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Abstract

Background: Metabolomics offers a unique integrative perspective for health research, reflecting genetic and
environmental contributions to disease-related phenotypes. Identifying robust associations in population-based or
large-scale clinical studies demands large numbers of subjects and therefore sample batching for gas-chromatography/
mass spectrometry (GC/MS) non-targeted assays. When run over weeks or months, technical noise due to batch and
run-order threatens data interpretability. Application of existing normalization methods to metabolomics is challenged by
unsatisfied modeling assumptions and, notably, failure to address batch-specific truncation of low abundance compounds.

Results: To curtail technical noise and make GC/MS metabolomics data amenable to analyses describing biologically
relevant variability, we propose mixture model normalization (mixnorm) that accommodates truncated data and estimates
per-metabolite batch and run-order effects using quality control samples. Mixnorm outperforms other approaches across
many metrics, including improved correlation of non-targeted and targeted measurements and superior performance
when metabolite detectability varies according to batch. For some metrics, particularly when truncation is less frequent for
a metabolite, mean centering and median scaling demonstrate comparable performance to mixnorm.

Conclusions: When quality control samples are systematically included in batches, mixnorm is uniquely suited to
normalizing non-targeted GC/MS metabolomics data due to explicit accommodation of batch effects, run order and
varying thresholds of detectability. Especially in large-scale studies, normalization is crucial for drawing accurate conclusions
from non-targeted GC/MS metabolomics data.
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Background
Non-targeted metabolomics technologies are unique tools
in high-throughput ‘omics’ that provide an integrative
measure of genetic and environmental factors contributing
to metabolism and related phenotypes [1]. Techniques
such as gas-chromatography/mass-spectrometry (GC/MS),
liquid-chromatography/mass-spectrometry and nuclear
magnetic resonance have their own strengths for varying
applications, but all work toward the same goal to compre-
hensively characterize metabolite levels in samples of
interest. These approaches are frequently accompanied by

targeted technologies for which levels of specific metabo-
lites are assayed and calibrated, for example by using stable
isotope-labeled internal standards with an external series
of unlabeled calibrants. When used for large-scale studies,
non-targeted platforms generally require batching of
samples over many days. Meaningful data analyses from
large-scale studies demand careful application of quality
control protocols for sample collection and storage,
compound derivatization, metabolite extraction and repro-
ducible annotation for all sample batches [2–5]. Even with
precise monitoring of quality control procedures, large
variations in metabolite abundance attributable to batch and
run order within batch are well documented, particularly for
GC/MS [1, 6]. In this manuscript, we propose a statistical
approach to metabolomics data normalization to control
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technical variability attributable to batch and run order for
large-scale metabolomics experiments. Data normalization
is just one component of carefully crafted data quality pipe-
lines that should be rigorously applied to minimize technical
variability in large-scale metabolomics studies.
Many approaches for statistical control of batch- and run

order-related technical variability, i.e. normalization, have
been described [7–9]. Straightforward approaches calculate
scaling factors, often based on total sample intensity or a
relevant physiological variable, to be applied uniformly to
all metabolites measured in a sample [10, 11]. While easy
to use, these approaches do not account for the chemical
diversity of all compounds and differential batch and run
order effects often evident for different metabolites [1, 12].
Normalization approaches borrowed from gene expression
microarray studies, including loess-based normalization
[13], quantile normalization [14], surrogate variable analysis
[15], empirical Bayes batch effect correction (ComBat) [16]
and variance stabilizing normalization (VSN) [17] generally
assume that few metabolites change across samples, that
roughly equal numbers of metabolites are increased and
decreased across samples, and/or that batch affects metabo-
lites in similar ways. Any of these assumptions can be easily
violated for metabolomics data [10]. Other approaches rely
on addition of single [7] or multiple internal standard com-
pounds [6] or a priori identification of a set of metabolites
expected not to change in the experimental conditions [18].
Selection of these standards and non-changing sets could
vary substantially depending on sample type and metabolite
classes of interest. Furthermore, in sample types that are
poorly understood, selected internal standards or non-
changing compounds may not correspond well in terms of
retention time and mass spectrometry peak alignment with
metabolites observed in samples of analytical interest [12].
Noting chemical diversity of batch and run-order effects

and the difficulty of a priori selection of internal standards,
repeated assay of quality control (QC) samples from a
consistent control pool is increasingly applied in large-scale
metabolomics studies [1, 12, 19, 20]. While QC-based
normalization methods are gaining favor, current approaches
do not formally model well-known variation in thresholds of
detectability across batches for GC/MS data [21, 22] and
instead require elimination or imputation of abundance levels
for undetected metabolites. This is particularly problematic
for methods that rely on total compound abundance since
low abundance compounds can be systematically missed in
batches with higher detectability thresholds.
We describe a mixture model approach for non-targeted

GC/MS metabolomics data normalization (mixnorm) that is
compound-specific, avoids a priori selection of internal
standard compounds, and formally models not only batch
and run order effects, but also varying thresholds of detect-
ability across batches. The estimated parameters for batch
and run order effects account for truncation of undetected

abundance levels in QC samples and are easily interpretable
given their regression-based derivation. Mixture modeling
has been used for downstream data analyses to investigate
biological associations between phenotypes and metabolites
[23]; in this application, we discuss an alternative use of
mixture modeling for normalization purposes. A large-scale
simulation study confirms accuracy of mixnorm over other
methods for controlling technical variability and for detect-
ing true associations with a simulated phenotype variable
over a range of batch-specific detectability thresholds and
undetected metabolites. Improved performance of mixnorm
is also demonstrated using GC/MS data from 162 metabo-
lites with reliable annotation in a reproducible AMDIS-
based pipeline for 300 QC and 1200 analytical serum
samples processed with highly standardized quality control
procedures in the ongoing Hyperglycemia and Adverse
Pregnancy Outcome (HAPO) Metabolomics study [24].
When evaluated according to variability of individual
metabolites across QC and analytical samples, pairwise
Spearman correlation of QC samples, and Spearman
correlation with targeted assays of the same com-
pounds, mixnorm demonstrates superior performance
to other approaches evaluated here.

