generated by the MutationMapper visualization tool
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frequency of uniquely mutated genes in progressors
ranged from 1.4 to 5.8 %, with 26.5 % of the progressors
having at least one gene mutated in the pathway (of
those, the median was 4.8 % and the range was 4.8–
9.5 %). For the progressors, 45.6 % had overexpression
of at least one gene in this pathway representation (of
those, the median was 9 % of the pathway overexpressed
with a range of 4.5 %–27.3 %). When evaluating com-
bined mutation and overexpression, 61.8 % of the pro-
gressors had at least one gene aberrant in this pathway.
In addition to this specific Reactome pathway, four other
Reactome pathways relating to Integrin signaling were
deregulated as well as the PID Beta1, Beta2, and Beta3 In-
tegrin Cell Surface Interactions pathways (Additional file
3: Table S4). As previously noted, the radiation treatment
assignment cohort also exhibited gene expression aber-
rancies in extracellular matrix interactions indicating simi-
lar biology in this subgroup (Additional file 3: Table S5).
This supports the concept that microenvironmental inter-
actions involving integrins are essential for HNSCC
progression.

IL-10 signaling alterations in HNSCC progressors
Notably, the IL-10 Anti-inflammatory Signaling pathway
was significantly enriched for putative differentially
expressed genes among HNSCC progressors (FDR ad-
justed P-value 0.042, Fig. 2, Additional file 3: Table S4).
In addition, HNSCC progressors also harbored unique
mutations in several members of the pathway including
IL-6, STATs including STAT5A, and BLVRB (Fig. 2). Spe-
cifically, 41.2 % of the progressors had at least one gene
overexpressed in this pathway (with a maximum of
38.5 % of the pathway overexpressed observed in any
progressor) and 11.8 % of the progressors had at least
one gene mutated. This was intriguing given the early
promise of immune-based therapies in HNSCC. In
addition, multiple clotting pathways were found to be
differentially expressed (FDR < 0.05) including the Fi-
brinolysis Pathway (Biocarta), the Intrinsic Prothrombin
Activation Pathway (Biocarta), Genes involved in Platelet
Aggregation (Reactome), and Complement and Coagula-
tion Cascades (KEGG). These pathways are linked to in-
flammation [4] as well, and could also point to the

importance of this microenvironmental alteration in
HNSCC progression. Again, similar gene expression de-
regulation was seen in these pathways for the radiation
treatment assignment cohort.

Gene signature predicting survival
Given the clear unique molecular alterations in HNSCC
progressors, we were able to generate an 11-gene signa-
ture predicting survival based on those genes both dif-
ferentially expressed and mutated only in progressors.
Overall survival using Kaplan-Maier estimates for those
patients harboring the gene signature (PAGE4, SMTNL1,
VTN, CA5A, C1orf43, KRTAP19-1, LEP, HRH4, PAGE5,
SEZ6L, CREB3) was significantly diminished (Logrank
Test P-Value: 0. 03443). Median survival for those with
alterations in the gene signature was 17.94 months com-
pared to 108.88 months for those without the alterations
(Fig. 4). Of note several of these genes are involved in inter-
actions with the extracellular environment including VTN
(vitronectin) and KRTAP19-1 (a keratin associated protein).

Cox modeling of molecular and clinical data
Given the prognostic ability of the gene signature above,
we were interested in whether we could model survival
based on these molecular changes and historically import-
ant clinical factors. We examined key clinical features
(nodal extracapsular spread, alcohol use, tobacco smoking
history, gender, margin status) as well as the combined
mutation and expression gene signature using a multivari-
ate Cox proportional hazards modeling approach. While
the overall model was significant (P = 0.032), the key fac-
tors were interestingly nodal extracapsular spread and al-
cohol use (P = 0.004 for model with those factors alone).

