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A novel nonsingular terminal sliding mode controller is proposed for a second-order system with unmodeled dynamics
uncertainties and external disturbances. We need not achieve the knowledge for boundaries of uncertainties and external
disturbances in advance. The adaptive control gains are obtained to estimate the uncertain parameters and external disturbances
which are unknown but bounded. The closed loop system stability is ensured with robustness and adaptation by the Lyapunov
stability theorem in finite time. An illustrative example of second-order nonlinear system with unmodeled dynamics and external
disturbances is given to demonstrate the effectiveness of the presented scheme.

1. Introduction

Nonlinear control systems have been intensively studied in
many control methods, including 𝐻

∞
control, fault-tolerant

control, robust passive control, neural networks, and fuzzy
control [1–10]. Because sliding mode control (SMC) is well
known for good robustness properties to systemuncertainties
and external disturbances [11–14], SMC has been widely
studied as a powerful method to control nonlinear dynamic
systems, such as stochastic systems [15–17] and nonlinear
delay systems [18–22]. One of the conventional SMC char-
acteristics is that the convergence time of the system states
is usually asymptotical convergence from initial time to the
equilibrium point, because we commonly choose the linear
sliding mode manifold in spite of the conventional SMC
claimed robustness.

A SMC based on finite time control, which can drive
the system states to reach the equilibrium point in finite
time, is studied in the literature of second-order slidingmode
(SOSM) approach and terminal sliding mode (TSM) [23–
26]. It is worth noting that the switching manifold of SOSM
is most linear switching manifold and the time derivative
of the sliding variable needs to be obtained in advance.

We can compare linear switching manifolds based sliding
modes with TSM. TSM has some good properties, for exam-
ple, fast convergence to equilibrium point in finite time and
high precision tracking performance. Because the conven-
tional TSMcontrol contains negative fractional powerswhich
may cause singularity problem to occur, [24] designs a global
nonsingular TSM controller to avoid the problem. However,
the discontinuous nonsingular TSM control scheme can
cause chattering phenomenon. In order to reduce the influ-
ence of chattering, an improved continuous TSM control is
designed using the TSM switchingmanifold and reaching law
[25]. Nonsingular TSMC has been widely developed because
of fast convergence property in finite timewithout singularity
problem, but themost nonsingular TSMC only deals with the
disturbances which need to satisfy the matched condition.
In order to effectively attenuate mismatched disturbances,
[26] proposes a continuous TSMC approach to solve the
mismatched disturbance problem based on a nonsingular
TSMC technique and a finite time observer of disturbance.
Although TSMC has been further utilized to extend the
system with mismatched disturbance, the control design
in [23–27] still has some problem to solve for uncertain
nonlinear systems. For one thing, it is hard to acquire the
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knowledge of the boundaries of the system uncertainties in
many practical cases.

In this paper, keeping themain advantages of the standard
TSMC, we propose a novel adaptive nonsingular TSMC
method for the control system with unmodeled uncertainties
and external disturbances which are unknown but bounded.
The designed control method is provided with fast conver-
gence rate in finite time and strong robustness.

We organize the rest of the sections as follows. In
Section 2, the dynamics of a class of uncertain nonlinear
systems are introduced. In Section 3, the novel nonsingular
TSM controller with adaptive law is developed to stabilize
the uncertain nonlinear systemswhere we utilize the adaptive
law to identify the uncertain boundaries. The novel adaptive
nonsingular TSMC method can effectively provide strong
robustness and fast convergence rate in finite time. Section 4
takes an example to validate that the proposed adaptive
TSMCmethod has good performance for the uncertain non-
linear system. Finally, conclusions are presented in Section 5.

2. Problem Statements

Consider the following second-order uncertain nonlinear
system which is depicted by

�̇�
1
= 𝑥
2
,

�̇�
2
= 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢 + 𝑑 (𝑡) ,

(1)

where 𝑥 = [𝑥
1
, 𝑥
2
]
𝑇 is the system state vector, the functions

𝑓(𝑥), 𝑔(𝑥) are uncertain but bounded smooth nonlinear
functions, and 𝑑(𝑡) denotes the external disturbance and
satisfies |𝑑(𝑡)| ≤ 𝑙

𝑔
, where 𝑙

𝑔
is the boundary and 𝑙

𝑔
> 0.