Methods
Mixture model normalization (mixnorm)
Mixture model normalization (mixnorm) uses data from QC
samples drawn from a common pool and included at
multiple run order positions within all GC/MS batches.
Given their common source, observed systematic variation in
abundance levels for a given metabolite for QC samples is
attributable to batch and/or run order within batch. If mul-
tiple QC types are used, it can also be assumed that batch-
and run-order effects are equal across QC types for detect-
able metabolites, even if the actual abundance levels vary.
Mixnorm uses QC data to estimate batch- and run order
effects, and then applies these corrections to samples of
analytical interest to prepare data for downstream analysis.
The mixture model adopted by mixnorm jointly models

batch and run order as they pertain to metabolite detect-
ability in QCs and, if detected, abundance level. Import-
antly, data truncation for low abundance compounds is
modeled using batch-specific thresholds. Adopting a model
formulated in the context of antibody response to vaccine
[25], the following specifies the mixture model likelihood
contribution for the ith QC sample for a given metabolite
under analysis:

1−pið Þ þ piΦ Ti−μið Þ=σ½ �ð Þ 1−δið Þ pi⋅ exp − yi−μið Þ2=2σ2� �
=

ffiffiffiffiffiffiffiffiffi
2πσ

p� �δi

where pi represents the probability of metabolite presence
in the ith sample, Ti is the threshold of detectability for
the ith sample, μi is the true mean level of the metabolite
in the ith sample, σ2 is the variance of the metabolite, δi is
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an indicator equal to 1 if the metabolite is detected and 0
otherwise, yi is the observed level of the metabolite if it is
detected and ϕ is the normal cumulative distribution
function (cdf).
The first component of the likelihood,

1−pið Þ þ piΦ Ti−μið Þ=σ½ �ð Þ 1−δið Þ;

contributes when δi = 0, i.e. when a metabolite is not
detected in the ith QC sample. A metabolite may not be
detected either because it is truly absent from the sample
or because it is present below the detectability threshold.
Mixnorm specifies a logistic model for pi as log(pi/(1-pi))
= xi’β, where xi and β are covariate and parameter vectors,
respectively. Including (1-pi) in this component of the
likelihood allows for the small probability that a metabol-
ite would degrade over the course of running a batch and
would therefore be undetectable due to true absence from
the sample. The remainder of the first component of the
likelihood models the probability that the metabolite is
present in the sample but below the detectability threshold
Ti using a normal cdf ϕ. Ti is specified in mixnorm as the
minimum observed metabolite abundance for the batch
that included sample i. Mixnorm specifies a linear model
for the mean of the metabolite level, μi with μi = zi’α,
where zi and α are covariate and parameter vectors, re-
spectively. Mixnorm assumes that, conditional on tech-
nical covariates relevant for normalization, the variance σ2

of metabolite levels in QCs is the same across batches.
The second component of the likelihood,

pi⋅ exp − yi−μið Þ2=2σ2� �
=

ffiffiffiffiffiffiffiffiffi
2πσ

p� �δi
;

contributes when δi = 1, i.e. when a metabolite is de-
tected in the ith QC sample and abundance is quantified
as log2-transformed MS peak area. This component of
the likelihood models the probability that the metabolite
is present pi and specifies a normal distribution with
mean μi and variance σ2 for the observed value yi. The
logistic and linear regression models described above for
pi and yi link the two components of the likelihood.
Importantly, for normalization purposes, the covariates

used to model variation in QC data should reflect tech-
nical factors, for example batch, run order within batch,
or different types of QC pools. While covariate vectors
xi and zi can be specified to include the same covariates,
mixnorm does not require that they be identical. A more
limited set of variables could be appropriate for xi
depending on the number of QC samples and the
frequency of undetected metabolites.
Maximum likelihood parameters are estimated in mix-

norm using BFGS optimization over all QCs. After estimat-
ing model parameters β and α, location shift corrections
are applied to observed metabolite levels for all QCs and to

samples of analytical interest, according to effect estimates
and covariates for each sample. In experiments that include
multiple QC types, mixnorm will estimate the mean
difference in metabolite levels for different types of QCs. If
different QC pools are reflective of different types of analyt-
ical samples of interest, these location shifts can be applied
to analytical data if desired. Mixnorm functionality is
available in the metabomxtr R package (devel) [23] at
http://www.bioconductor.org/ [26].

Other normalization methods
Normalization methods compared to mixnorm in this study
are described briefly below, with more lengthy descriptions
and a table comparing features in Additional file 1.

Mean centering
For each metabolite, the difference between the batch-
specific mean and the mean across all samples in all batches
for that metabolite is subtracted from the observed metabol-
ite level.

Median scaling
For each metabolite, the abundance level in a given batch is
divided by the ratio of its batch-specific median to the
median for that metabolite across all samples in all batches.

Quantile normalization
Quantile normalization uses the means of ranked values
within samples to match the distribution of abundance
levels across all samples [14].

Quantile + ComBat
Quantile normalization is followed by ComBat, an empir-
ical Bayes method using metabolite-specific estimates of
mean and variance to correct for batch, while maintaining
phenotype effects [16]. ComBat requires complete data,
therefore missing values are imputed using Bayesian
principle components (PC) analysis with half-minimum
value substitutions for negative imputed values [27].

EigenMS
EigenMS first requires estimation of a categorical ‘treat-
ment’ effect via ANOVA. Singular value decomposition is
then applied to the matrix of residuals and additional bias
trends are removed from the data [28].

Batch Normalizer
Batch Normalizer is a regression-based algorithm that
relies on QC samples and incorporates total abundance of
each sample when estimating corrections for batch and
run order effects [20].
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Variance Stabilizing Normalization (VSN)
VSN applies a smooth transformation to all metabolites that
mimics a log transformation for high intensity values and
linear scaling for low intensity values, rendering variance ap-
proximately constant across the full range of intensities [17].

Software
Mean centering, median scaling and Batch Normalizer
were implemented using R; functions are available in
Additional file 2. Quantile normalization was implemented
using preprocessCore (version 1.36.0) [29] R package.
Quantile + ComBat used preprocessCore (version 1.36.0)
[29] and sva (version 3.22.0) [30] R packages, with Bayesian
PC imputation from pcaMethods (version 1.66.0) [27] R
package. VSN was implemented using vsn (version 3.42.3)
[17] R package. PreprocessCore, sva, pcaMethods and vsn
are all available at http://www.bioconductor.org/ [26].
EigenMS R functions are available at http://www.sourcefor-
ge.net/ [28].