Conclusions
Mining the TCGA database provides unprecedented op-
portunities to unravel unique feature of tumorigenesis in
HNSCC. Recent published analysis of primary HNSCC
molecular alterations in patient data from TCGA reiter-
ated known HNSCC drivers and uncovered distinct mo-
lecular alterations between HPV and tobacco-driven
tumors [3]. Tumor heterogeneity regardless of the path-
ways involved was linked to reduced overall survival in a

Table 3 Pathways enriched for DE genes (Progressor vs NonProgressor) with CTCF Binding Sites

Pathway (Source) FDR adjusted P-value Gene Members

Beta3 integrin Cell Surface Interactions (PID) 0.00524 FGG, FGB, VTNa

P130Cas linkage to MAPK signaling for Integrins (Reactome) 0.0107 FGG, FGB, VTNa

Response to Elevated Platelet Cytosolic CA2+ (Reactome) 0.0107 FGG, FGB, ALB

Fibrinolysis Pathway (Biocarta) 0.0107 FGG, FGB

Bold indicates genes found mutated only in the Progressor cohort
FDR false discovery rate
aSame genes also enriched in Urokinase-type Plasminogen activator (uPA) and UPAR-mediated signaling (PID, FDR adjusted P-value = 0.00524); Beta1 integrin Cell
Surface Interactions (PID, FDR adjusted P-value = 0.0107); Integrin Cell Surface Interactions (Reactome, FDR adjusted P-value = 0.0107)
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companion study of this population, highlighting the
genomically unstable nature of this cancer [5]. The het-
erogeneity of HNSCC, in part, has limited improved
therapeutic targeting of this disease. In fact, cetuximab,
targeting EGFR overexpression, is the only targeted
agent used in the treatment of HNSCC. However single
agent response rates are low, and in combination with
standard chemotherapy for progressive disease, overall
survival remains less than one year [2]. Many groups are
harnessing the power of the TCGA data to characterize
molecular changes that might predict survival, exempli-
fied by a recent study suggesting an 11-gene signature
was able to predict nodal extracapsular spread and also
overall survival [6]. Our study was designed to identify
the genomic differences between progressors and non-
progressors at both the DNA and RNA level in order to
highlight important pathways associated with progres-
sion. Interestingly, we uncovered a significant increase in
deleterious mutations of CTCF, which is a master chro-
matin regulator associated with genomic instability and
cancer progression [7, 8]. Deregulation of this gene
could be a contributor to the genomic instability and
heterogeneity in HNSCC although further mechanistic
studies would be required for evaluation. Interestingly,
progressors displayed differentially expressed genes har-
boring CTCF binding sites that participated Integrin-
related pathways. This indicates that at least one potential
downstream effect of CTCF deregulation could be

aberrant microenvironmental interactions involving Integ-
rins facilitating HNSCC progression.
We identifed Integrin and IL-10 signaling as unique

prognostic pathways for HNSCC progression. Microen-
vironmental interaction aberrancies were confirmed by
both mutational and expression analysis, and was re-
vealed in progressor cohorts irrespective of their radi-
ation treatment assignment. This implicates tumor
microenvironment interactions in the driving biology of
tumor progression for all HNSCC patients including
those that require radiation as part of their treatment. In-
triguingly, both of these pathways have potential promise
for guiding targeting therapies. Recently, targeting both
EGFR overexpression and Integrin B1 signaling was
shown to radiosensitize HNSCC cells, building on previ-
ous literature demonstrating Integrin aberrations in
HNSCC [9]. Further, cilengitide, an αvβ3 and αvβ5 Integ-
rin inhibitor, has been tested in the recurrent/metastatic
HNSCC setting in combination with cytotoxic chemother-
apy, however there was no improvement in progression
free survival with addition of cilengitide [10]. This should
be reevaluated with the improved biomarkers identified in
this study or in the definitive rather than metastatic set-
ting. Alterations in IL-10 signaling uncovered in this study
suggests to an interesting therapeutic angle. Inflammation
is a hallmark of HNSCC progression based on both ani-
mal and human studies [11, 12]. IL-10 signaling plays a
key role in regulation of cancer-associated inflammation