The purpose of this paper is to stabilize the states
of system (1) with the unmodeled dynamics and external
disturbances by designing a control law 𝑢(𝑥) around the
origin 𝑥 = [0, 0]𝑇.

A simple nonsingular TSM surface is proposed in order
to overcome the singularity problem as follows [23]:

𝑠 = 𝑥
1
+
1

𝛽
𝑥
𝑞/𝑝

2
. (2)

From [23], the control law can be designed as follows:

𝑢 = 𝑔
−1

[−𝑓 − 𝛽
𝑞

𝑝
𝑥
2−𝑝/𝑞

2
− (𝑙
𝑑
+ 𝜂
𝑑
) sign 𝑠] , (3)

where 𝜂
𝑑
is an arbitrary small positive constant.

The classical TSM and the nonsingular TSM controllers,
including the continuous TSMC algorithm, can handle such
problem in which the boundaries of the disturbances and
parameter uncertainties are known. In this work, the objec-
tive is to design an adaptive gain TSM controller to make the
states of uncertain nonlinear system converge to equilibrium
point in finite time, in spite of the unmodeled uncertainties
and external disturbances which are unknown but bounded.
So, the gains of controller adapted the unknown boundaries.

3. Nonsingular TSMC with
Adaptive Law Design

In this section, we propose a novel adaptive TSMC for
uncertain nonlinear systems to get the stabilization of system
states, which can assure robust convergence of the uncertain
systems (1) in finite time under the unmodeled uncertainties
and disturbances which are unknown but bounded.Themain
results of the paper are obtained as Theorem 4 based on
[23], because these methods of [23] are only suitable for a
special class of systems without unmodeled dynamics. In
other words, the disturbance of the control input coefficient
term 𝑔(𝑥) in system (1) is not considered which will be
influenced to design control law.

Assumption 1. Solutions of the differential equation about
NTSM surface (2) with discontinuous termof right-hand side
are supposed in the sense of Filippov.

Assumption 2. The nonlinear functions 𝑓(𝑥), 𝑔(𝑥) are par-
titioned into two parts. One is the nominal part; the other
is uncertain bounded function. They can be expressed as
follows:

𝑓 (𝑥) = 𝑓
0
(𝑥) + Δ𝑓 (𝑥) ,

𝑔 (𝑥) = 𝑔
0
(𝑥) + Δ𝑔 (𝑥) .

(4)

The following inequalities are satisfied as


Δ𝑓 (𝑥) − Δ𝑔 ⋅ 𝑔

−1

0
𝑓
0
+ 𝑑 (𝑡)


≤ 𝜌 (𝑥, 𝑡) ,


Δ𝑔 ⋅ 𝑔

−1

0


≤ 𝛼,

(5)

where |𝜌(𝑥, 𝑡)| ≤ 𝜌 is an unknown but bounded nonlinear
function and parameter 0 < 𝛼 < 1 is an unknown but
bounded constant.

We apply the preliminary control feedback to system (1)
as follows:

𝑢 = 𝑔
−1

0
[−𝑓
0
− 𝛽

𝑞

𝑝

𝑥2


2−𝑝/𝑞

⋅ sign (𝑥
2
) + 𝑤] , (6)

where 𝛽 > 0 is an advanced given constant and 𝑤 is auxiliary
control law which needs designing latter.