Simulation study
We conducted a simulation study to assess mixnorm’s
performance relative to other normalization approaches.
We simulated a GC/MS experiment with 150 metabolites
for 20 batches of 24 analytical and 3 QC samples each, to-
taling 480 analytical and 60 QC samples. Each metabolite
was assigned a mean ‘intercept’ αm (m = 1,…,150) accord-
ing to a random draw from a normal distribution with
mean 18 and standard deviation 2, αm ~N(18,22), placing
the simulated metabolite means within the range of 13.5–
23.5, consistent with typical GC/MS log2 transformed
peak areas. Each analytical sample was next assigned a
‘phenotype’ vi (i = 1,…,480) according to a random draw
from a standard normal distribution, vi ~N(0,1). Pheno-
type associations varied according to βm (m = 1,…,150) for
each metabolite, with βm sampled from a standard normal
distribution, βm ~N(0,1). Values of αm, vi and βm were
held constant for 1000 simulation rounds.
In each round, prior to including batch effects, the

abundance level zjm for QC sample j for metabolite m was
specified zjm = αm + εjm, where εjm~N(0,(.03*αm)

2). The
abundance level yim for analytical sample i for metabolite
m included the association with phenotype and was
specified yim = αm + βm vi + εim, with εim~N(0,(.03*αm)

2).
Consistent with QC samples generated by pooling equal
volume aliquots from all analytical samples, our QC
sample means for all metabolites are those expected at the
‘mean’ phenotype of 0 for analytical samples. Prior to
introducing batch variability, these simulation parameters
yield relative standard deviations (RSDs, standard devi-
ation for a metabolite divided by its mean) of roughly 3%
(ranging 1.77 to 4.32%, Table 1) for all metabolites in QC
samples and higher RSDs averaging 5.82% (ranging 2.65
to 16.15%, Table 1) for analytical samples. As expected in

an experimental setting, analytical samples include vari-
ability attributable to associations with phenotype thus
analytical sample RSDs are higher.
In GC/MS, batch effects vary depending on chemical

class and don’t necessarily follow monotonic trends over all
batches. In each simulation round, we therefore randomly
sampled batch effects for metabolite m in batch k, bmk~
N(0,22). These batch effects were then added to QC and
analytical sample levels such that if QC sample j was in
batch k, zjm = zjm + bmk and if analytical sample i was in
batch k, yim = yim + bmk for metabolite m. After generating
simulated abundance levels, to mirror detection threshold
variability across batches, we applied detection thresholds
ranging incrementally from 12.5 to 15 and randomly
applied across batches 1 to 20. Simulated values for all
metabolites that fell below batch-specific detection thresh-
olds were treated as undetected.
This simulation approach included batch effects with

equal means for a given metabolite for QC and analytical
samples assigned to the same batch, and the same detec-
tion threshold for all metabolites for a given batch. Once
batch effects and batch-specific detection thresholds were
included, RSD summarized over all QC and analytical
samples increased as expected (Table 1). The increased
variability caused by batch effects is precisely the technical
noise that normalization seeks to control; i.e. RSD for cor-
rectly normalized data should equal RSD for simulated
data prior to including batch effects. All simulated data,
including unnormalized data and data after normalization
using mixnorm and the other approaches described here,
are publicly available at https://dataverse.harvard.edu/
dataverse/gcmsmetab.

Table 1 Summary statistics for metabolite variability according to
RSD for QC and analytical samples prior to and following
normalization

RSD % of individual metabolites
across samples: mean (min, max)

QC Analytical

Truth 2.99 (1.77, 4.32) 5.82 (2.65, 16.15)

Not normalized 10.03 (2.33, 18.81) 10.88 (2.88, 19.04)

Mean centering 3.08 (1.09, 6.08) 5.24 (1.81, 14.72)

Median scaling 3.08 (.97, 6.30) 5.32 (1.84, 14.97)

Quantile 10.21 (1.02, 18.69) 10.66 (2.29, 18.27)

Quantile + ComBat 3.94 (1.10, 11.70) 5.65 (1.62, 19.01)

EigenMS 6.82 (1.75, 15.27) 7.05 (1.76, 16.05)

VSN 9.99 (2.27, 17.51) 10.84 (2.81, 19.27)

Batch normalizer 1.73 (.19, 3.09) 6.26 (2.41, 16.71)

mixnorm 2.42 (.73, 4.59) 5.81 (1.84, 19.62)
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Simulation data normalization metrics
All described normalization algorithms were applied to
the simulated data. For mixnorm, covariates for batch
were included in both the logistic and linear components
of the model. Normalization results for simulated data
were evaluated using RSD and associations with the simu-
lated phenotype.

Relative Standard Deviation (RSD)
RSD was calculated for each metabolite prior to and
after normalization. To assess consistency of RSDs after
normalization with true RSDs prior to introducing batch
effects and truncation in the simulation, we used simple
linear regression with intercept term set to 0 for all metabo-
lites in simulated analytical samples, treating estimated
RSD as the outcome and true RSD as the predictor. Beta =
1 from this simple no-intercept linear regression model
indicates perfect agreement of true and estimated RSD
following normalization, with beta values lower (higher)
than 1 indicating under- (over-) estimation of RSD after
normalization. These linear regression analyses were exam-
ined for metabolites with varying proportions of undetected
values. Metabolites were grouped by 0, 0–5%, 5–10%,…,
75–80% undetected values. Metabolites with >80% un-
detected values were omitted from analysis.

Detectable associations with simulated phenotype
Detectability of metabolite associations with the simu-
lated phenotype variable vi were summarized prior to
and following normalization. The frequency of true posi-
tive and false positive associations were calculated for a
range of values for βm specified in the simulation.

HAPO Metabolomics study
The original HAPO Study was an international population-
based study conducted 2000–2006, designed to examine as-
sociations between maternal glucose levels during preg-
nancy and newborn outcomes. HAPO Study methods were
described previously [31, 32]. The HAPO Study protocol
was approved by the institutional review board at each
HAPO field center and all participants provided informed
consent. Over 23,000 eligible women at 15 international
field centers underwent a 75-g oral glucose tolerance test
(OGTT) between 24 and 32 weeks’ gestation. Fasting and
1-hour plasma glucose were measured and additional
serum samples collected and stored using highly standard-
ized protocols after rigorous training at all HAPO field cen-
ters [31, 32]. Immediately following collection, maternal
and offspring cord serum samples were processed, stored at
-20C or -80C for 1–6 weeks, shipped on dry ice to the
HAPO Central Laboratory, and remained frozen at -80C
until the present assays.