Fig. 4 Overall Survival Kaplan-Maier estimates for gene signature (PAGE4, SMTNL1, VTN, CA5A, C1orf43, KRTAP19-1, LEP, HRH4, PAGE5, SEZ6L,
CREB3; Logrank Test P-Value: 0. 03443). Censored patients are indicated by tick marks. Signature is based on those genes differentially expressed
and also mutated only in progressors. Red indicates cases with alterations in those genes (based on Z > 2.5) Median survival in months for those
with alterations in the gene signature is 17.94 months compared to 108.88 months for those without the alterations
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including regulation of CD8 T cells [13]. As targeting of
CD8 cells with PD1 (programmed death 1) pathway inhib-
itors has shown significant promise in multiple similar
tumor types, it has emerged as a attractive targetable path-
way in HNSCC [14]. Potentially, deregulation of the IL-10
pathway could be used as a biomarker to stratify patients
more likely to respond to this therapy. Finally, we identi-
fied an 11-gene signature to predict for progression. In
addition to alcohol use and nodal extracapsular spread, a
known poor prognostic pathologic factor utilized by other
groups [6], this pathway was very powerful in stratifying
patients with poor prognosis. Our novel gene signature
could be used to identify patients that could benefit from
intensified therapy (either concurrent with definitive ther-
apy or adjuvant). The limitations of our study include that
we were unable to stratify by HPV status given incomplete
clinical annotation within the TCGA dataset, we did not
have access to recurrent tumor tissue, and we did not
stratify by stage. Nevertheless we were able to uncover sig-
nificant aberrant pathways that, after further mechanistic
validation, have potential to open new avenues for thera-
peutic treatment of recurrent HNSCC.

Methods
Selection of patients and study design
TCGA HNSCC data used for this analysis were time
stamped August 13th 2014 and downloaded from the
TCGA Research Network: http://cancergenome.nih.gov/.
Data types utilized were the clinical data (patient demo-
graphics, drug therapy, radiation therapy, and follow-up),
RNA-Seq V2 (Level 3; Illumina HiSeq 2000), and somatic
mutations (Level 2; Illumina Genome Analyzer DNA Se-
quencing). All data was mapped to genome build hg 19.
Patients were first classified as progressor or nonprogres-

sor based on follow-up annotation, specificaly the presence
or absence of a new tumor event. We required annotation
to confirm the tumor event (days to new tumor and/or
new tumor anatomical location). All patients were required
to have treatment annotation in addition to the follow-up
data. All samples used in this study were collected from ini-
tial pre-treatment diagnosis (the samples had not been ex-
posed to chemotherapy or radiation).

Statistical analysis
In-house workflows in the R Statistical Programming en-
vironment were used for all QA/QC and analysis [15].
The clinical data was checked for duplicated rows, blank
fields and other quality checks. All of the clinical data
sets were merged together by the common BCR Patient
Barcodes. Differential expression (DE) analysis between
progressors and nonprogressors was conducted by fitting
linear models using the edgeR framework [16]. As a sec-
ondary analysis, we also examined differential expression
among progressors and nonprogressors with radiation

treatment assignment. For all DE, P-values were False
Discovery Rate Adjusted. Genes with low expression in
all samples (<1 (count per million) were flagged and fil-
tered out. Somatic mutation data was also filtered out if
there were any tuples with no known gene symbols in
RNA-Seq V2. All gene symbols were verified to have ap-
proved symbols or synonyms. Cytoscape was used for
stylized pathway visualization [17] specifically the Reac-
tome FI Cytoscape Plugin 4 [18].
Somatic mutations for progressors and nonprogressors

were evaluated by first assessing gene symbol, chromo-
some, and start and stop. The distribution of truncating
mutations (nonsense, nonstop, frameshift deletion,
frameshift insertion, and splice site) as well as missense
mutation rates was compared between progressors and
nonprogressors. For the entire TCGA HNSCC cohort,
MutSig2CV annotation (ranking and significance) was
examined to assess unique mutations. MutSig analyzes
mutations to identify genes that were mutated more
often than expected by chance given background muta-
tion processes [19]. Fisher’s exact tests were performed
to examine differences in mutational frequency by muta-
tional class in those genes with overall mutational fre-
quency difference of 5 % or more between progressors
and nonprogressors. Lollipop figures of mutational type
by gene were generated by the MutationMapper
visualization tool (courtesy of Memorial Sloan-Kettering
Cancer Center). Somatic mutations were counted both
as the number of total of variants, as well as summarized
at the gene level as the total number of genes mutated.
For mutations unique to progressors and unique to non-
progressors (noting the caveat this can in some cases be
due to sampling), we computed the ratio of variants to
gene level mutation (in both cases only for those muta-
tions unique to each group) = # of somatic mutations
(individual variants) / # of genes with somatic mutations.
This allowed us to assess the number of mutations rela-
tive to the number of genes mutated to understand the
impact on the genome. A large ratio could be indicative
a concentration of highly mutated genes.
Both differentially expressed genes as well as somatic mu-