Lemma 3 (see [27]). The following system is considered:

�̇� = 𝑓 (𝑥) ,

𝑥 (0) = 𝑥
0
,

𝑥 ∈ 𝑅
𝑛

, 𝑓 (0) = 0,

(7)

where𝑓(𝑥) : 𝐷 → 𝑅
𝑛 is continuous on an open neighborhood

𝐷 ⊂ 𝑅
𝑛. Suppose there is a continuous positive definite function

𝑉(𝑥) : 𝐷 → 𝑅, and there exist positive constants 𝜂 > 0, and
0 < 𝛾 < 1, such that

�̇� (𝑥) + 𝜂𝑉
𝛾

(𝑥) ≤ 0. (8)
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Then, system (7) is locally finite time stable. Depending on the
initial state 𝑥(0) = 𝑥

0
, the settling time 𝑇 satisfies the following

inequality as

𝑇 ≤
𝑉
1−𝛾

(𝑥
0
)

𝜂 (1 − 𝛾)
. (9)

Particularly, when 𝐷 = 𝑅
𝑛 and 𝑉(𝑥) is also radially

unbounded, the state of system (9) is globally finite time stable.
Thus, one obtains from system (1) using (6) the following:

�̇�
1
= 𝑥
2
,

�̇�
2
= (1 + Δ𝑔 ⋅ 𝑔

−1

0
)𝑤 − Δ𝑔 ⋅ 𝑔

−1

0
⋅ 𝑓
0

− (1 + Δ𝑔 ⋅ 𝑔
−1

0
) 𝛽

𝑞

𝑝

𝑥2


2−𝑝/𝑞

⋅ sign (𝑥
2
)

+ Δ𝑓 + 𝑑 (𝑡) .

(10)

We take the time derivative of TSM surface 𝑠 along the system
trajectories using (2), (4), and (10) and can obtain the following:

̇𝑠 = �̇�
1
+
1

𝛽

𝑝

𝑞
𝑥
𝑝/𝑞−1

2
�̇�
2
= 𝑥
2
+
1

𝛽

𝑝

𝑞
𝑥
𝑝/𝑞−1

2
�̇�
2
= 𝑥
2
+
1

𝛽

⋅
𝑝

𝑞
𝑥
𝑝/𝑞−1

2
(𝑓 (𝑥) + 𝑔 (𝑥) 𝑢 + 𝑑 (𝑡)) =

1

𝛽

𝑝

𝑞

⋅ 𝑥
𝑝/𝑞−1

2
[(1 + Δ𝑔 ⋅ 𝑔

−1

0
)𝑤

− Δ𝑔 ⋅ 𝑔
−1

0
⋅ 𝑓
0
− Δ𝑔 ⋅ 𝑔

−1

0
𝛽
𝑞

𝑝

𝑥2


2−𝑝/𝑞

⋅ sign (𝑥
2
)

+ Δ𝑓 + 𝑑 (𝑡)] .

(11)

Theorem 4. Consider system (1) with unmodeled dynamics
and external disturbances and suppose that Assumptions 1 and
2 are satisfied. The nonsingular TSM surface is selected as (2).
The controller and adaptive law are designed as

𝑢 = 𝑔
−1

0
[−𝑓
0
− 𝛽

𝑞

𝑝

𝑥2


2−𝑝/𝑞

⋅ sign (𝑥
2
)Θ sign 𝑠] , (12)

where the adaptive gain law Θ satisfies the following:

Θ = 𝜁
1
+ 𝜁
2
⋅
𝑥2



2−𝑝/𝑞

, (13)

̇𝜁
1
= 𝛾
1

1

𝛽

𝑝

𝑞
𝑥
𝑝/𝑞−1

2
⋅ ‖𝑠‖ , (14)

̇𝜁
2
= 𝛾
2

1

𝛽

𝑝

𝑞
𝑥
2
⋅ ‖𝑠‖ , (15)

where the positive constants 𝜁
𝑖
(𝑖 = 1, 2) satisfy

𝜁
1
>

𝜌

1 − 𝛼
,

𝜁
2
>

𝛼

1 − 𝛼
⋅
𝛽𝑞

𝑝
.

(16)

The parameters 𝛽, 𝛾
𝑖
(𝑖 = 1, 2) are arbitrary positive constants

in the adaptive gain law in (14), (15). 𝑝 and 𝑞 are positive odd
integers and satisfy 1 < 𝑝/𝑞 < 2, which ensures converging to
zero with respect to NTSM surface 𝑠 in finite time.