HAPO Metabolomics experimental design
HAPO Metabolomics was designed to study maternal and
newborn metabolic profile associations with maternal
glucose levels during pregnancy and newborn outcomes
[24, 33]. Fasting and 1-hour maternal and newborn cord
serum triples for 400 European ancestry mothers and their
newborns were sampled for HAPO Metabolomics to re-
flect the distributions of characteristics observed in the
original HAPO Study. Maternal serum samples at fasting
and 1-hour following Trutol consumption during the
OGTT and cord serum from their newborns were ana-
lyzed using conventional, targeted amino acid and non-
targeted GC/MS metabolomics.
For GC/MS, HAPO Metabolomics samples were

batched into sets of 24 comprised of fasting and 1-hour
maternal and newborn cord serum from 8 mother-
newborn pairs. Sample triples were randomly assigned to
batches to balance phenotypic variables including mater-
nal age, glucose, body mass index and newborn birth
weight and sum of skinfolds. Two sets of QC sera were
created by drawing 20-μL volumes from all HAPO Meta-
bolomics analytical samples before analysis, combining
these into separate pools for maternal and newborn sera,
and splitting into 100-μL aliquots. After maintenance of
GC and MS, QC samples were injected to passivate work-
ing surfaces of the instrument until chromatography and
MS response were stable. After each re-tuning of the MS,
adequate sensitivity was confirmed using a perfluorinated
tributylamine tuning standard. Aliquots from each QC
pool were run at the beginning, middle and end of each
batch, yielding 30 samples total per batch (24 analytical
samples and 6 QCs). Over a run of 30 samples within each
batch, maternal QCs were run at positions 1, 15 and 29
and newborn QCs were run at positions 2, 16 and 30. A
total of 50 batches were run totaling 1500 samples (1200
analytical samples and 300 QCs). Figure 1 illustrates the
HAPO Metabolomics batching scheme.

Conventional metabolite and targeted amino acid assays
Conventional metabolites were measured on a Beckman-
Coulter DxC600 autoanalyzer using reagents from
Beckman (Brea, CA; lactate) and Wako USA (Richmond,
VA; beta-hydroxybutyrate). For free glycerol, reagents by
Roche (Indianapolis, IN) for glycerol-blanked triglycerides
were modified. To 84 mL of the Roche R1 reagent, 6.0 mg
4-aminoantipyrine dye (Sigma, St. Louis, MO) was added.
This assay was run by combining 250 μL reagent with 20
μL sample volume, calibrated against a glycerol standard
(2.29 mM) with detection at 520 nm after 5 min. Targeted
assays of amino acids using stable-isotope-labeled internal
standards were performed on an Acquity TQD Triple
Quadrupole system (Waters Corporation, Milford, MA).
Absolute metabolite concentrations were calculated based
on the linear relationship between concentration and peak
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area, and calibrated against internal standards with known
concentrations, as previously described [34, 35]. Conven-
tional metabolite and targeted amino acid data are used
here to evaluate whether each normalization method can
improve correlation of non-targeted GC/MS data with tar-
geted measurements that are quantified using internal
standards and not subject to batch effects.

Non-targeted GC/MS assay sample preparation and quality
control
For non-targeted assays, serum was uniformly prepped for
each batch using a modification of previously described
protocols [36, 37]. Methanol, the extraction solvent, was
spiked with a retention-time-lock (RTL) internal standard of
perdeuterated myristic acid. Extracts were dried, and then
prepared for non-targeted GC/MS by methoximation and
trimethylsilylation [36], and run on a 6890N GC-5975 Inert
MS (Agilent Technologies, Santa Clara, CA). Programmed-
temperature vaporization in the inlet and post-run, mid-
column, hot backflushing of the GC column minimized ana-
lyte decomposition, carryover, and fouling of GC and MS.

Non-targeted GC/MS peak deconvolution and annotation
GC/MS data were deconvoluted with AMDIS freeware,
courtesy of National Institute of Standards and Technology,
Gaithersburg, MD [38] and parsed against peaks annotated
using the Fiehn RTL spectral library [36] with additions
from our laboratory. Detected peak areas were log2-
transformed for abundance quantification. Manual curation
included re-annotating features that matched multiple
metabolites from our library (often co-eluting isomers such
as aldohexoses), and favoring those with higher AMDIS
Reverse scores. Annotation was performed simultaneously
for the full data set, so there were no inconsistencies across
HAPO Metabolomics samples. Reliably annotated peaks
for 162 unique metabolites with detected abundance levels

in at least 20% of all samples were used in this analysis. All
targeted and non-targeted HAPO Metabolomics data used
in this manuscript are included in Additional file 3.

HAPO metabolomics GC/MS data normalization parameters
For HAPO Metabolomics GC/MS data normalization using
mixnorm, in the logistic model for pi, we included indicator
variables for batch (using the batch with median abundance
level for the metabolite being normalized as the referent)
and QC sample type (newborn v. referent maternal). For the
linear regression component for μi, we included batch and
QC sample type, as well as log-transformed run order (the
best fit to the data after exploring linear, quadratic and log-
transformed effects). All other normalization methods were
implemented as described in Additional file 1.

HAPO metabolomics GC/MS data normalization metrics
Individual metabolite variability across QC samples
To view metabolite variability across QC samples, scatter-
plots were created with metabolite levels on the y-axis
versus batch number on the x-axis with different plotting
characters for maternal and newborn QCs and batch
position. Undetected metabolites were indicated by a point
below a dashed black line set below the minimum observed
level for the metabolite of interest. Variability of detected
metabolites was summarized as RSD across all maternal
and newborn QC samples.

Individual metabolite variability across analytical samples
RSDs of metabolites across maternal fasting and 1-hour
and newborn cord serum analytical samples were calcu-
lated prior to and following normalization. It is expected
that RSD across all analytical samples of a given type would
be higher than RSD across QC samples since analytical
samples include biologically relevant variability.