tation data were annotated to pathway models from Reac-
tome, KEGG, Pathway Interaction Database (PID), and
Biocarta from MSIGDB [20]. We then examined if there
was significant enrichment of these candidate genes in the
pathways. As with the differential expression analysis, all
enrichment P-values were False Discovery Rate Adjusted.
Mutation and gene expression data was overlaid to iden-

tify an aggregate gene signature (based on both differen-
tially expression and unique mutation in progressors
only). Overall Survival Kaplan-Maier estimates based on
alternations in this signature were examined. Both clinical
features (nodal extracapsular spread, alcohol use, tobacco
smoking history, gender, margin status) as well as the
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aggregated gene signature were examined by a multivari-
ate Cox proportional hazards modeling approach.

Additional files

Additional file 1: Table S1. Demographics for TCGA HNSCC
Progressors. Table S2. Demographics for TCGA HNSCC Non-progressors.
(DOCX 484 kb)

Additional file 2: Table S3. Putative Differential Expression (DE)
between HNSCC TCGA Annotated Progressors and NonProgressors (False
Discovery Rate (FDR) < 0.05). CTCF binding site annotation was from
CTCFBSDB 2.0. (DOCX 489 kb)

Additional file 3: Table S4. Pathways significantly enriched for
differentially expressed (DE) genes between TCGA HNSCC progressors
and nonprogressors. FDR = False Discovery Rate. Table S5. Pathways
significantly enriched for differentially expressed (DE) genes between
TCGA HNSCC progressors and nonprogressors who were assigned
radiation treatment. FDR = False Discovery Rate. (DOCX 488 kb)

Additional file 4: Table S6. TCGA HNSCC Somatic Mutations in
Progressors and NonProgressors. Truncated mutations are defined as
Nonsense, Nonstop, Frameshift deletion, Frameshift insertion, and Splice
site mutations. Data was examined in 68 Progressors (PR) and 163
NonPogressors (NP). (DOCX 483 kb)

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SB performed clinical annotation and worked with MS GC, MW, and SM on
the molecular analysis design and implementation. TL, JG, CRT provided
input on the significance, design, and discussion of the findings.

Acknowledgements
The results published here are in whole or part based upon data generated
by the TCGA Research Network: http://cancergenome.nih.gov/. Support for
this work was provided by NIH/NCI (5P30CA06533), the Oregon Health &
Science University Knight Cancer Institute Cathy and Jim Rudd Career
Development Award for Cancer Research, and the Oregon Health & Science
University Medical Research Foundation Early Clinical Investigator Grant. We
also wish to thank the reviewers and editors for their insightful comments
and suggestions.

Author details
1Department of Radiation Medicine, Oregon Health & Science University,
3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. 2Department of
Cell, Developmental & Cancer Biology, Oregon Health & Science University 3,
3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. 3OHSU Knight
Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson
Park Road, Portland, OR 97239, USA. 4Department of Biomedical Engineering,
Oregon Health & Science University, 3181 SW Sam Jackson Park Road,
Portland, OR 97239, USA. 5Division of Bioinformatics and Computational
Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon
Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR
97239, USA. 6Division of Biostatistics, Department of Public Health and
Preventive Medicine, Oregon Health & Science University, 3181 SW Sam
Jackson Park Road, Portland, OR 97239, USA.

Received: 30 April 2015 Accepted: 28 December 2015

References
1. Bonner JA, Harari PM, Giralt J, Cohen RB, Jones CU, Sur RK, et al.

Radiotherapy plus cetuximab for locoregionally advanced head and neck
cancer: 5-year survival data from a phase 3 randomised trial, and relation
between cetuximab-induced rash and survival. Lancet Oncol 2010, 11(1):21-28.

2. Vermorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S, et al.
Platinum-based chemotherapy plus cetuximab in head and neck cancer. N
Engl J Med 2008, 359(11):1116-1127.