Proof. The following Lyapunov function is chosen as follows:

𝑉 =
1

2
𝑠
2

+

2

∑

𝑖=1

1

2𝛾
𝑖

(𝜁
𝑖
− 𝜁
𝑖
)
2

. (17)

The time derivative of Lyapunov function (17) with condition
(16) is calculated as

�̇� = 𝑠 ̇𝑠 +

2

∑

𝑖=1

1

𝛾
𝑖

(𝜁
𝑖
− 𝜁
𝑖
) ⋅ ̇𝜁
𝑖
. (18)

The proof is divided into two cases.

Case 1 (𝑥
2

̸= 0). We take the derivative of the TSM surface
(2) along the system dynamics (1) under the condition of
controller (12) and the adaptive gain law (13)–(15).

So, we can obtain from (11)

𝑠 ̇𝑠 =
1

𝛽

𝑝

𝑞

⋅ 𝑥
𝑝/𝑞−1

2
{(1 + Δ𝑔 ⋅ 𝑔

−1

0
) (𝜁
1
+ 𝜁
2
⋅
𝑥2



2−𝑝/𝑞

) sign 𝑠

+ [Δ𝑓 − Δ𝑔 ⋅ 𝑔
−1

0
⋅ 𝑓
0
+ 𝑑 (𝑡)] − Δ𝑔

⋅ 𝑔
−1

0
𝛽
𝑞

𝑝

𝑥2


2−𝑝/𝑞

⋅ sign (𝑥
2
)} =

1

𝛽

𝑝

𝑞

⋅ 𝑥
𝑝/𝑞−1

2
{− (𝜁

1
+ 𝜁
2
⋅
𝑥2



2−𝑝/𝑞

)

⋅ ‖𝑠‖ − Δ𝑔 ⋅ 𝑔
−1

0
⋅ (𝜁
1
+ 𝜁
2
⋅
𝑥2



2−𝑝/𝑞

) ⋅ ‖𝑠‖

+ [Δ𝑓 − Δ𝑔 ⋅ 𝑔
−1

0
⋅ 𝑓
0
+ 𝑑 (𝑡)] ⋅ 𝑠 − Δ𝑔

⋅ 𝑔
−1

0
𝛽
𝑞

𝑝

𝑥2


2−𝑝/𝑞

⋅ sign (𝑥
2
) ⋅ 𝑠} ≤

1

𝛽

𝑝

𝑞

⋅ 𝑥
𝑝/𝑞−1

2
[− (𝜁
1
+ 𝜁
2
⋅
𝑥2



2−𝑝/𝑞

)

⋅ ‖𝑠‖ + 𝛼 ⋅ (𝜁
1
+ 𝜁
2
⋅
𝑥2



2−𝑝/𝑞

) ⋅ ‖𝑠‖ + 𝜌 ⋅ ‖𝑠‖

+ 𝛼𝛽
𝑞

𝑝

𝑥2


2−𝑝/𝑞

⋅ ‖𝑠‖] .

(19)

So,

�̇� ≤
1

𝛽

𝑝

𝑞
𝑥
𝑝/𝑞−1

2
[− (𝜁
1
+ 𝜁
2
⋅
𝑥2



2−𝑝/𝑞

) ⋅ ‖𝑠‖ + 𝛼 ⋅ (𝜁
1

+ 𝜁
2
⋅
𝑥2



2−𝑝/𝑞

) ⋅ ‖𝑠‖ + 𝜌 ⋅ ‖𝑠‖ + 𝛼𝛽
𝑞

𝑝

𝑥2


2−𝑝/𝑞
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⋅ ‖𝑠‖] +

2

∑

𝑖=1

1

𝛾
𝑖

(𝜁
𝑖
− 𝜁
𝑖
) ⋅ ̇𝜁
𝑖
≤
1

𝛽

𝑝

𝑞
𝑥
𝑝/𝑞−1

2
[− (𝜁
1

+ 𝜁
2
⋅
𝑥2



2−𝑝/𝑞

) ⋅ ‖𝑠‖ + 𝛼 ⋅ (𝜁
1
+ 𝜁
2
⋅
𝑥2



2−𝑝/𝑞

)