Fig. 1 Schematic representation of run order within batch for the HAPO Metabolomics study. Data include 1200 analytical samples (400 maternal
fasting, 400 maternal 1-hour, 400 newborn cord serum) of interest and 300 QCs (150 maternal, 150 newborn) processed in 50 batches of 30 samples
each. Maternal samples placed at the beginning, middle and end of each batch are labeled M1, M2 and M3, respectively. Newborn (or baby) samples
placed at the beginning, middle and end of each batch are labeled B1, B2 and B3, respectively. In a batch of total size 30, maternal QCs were placed at
run order 1, 15 and 29 and newborn QCs were placed at run order 2, 16 and 30. Maternal / newborn sample triples were run in sequence with 8 sets
of triples included in each batch
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Pairwise correlations of QC samples
To evaluate comparability of all metabolites in QC samples,
pairwise Spearman correlations of maternal and newborn
QC metabolites were calculated prior to and following
normalization.

Correlations of non-targeted data with conventional and
targeted amino acid data
Spearman correlation coefficients were calculated for
non-targeted metabolites and their conventional metab-
olite and targeted amino acid counterparts on all HAPO
Metabolomics analytical samples prior to and following
normalization.

Associations with HAPO phenotypes
Associations with maternal fasting plasma glucose (FPG) in
HAPO were modeled using metabolomics data from
maternal fasting samples. Associations were modeled using
two approaches. The first used linear regression, dropping
unobserved metabolite levels from analysis or using
imputed data as indicated by the normalization method.
The second analysis approach used mixture modeling for
downstream analysis. While similar in concept to the mix-
ture model proposed here for normalization purposes,
downstream mixture modeling is applied subsequent to
normalization and the covariates used for downstream ana-
lysis include phenotypic predictors of interest. In both the
linear regression and mixture model analyses, the primary
covariate of interest was maternal FPG, but all analyses
additionally included adjustment for HAPO Study field
center (Belfast UK, Brisbane and Newcastle, Australia),
maternal BMI, mean arterial pressure, maternal age and
gestational age at OGTT, and sample storage time. The
number of statistically significant associations with nominal
p < 0.05 was summarized for analyses of HAPO Metabolo-
mics GC/MS data after application of each normalization
method. Pathway analyses using MetaboAnalyst 3.0 (http://
www.metaboanalyst.ca/) were also conducted using hyper-
geometric tests to evaluate pathway enrichment of metabo-
lites significantly associated with FPG [39].

Results
Simulation results
Relative Standard Deviation (RSD)
RSDs were calculated for simulated QC and analytical
sample data prior to including batch effects (‘truth’), after
including batch effects and truncation according to batch-
specific thresholds (‘not normalized’) and after application
of each normalization method (Table 1). While mixnorm
slightly underestimates true RSD in QCs, the mean RSD
for analytical samples of 5.81% is remarkably consistent
with the true analytical sample mean RSD of 5.82%. Mean
centering, median scaling and quantile + ComBat also
yield RSDs that are similar to true RSDs, although the

means are somewhat smaller and may indicate underesti-
mation of true variability. Batch Normalizer RSDs for QC
samples are quite low (mean 1.73%), although the mean
for analytical samples is fairly consistent with the truth
(mean 6.26%). Summary statistics for RSDs after quantile
normalization, EigenMS and VSN suggested poorer cor-
rection of batch effects than the other methods.
A unique feature of mixnorm compared to other methods

is explicit modeling of data truncation due to batch-specific
detection thresholds. Figure 2 plots RSD prior to and follow-
ing normalization by mean centering, median scaling,
quantile +ComBat and mixnorm v. true RSD for one set of
simulated metabolite values (simulation round 316). Overall
improvement in RSD after normalization for both QC and
analytical samples is evident for all methods. As the propor-
tion of undetected values increases, however, visual inspec-
tion of simulated analytical samples suggests that RSD is
underestimated by mean centering, median scaling and
quantile +ComBat more than mixnorm. Similar plots for
nine other randomly selected simulation rounds results are
included in Additional file 4: Figures S1–S9.
To summarize RSD estimates over all simulations for

increasing amounts of undetected or ‘missing’ values, we ex-
amined beta estimates from simple no-intercept linear re-
gression models treating estimated RSD after normalization
as the outcome and true RSD as the predictor. Beta values
for mixnorm, mean centering, median scaling and quantile
+ ComBat, the strongest methods in overall evaluations of
RSD in the simulation, are plotted in Fig. 3. Beta values for
all four methods are roughly equal to 1 for metabolites with
no undetected values. As the proportion of undetected
values increases, beta values fall below 1, with RSD underes-
timated by approximately 20% (beta = .8) for mean center-
ing, median scaling and quantile + ComBat when 20-25% of
metabolite levels are undetected. In contrast, beta values for
mixnorm only decrease to .8 when more than 55% of
metabolite levels are undetected. True RSD is more accur-
ately recovered using mixnorm even when a metabolite is
undetected in over half of the samples.
Figure 4 illustrates results from association analyses

with the simulated phenotype after normalization with
each method (numeric results are reported in Additional
file 5). Association analyses were conducted using linear
regression either ignoring missing data or using imputed
values depending on the normalization method, as well as
downstream mixture modeling, i.e. a mixture model to ac-
commodate both undetected and detected metabolite
levels when identifying associations with phenotypes after
QC-based normalization. For simulated beta values with
absolute value greater than or equal to the values plotted
on the x-axis, the probability of detecting these true
associations with nominal p < 0.05 using both analytic
approaches was plotted on the y-axis. Results are similar
for linear regression and mixture modeling, with some

Reisetter et al. BMC Bioinformatics  (2017) 18:84 Page 7 of 17

http://www.metaboanalyst.ca/
http://www.metaboanalyst.ca/


Fig. 2 An example of one round of simulation results (simulation 316) comparing calculated RSD for metabolites in QC and analytical samples
before normalization (open circles) and RSD after normalization for four different methods (closed circles) v. true RSD prior to inclusion of batch
effects and batch-specific detection thresholds in the simulation. Points are colored according to the proportion of undetected levels in the
simulation for that metabolite. The black line indicates perfect correspondence of true and estimated RSD

Fig. 3 A plot of beta estimates from simple no-intercept linear regression models using simulation data. Calculated RSD after normalization was
treated as the outcome and true RSD prior to inclusion of batch effects and batch-specific detection thresholds in the simulation was treated as the
predictor. A beta value of 1 indicates perfect correspondence with beta values <1 (>1) indicating under- (over-) estimation of RSD by the normalization
method. Betas are plotted according to increasing amounts of missing data, i.e. the proportion of simulated undetected values for a given metabolite
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increase in the true positive probability observed for mix-
ture modeling due to explicit modeling of truncated data
[23]. In general, mixnorm, mean centering and median
scaling perform comparably in terms of most accurately
identifying associations with at least .97 true positive prob-
ability for values of beta ≥0.05. Notably, the most distinct
improvements in true positive probabilities occur for
lower betas that correspond to more modest associations,
underscoring the importance of controlling technical
variability to detect modest effects that may otherwise be
hidden by technical noise.
False positive probabilities were calculated by deter-

mining the frequency with which each method led to de-
tection of associations for beta values approaching 0
(Additional file 5). These probabilities were comparable
for mixnorm, mean centering and median scaling, with
substantial increases in false positive probabilities ob-
served for all other methods.