3. Cancer Genome Atlas N: Comprehensive genomic characterization of head
and neck squamous cell carcinomas. Nature 2015, 517(7536):576-582.

4. Oikonomopoulou K, Ricklin D, Ward PA, Lambris JD. Interactions between
coagulation and complement–their role in inflammation. Seminars in
immunopathology 2012, 34(1):151-165.

5. Mroz EA, Tward AM, Hammon RJ, Ren Y, Rocco JW. Intra-tumor Genetic
Heterogeneity and Mortality in Head and Neck Cancer: Analysis of Data
from The Cancer Genome Atlas. PLoS medicine 2015, 12(2):e1001786.

6. Wang W, Lim WK, Leong HS, Chong FT, Lim TK, Tan DS, et al. An eleven
gene molecular signature for extra-capsular spread in oral squamous cell
carcinoma serves as a prognosticator of outcome in patients without nodal
metastases. Oral Oncol 2015.

7. Libby RT, Hagerman KA, Pineda VV, Lau R, Cho DH, Baccam SL, et al. CTCF
cis-regulates trinucleotide repeat instability in an epigenetic manner: a
novel basis for mutational hot spot determination. PLoS genetics 2008,
4(11):e1000257.

8. Marshall AD, Bailey CG, Rasko JE. CTCF and BORIS in genome regulation and
cancer. Current opinion in genetics & development 2014, 24:8-15.

9. Eke I, Zscheppang K, Dickreuter E, Hickmann L, Mazzeo E, Unger K, et al.
Simultaneous beta1 integrin-EGFR Targeting and Radiosensitization of
Human Head and Neck Cancer. J Natl Cancer Inst 2015, 107(2).

10. Vermorken JB, Peyrade F, Krauss J, Mesia R, Remenar E, Gauler TC, et al.
Cisplatin, 5-fluorouracil, and cetuximab (PFE) with or without cilengitide in
recurrent/metastatic squamous cell carcinoma of the head and neck: results
of the randomized phase I/II ADVANTAGE trial (phase II part). Ann Oncol
2014, 25(3):682-688.

11. Bonomi M, Patsias A, Posner M, Sikora A. The role of inflammation in head
and neck cancer. Adv Exp Med Biol 2014, 816:107-127.

12. Bornstein S, White R, Malkoski S, Oka M, Han G, Cleaver T, et al. Smad4 loss
in mice causes spontaneous head and neck cancer with increased genomic
instability and inflammation. The Journal of clinical investigation 2009,
119(11):3408-3419.

13. Oft M: IL-10: master switch from tumor-promoting inflammation to
antitumor immunity. Cancer immunology research 2014, 2(3):194-199.

14. Zandberg DP, Strome SE. The role of the PD-L1:PD-1 pathway in squamous
cell carcinoma of the head and neck. Oral Oncol 2014, 50(7):627-632.

15. R Core Team (2014). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
http://www.R-project.org/.

16. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data.
Bioinformatics. 2010;26(1):139–40.

17. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al.
Cytoscape: a software environment for integrated models of biomolecular
interaction networks. Genome research 2003, 13(11):2498-2504.

18. Wu G, Feng X, Stein L. A human functional protein interaction network and
its application to cancer data analysis. Genome Biol. 2010;11(5):R53.

19. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A,
et al. Mutational heterogeneity in cancer and the search for new cancer-
associated genes. Nature. 2013;499(7457):214–8.

20. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. Gene set enrichment analysis: a knowledge-based approach for
interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A.
2005;102(43):15545–50.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Bornstein et al. BMC Genomics  (2016) 17:38 Page 9 of 9

dx.doi.org/10.1186/s12864-015-2359-6
dx.doi.org/10.1186/s12864-015-2359-6
dx.doi.org/10.1186/s12864-015-2359-6
dx.doi.org/10.1186/s12864-015-2359-6
http://cancergenome.nih.gov/
http://www.R-project.org/

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Patient demographics
	Differentially expressed genes
	Radiation treatment assignment
	Somatic mutations
	Integrin signaling deregulation in HNSCC progressors
	IL-10 signaling alterations in HNSCC progressors
	Gene signature predicting survival
	Cox modeling of molecular and clinical data

	Conclusions
	Methods
	Selection of patients and study design
	Statistical analysis

	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