⋅ ‖𝑠‖ + 𝜌 ⋅ ‖𝑠‖ + 𝛼
𝑘

𝜆

𝑥2


2−𝑝/𝑞

⋅ ‖𝑠‖] + (𝜁
1
− 𝜁
1
) ⋅

1

𝛽

⋅
𝑝

𝑞
𝑥
𝑝/𝑞−1

2
⋅ ‖𝑠‖ + (𝜁

2
− 𝜁
2
) ⋅

1

𝛽

𝑝

𝑞
𝑥
𝑝/𝑞−1

2
⋅
𝑥2



2−𝑝/𝑞

⋅ ‖𝑠‖ ≤
1

𝛽

𝑝

𝑞
𝑥
𝑝/𝑞−1

2
[−𝜁
1
⋅ ‖𝑠‖ − 𝜁

2
⋅
𝑥2



2−𝑝/𝑞

⋅ ‖𝑠‖

+ 𝛼 ⋅ (𝜁
1
+ 𝜁
2
⋅
𝑥2



2−𝑝/𝑞

) ⋅ ‖𝑠‖ + 𝜌 ⋅ ‖𝑠‖ + 𝛼𝛽

⋅
𝑞

𝑝

𝑥2


2−𝑝/𝑞

⋅ ‖𝑠‖] ≤ −
1

𝛽

𝑝

𝑞
𝑥
𝑝/𝑞−1

2
{[(1 − 𝛼) 𝜁

1

− 𝜌 + (1 − 𝛼) 𝜁
2
⋅
𝑥2



2−𝑝/𝑞

− 𝛼𝛽
𝑞

𝑝
⋅
𝑥2



2−𝑝/𝑞

]

⋅ ‖𝑠‖ + 𝛼 ‖𝑠‖ ⋅

𝜁
1
− 𝜁
1


+ 𝛼 ‖𝑠‖ ⋅

𝑥2


2−𝑝/𝑞

⋅

𝜁
2

− 𝜁
2


} ≤ −

1

𝛽

𝑝

𝑞
𝑥
𝑝/𝑞−1

2

{

{

{

√2[(1 − 𝛼) 𝜁
1
− 𝜌

+ (1 − 𝛼) 𝜁
2
⋅
𝑥2



2−𝑝/𝑞

− 𝛼𝛽
𝑞

𝑝
⋅
𝑥2



2−𝑝/𝑞

] ⋅
‖𝑠‖

√2

+ √2𝛾
1
𝛼 ‖𝑠‖ ⋅


𝜁
1
− 𝜁
1



√2𝛾
1

+ √2𝛾
2
𝛼 ‖𝑠‖ ⋅

𝑥2


2−𝑝/𝑞

⋅


𝜁
2
− 𝜁
2



√2𝛾
2

}

}

}

≤ −𝜂
0
⋅ (

‖𝑠‖

√2

+


𝜁
1
− 𝜁
1



√2𝛾
1

+


𝜁
2
− 𝜁
2



√2𝛾
2

) ,

(20)

where

𝜂
0
=
1

𝛽

𝑝

𝑞
𝑥
𝑝/𝑞−1

2
⋅min (𝑟

0
, 𝑟
1
, 𝑟
2
) . (21)

Order

𝑟
0
= √2 [(1 − 𝛼) 𝜁

1
− 𝜌 + (1 − 𝛼) 𝜁

2
⋅
𝑥2



2−𝑝/𝑞

− 𝛼𝛽
𝑞

𝑝
⋅
𝑥2



2−𝑝/𝑞

] ,

𝑟
1
= √2𝛾

1
𝛼 ‖𝑠‖ ,

𝑟
2
= √2𝛾

2
𝛼 ‖𝑠‖ ⋅

𝑥2


2−𝑝/𝑞

.

(22)

Because 𝑞 is positive odd integer and satisfies inequality (16),
we can get 𝑟

0
> 0 and 𝜂

0
> 0.