HAPO Metabolomics results
Individual metabolite variability in QC samples
Prior to normalization, metabolite levels across QC samples
varied substantially by batch and run order (Fig. 5, first
column). The plot of alanine demonstrates changes in
observed abundance with each batch, with the largest
jumps from one batch to the next (e.g. batch 27 to 28) often
coinciding with routine cleanings. When detectable, trypta-
mine levels show trends similar to those for alanine, but
since tryptamine is less abundant than alanine, for several
batches tryptamine was not detected in QC samples.
Variation in detectability thresholds across batches is

evident for this metabolite given that some, but not all,
batches exhibited undetectable values. Tryptamine was
detectable in 64 (42.67%) and 111 (74.00%) of maternal and
newborn QC samples, respectively. For the 162 metabolites
examined here, the number of samples with detectable
values in QC samples ranged from 63 to 300 (21.0 to 100%)
with a mean of 247 (82.1%). Batch trends for a peak anno-
tated ‘glucose and other aldohexoses’ and for 1,5-anhydro-
glucitol demonstrate the variability of batch effects for
different metabolites. While metabolite levels tended to
decrease for alanine from batches 28–45, levels for glucose
increased across the same batches and levels for 1,5-anhy-
droglucitol jumped distinctly in the middle of this range at
batch 35. Observations for all four of these metabolites
illustrate run-order dependence. Abundance levels for QC
samples at the beginning of each batch are frequently lower
than abundance levels in the middle and at the end.
Mixnorm adjusts for batch and run order for these four
metabolites without requiring imputation for undetected
values (Fig. 5, second column). Similar plots for these same
four metabolites for the other approaches examined here
are included in Additional file 6: Figures S10–S16. Of the
methods applied, mean-centering, median scaling, quantile
+ ComBat, and Batch Normalizer accomplished similar
stability of metabolite abundance across batches upon
visual inspection for these four metabolites. Visual inspec-
tion also suggests that quantile normalization, EigenMS
and VSN did not achieve comparable stability of QC data
across batches.
Figure 6 plots means, minima and maxima for per-

metabolite RSDs across the maternal and newborn QC

Fig. 4 Plots of true positive probabilities (y-axis) under both linear regression and downstream mixture model analyses for detecting true associations in
simulated data prior to and following normalization. Values on the x-axis represent the magnitude of association with the simulated phenotype according
the simulated beta values. True positive probabilities are plotted for beta values with absolute value greater than or equal to 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and 1.0
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samples and analytical samples (numeric results in
Additional file 7). Compared to mean values of 5.8 for non-
normalized maternal and newborn QC samples, substantial
reductions in per-metabolite RSDs were evident in QC
samples for quantile + ComBat (maternal QC mean 3.3,
newborn QC mean 3.4), Batch Normalizer (maternal QC
mean 1.7, newborn QC mean 1.6) and mixnorm (maternal
and newborn QC means 2.9). Notably, quantile + ComBat
resulted in similar per-metabolite variability for analytical
samples as for QC samples. Effective control of technical
variability should reduce per-metabolite RSDs for both
QC and analytical samples; however, since QC samples
are drawn from identical pools and in HAPO Metabolo-
mics analytical samples are obtained from independent

individuals from a population-based study, it is reason-
able to expect that per-metabolite RSDs in QC samples
would be substantially less than analytical samples. Batch
Normalizer also yielded substantial reduction in per-
metabolite RSDs in QC samples; however, per-metabolite
RSDs for analytical samples remained almost identical to
non-normalized data suggesting very little control of
technical variability in samples of primary analytical
interest. Consistent with the nature of HAPO Metabolo-
mics study design, mixnorm reduces per-metabolite
RSDs for maternal and newborn QC samples, with per-
metabolite RSDs roughly 65–80% higher in analytical
samples (means ranging 4.8–5.3 for the sample types).
The remaining methods demonstrated less reduction in

Fig. 5 Log 2 peak areas for QC samples in HAPO Metabolomics across all 50 batches. Data are presented for peaks annotated as alanine, tryptamine,
glucose and other aldohexoses and 1,5-anhydroglucitol. The first column contains original non-normalized observations and the second column
contains mixnorm-normalized values. Small, medium and large blue dots correspond to maternal QC samples placed at the beginning (M1), middle
(M2) and end (M3) of each batch, respectively. Small, medium and large pink dots correspond to newborn QC samples placed at the beginning (B1),
middle (B2) and end (B3) of each batch, respectively. Dots below the dotted line represent values below the detection threshold for a given batch
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variability for QC samples than mixnorm, and were less
reflective of higher per-metabolite variability expected
for analytical compared to QC samples.

Pairwise correlations of QC samples
Figure 7 illustrates the mean, minimum and maximum pair-
wise Spearman correlation coefficients of the maternal and
newborn QC samples using data from metabolites with de-
tected abundance and normalized values in at least 20% of
samples (numeric results in Additional file 8). QC sample

correlations were fairly high in non-normalized data with
means of 0.93 for both maternal and newborn QCs. Com-
pared to non-normalized data, pairwise correlations changed
very little for quantile normalization and VSN and increased
modestly for mean centering, median scaling, quantile +
ComBat and EigenMS. Batch Normalizer and mixnorm in-
creased pairwise correlations of QC samples the most with
improvements in maternal QC samples to 0.99 and 0.98, re-
spectively, and newborn QC samples to 0.99 and 0.97,
respectively.

Correlations with conventional and targeted metabolites in
analytical samples
Conventional and targeted amino acid assays were used to
detect the abundance of a subset of metabolites also de-
tected by the non-targeted assays in HAPO Metabolomics.
These data in some sense provide an external measure of
non-targeted data normalization success since the conven-
tional metabolite and targeted amino acid measurements
are not subject to batch effects and do not require
normalization. Analytical samples represent a full range of
phenotypes and comparison of non-targeted to targeted
data in these samples allows examination of the extent to
which the normalization controls technical variability but
preserves biologically relevant variability. Spearman correl-
ation estimates in analytical samples are illustrated in Fig. 8,
summarized in Table 2 and reported individually in Add-
itional file 9. For these conventional / targeted analytes, the
mean Spearman correlation estimates for the non-

Fig. 6 RSD values (%) for analytical (maternal fasting, maternal 1-
hour, newborn cord serum) and QC (maternal QC, newborn QC)
data in HAPO Metabolomics prior to and following normalization
with each approach. Points correspond to the mean RSD and lines
span the minimum to the maximum RSD for each sample type

Fig. 7 Pairwise Spearman correlation values for maternal and
newborn QC samples in HAPO Metabolomics prior to and following
normalization with each approach. Points correspond to the mean
pairwise Spearman correlation value and lines span the minimum to
the maximum pairwise Spearman correlation for each sample type.
All Spearman correlation estimates are statistically significantly
different from 0 with p < 0.05
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Fig. 8 Spearman correlation coefficients for non-targeted and targeted data. Correlation estimates are plotted for non-targeted metabolites using each
normalization method and their conventional metabolite or targeted amino acid counterparts. Results are presented separately for each analytical
sample type. All Spearman correlation estimates are statistically significantly different from 0 with p < 0.05 with the exception of tyrosine after EigenMS
normalization in maternal fasting samples and methionine, glycerol, alanine and proline after Batch Normalizer in cord serum samples

Table 2 Summary statistics for Spearman correlation coefficients between non-targeted and targeted assays

Spearman correlation estimate summary statistics: mean (min, max)

Maternal fasting Maternal 1-hour Newborn cord serum

Not normalized .33 (.09, .75) .33 (.09, .62) .41 (.19, .87)

Mean centering .49 (.24, .89) .51 (.26, .80) .59 (.35, .94)

Median scaling .49 (.25, .87) .51 (.27, .79) .59 (.34, .93)

Quantile .36 (.13, .79) .37 (.15, .64) .45 (.20, .93)

Quantile + ComBat .46 (.16, .87) .46 (.18, .80) .51 (.24, .95)

EigenMS .30 (−.07, .75) .33 (.08, .61) .42 (.17, .87)

VSN .38 (.08, .85) .37 (.16, .76) .47 (.16, .93)

Batch normalizer .27 (.11, .70) .24 (.10, .59) .25 (.00, .78)

mixnorm .52 (.25, .91) .54 (.28, .82) .59 (.31, .95)
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normalized data were 0.33, 0.33, and 0.41 for the maternal
fasting, maternal 1-hour, and newborn cord serum samples,
respectively. Quantile, EigenMS and VSN yielded correla-
tions with targeted data that were comparable to values in
non-normalized data. Batch Normalizer in general reduced
correlations with targeted metabolites. While mean
centering, median scaling, and quantile + ComBat yielded
some improvement, mixnorm yielded the greatest gains in
Spearman correlation among non-targeted metabolites and
their targeted counterparts resulting in mean correlation
estimates of 0.52, 0.54 and 0.59 for the maternal fasting,
maternal 1-hour and newborn cord serum samples, re-
spectively. Figure 8 illustrates the consistent increase in
Spearman correlation for mixnorm across all represented
conventional metabolites and targeted amino acids in all
analytical sample types.

Associations with HAPO phenotypes
Similar to simulated data, associations of fasting mater-
nal metabolite levels with maternal FPG in HAPO data

were identified using both linear regression and down-
stream mixture modeling after application of the
normalization methods. Figure 9 is a heatmap with hier-
archical clustering for both rows and columns illustrat-
ing results of per-metabolite associations detected for
each method, with dark blue shading corresponding to
lower p-values and light yellow to higher p-values. A
cluster of significant metabolite associations with FPG
largely comprised of carbohydrates, indicated by the
pink highlighted box A, is detected after application of
all normalization methods. The cluster identified by pink
highlighted box B contains primarily a mix of amino
acids and glycolysis/tricarboxylic acid metabolites, and
the cluster identified by pink highlighted box C contains
primarily amino acids. Association analyses after mix-
norm, mean centering and median scaling normalization
leads to the identification of significant FPG associations
within these compound classes, all of which are known
to be associated with pregnancy-related maternal gly-
cemia [40, 41]. Pathway analyses confirm that these

Fig. 9 Heatmap of associations with maternal fasting plasma glucose (FPG) for fasting maternal metabolites in HAPO Metabolomics. The colors
on the heatmap correspond to the strength of association with dark blue representing p-values close to 0 and light yellow representing p-values
close to 1. Associations were detected using both linear regression and downstream mixture modeling prior to and following normalization with
each approach. Hierarchical clustering was applied to columns and rows. Columns are close to each other for methods that detect similar
associations. Rows are close each other if the strength of detected associations for the metabolites (represented by PubChem ID starting with
‘pc_’) are similar across the range of methods. Compound classes for each metabolite are represented by the lefthand vertical bar (red – amino
acids; blue – carbohydrates; green – fatty acids; purple – glycolysis/tricarboxylic acid cycle; orange – lipids; yellow – other). Pink boxes A, B and C
highlight clusters of metabolites detected by different sets of normalization approaches
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three methods also lead to the highest number of signifi-
cantly enriched pathways that involve these same com-
pound classes (Additional file 10).

Discussion
We propose a mixture-model normalization approach
for GC/MS non-targeted metabolomics data called mix-
norm that estimates metabolite-specific batch and run
order effects based on QC samples. Mixnorm easily ac-
commodates multiple QC sample types, an important
feature for experiments that include samples from differ-
ent sources, different types of individuals, etc. Addition-
ally, rather than ignoring undetected metabolites or
relying on imputation of their values, mixnorm formally
models detectability or lack thereof for low abundance
metabolites and accommodates batch-specific detectabil-
ity thresholds. This is a more precise handling of trun-
cated data than simple imputation of a low-valued
constant or reliance on algorithmic approaches that
often impute values in the range of observed values thus
inconsistent with the notion of low abundance. Given
the specific corrections estimated for each metabolite,
mixnorm is applicable for the full set of mass spectrom-
etry peaks following decomposition or for a desirable
subset, for example in our case the peaks that were reli-
ably annotated in the AMDIS-based pipeline we applied.
In simulations, when compared to other methods, mix-

norm demonstrated the most accurate recovery of true
RSDs for both QC and analytical sample data, even in the
presence of substantial proportions of undetected values
due to data truncation. Mixnorm also yielded a very high
true positive probability for detecting associations with
the simulated phenotype, with only mean centering and
median scaling showing comparable performance on this
particular metric. In analyses of HAPO Metabolomics
data, mixnorm demonstrated reduction in RSD with pat-
terns that most reasonably reflect expected lower RSD
values for QC data compared to RSD values for analytical
data. Mixnorm also demonstrated consistent improve-
ment in pairwise Spearman correlation coefficients among
QC samples. Importantly, when compared to targeted
measurements of the same metabolites in HAPO Metabo-
lomics samples, mixnorm yielded the highest and most
consistent improvement in Spearman correlation coeffi-
cients across all methods. Phenotype association analyses
and pathway analyses using HAPO Metabolomics data
also confirm the ability of mixnorm to detect meaningful
associations of biological relevance.
Normalization is just one component of carefully

crafted pipelines that should be applied to perform high
quality metabolomics experiments. Rigorous protocols
for sample collection and storage, compound derivatiza-
tion and metabolite extraction, and reproducible com-
pound annotation pipelines are paramount to successful

study conduct [2–5]. Normalization procedures that rely
on QC data should take note of potential outlying
observations. Summaries of HAPO Metabolomics data in-
dicated that none of the QC observations fell outside 3
standard deviations within a given metabolite; hence, we
determined that all QC observations could be used for par-
ameter estimation. We do recommend that investigators
identify potential outlying QCs; the mixnorm function in
the metabomxtr R package supports outlier filtering.
It is also recommended that investigators take note of
potential outliers in analytical samples that may influ-
ence observed phenotype associations even after data
normalization is performed.
Effective normalization using QC controls also re-

quires careful attention to experimental design. The
HAPO Metabolomics study was designed to examine
metabolic profiles in mothers at fasting and 1-hour into
an OGTT and in their newborns’ cord serum. We ran-
domly sampled mother/baby sample triples for place-
ment into batches to balance continuous traits of
interest across batches to the extent possible. Given ex-
pected differences in maternal and newborn metabolic
profiles, we created separate QC pools to resemble the
full retention time distribution of each sample type, and
strategically placed QC samples from each pool at the
beginning, middle and end of each batch to capture run
order effects. We do note that the HAPO Metabolomics
Study utilized stored samples and thus common QC
pools could be created at the outset of the experiment
for all batches. In ongoing studies for which samples ac-
cumulate over time, investigators may need to utilize
QC pools from external sources or build adequate sized
pools from initial samples that can be utilized over the
anticipated duration of the study. HAPO Metabolomics
also included two types of QC pools to mirror the
maternal and newborn sample types involved in the
study. We note that mixnorm was applied to all QC data
simultaneously, with a covariate for QC sample type in-
cluded in the mixture model along with batch and run
order covariates. Hence, batch and run order effects
were estimated using data from all QCs and location
shifts were uniformly applied to all maternal and
newborn analytical samples. This is an important, albeit
subtle, point especially for studies in which sample clas-
sification is the goal. Analytical sample types may not be
known a priori, but if QC pools can be obtained that are
similar in nature to the anticipated classes, batch and
run order effects can be estimated using multiple QC
types and location shifts applied to all analytical samples
in the same way we used mixnorm for HAPO Metabolo-
mics data. Additionally, we note that three QC samples
of a given type placed evenly within each batch pro-
duced reasonably stable parameter estimates for batches
including 24 analytical samples in both the simulation
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and HAPO Metabolomics. Fewer QC samples would
likely lead to less precise effect estimates. The ability to
invest in QCs is likely to vary substantially from study to
study; if possible, it may be useful to conduct prelimin-
ary studies including QC samples to estimate reasonable
QC sample sizes for stable parameter estimation. Exact
experimental design specifications will depend on the
study, but classic principles of covariate balance, sample
matching, and thoughtful QC sample creation and
placement should be strongly considered when designing
batches for large-scale metabolomics experiments.
This investigation describes the use of mixture

modeling for normalization purposes. As discussed in
phenotypic association analyses for both the simulated
data and the HAPO Metabolomics GC/MS data, mix-
ture modeling can also be applied for downstream
analyses with covariates specified to represent vari-
ables of biological, epidemiological and/or clinical
interest. The main emphasis of this manuscript is the
utility of the mixture model for control of technical
noise related to batch and run order in large-scale GC/
MS studies, but the general modeling strategy has other
uses as well.

Conclusion
In summary, we propose mixnorm for normalization of
data from large-scale non-targeted GC/MS metabolo-
mics studies. While application of the method requires use
of multiple QC samples from one or more control pools
over the course of the experiment, these control pools can
typically be generated using small extractions from the
samples of analytical interest without compromising the
integrity of analytical samples for non-targeted profiling.
Simulation studies confirm that mixnorm accommodates a
far higher proportion of undetected metabolite values while
maintaining more accurate estimates of RSD than other
methods evaluated here. This is crucial for accurately
modeling and analyzing low abundance compounds that
may be subject to batch-specific truncation. Across global
metrics including metabolite RSDs and pairwise correla-
tions for QC samples, mixnorm showed consistent and
marked improvement using data from the HAPO Metabo-
lomics study case study. When evaluated with reference to
conventional and targeted assays of a subset of metabolites
reflecting a range of phenotypes in HAPO analytic samples
of interest, mixnorm, along with mean centering and
median scaling, accomplished the greatest increases in
Spearman correlations compared to the other methods.
Both simulation results and the case study using HAPO
Metabolomics data also indicate reliable detection of
phenotypic associations when GC/MS data are normalized
using mixnorm, with comparable performance by mean
centering and median scaling. It is possible that results may
vary depending on phenotypes of interest in other

metabolomics studies. Mixnorm can be implemented using
functionality in the metabomxtr R package (devel version)
[23] available at http://www.bioconductor.org/ [26].
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