We apply a well-known inequality for (20) as follows:

(𝑥
2

+ 𝑦
2

+ 𝑧
2

)
1/2

≤ |𝑥| +
𝑦
 + |𝑧| .

(23)

One obtains

�̇� < −𝜂
0
𝑉
1/2

. (24)

According to Lemma 3, we can obtain system (1) is converged
to NTSM surface 𝑠 = 0 in finite time which meets 𝑡

𝐹
≤

𝑉
1/2

(𝑥
0
)/2𝜂
0
. Thus, system state trajectories are evolved on

the surface 𝑠 = 0 in finite time and remain there with the
unmodeled uncertainties and external disturbance in 𝑥

2
̸= 0.

Case 2 (𝑥
2
= 0). If 𝑥

2
= 0, we know that the NTSM surface in

(2) becomes as follows:

𝑠 = 𝑥
1
, (25)

where is induced 𝑠 ̇𝑠 = 𝑥
1
𝑥
2
= 0, so, 𝑥

2
= 0 is a possible

attractor. Then, we should discuss the additional case which
is necessary to be considered. In this extreme case, the control
law (12) is represented as follows:

𝑢 = 𝑔
−1

0
[−𝑓
0
− Θ sign 𝑠] . (26)

We can substitute the control law (12) into system (1). One
obtains

�̇�
2
= −Θ (1 + Δ𝑔 ⋅ 𝑔

−1

0
) sign 𝑠 + Δ𝑓 (𝑥) − Δ𝑔 ⋅ 𝑔−1

0
𝑓
0

+ 𝑑 (𝑡) .

(27)

In the sequel, we can prove the inequality 𝑥
1
⋅ �̇�
2
< 0 in order

to confirm that 𝑥
2
= 0 is not an attractor in the phase plane.

𝑥
1
is multiplied by (27). One yields

𝑥
1
⋅ �̇�
2
= 𝑠 ⋅ �̇�

2
= 𝑠 ⋅ [−Θ (1 + Δ𝑔 ⋅ 𝑔

−1

0
) sign 𝑠

+ Δ𝑓 (𝑥) − Δ𝑔 ⋅ 𝑔
−1

0
𝑓
0
+ 𝑑 (𝑡)] ≤ −Θ ‖𝑠‖ + (1 − 𝛼)

⋅ Θ ‖𝑠‖ + 𝜌 (𝑥) ‖𝑠‖ ≤ −𝜂 ‖𝑠‖ < 0.

(28)

Through inequality (23) which is valid, we can get 𝑥
2
= 0 is

not an attractor. The points are obtained as follows:

(a) When 𝑥
1
< 0 and 𝑥

1
> 0, we can, respectively, get

�̇�
2
> 0 and �̇�

2
< 0 from (27).

(b) There exist a neighborhood of 𝑥
2
= 0 and a small

positive number 𝜀 > 0. When |𝑥
2
| < 𝜀, we can,

respectively, obtain �̇�
2
> 0 for 𝑥

1
< 0 and �̇�

2
< 0

for 𝑥
1
> 0.

(c) If 𝑥
1
< 0, the trajectory crosses from the boundary of

the neighborhood 𝑥
2
= −𝜀 to 𝑥

2
= 𝜀; else if 𝑥

1
> 0 the

trajectory crosses from 𝑥
2
= 𝜀 to 𝑥

2
= −𝜀. So, we can

see that 𝑥
2
= 0 is not an attractor.

(d) When |𝑥
2
| > 𝜀, we can easily conclude that the NTSM

surface is reached in finite time because of 𝑥
1
⋅ �̇�
2
< 0.
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From the above analysis, we can conclude that the NTSM
surface 𝑠 = 0 which is defined in (2) can be reached from
anywhere in the finite time.The requirements depicted in this
theorem are satisfied as design of control law (12)–(15).

Remark. In order to reduce the effect of chattering, we
approximately replace sign(𝑠) with the function tanh(𝑠/𝜀) in
controller (12), where 𝜀 > 0 is a sufficient small constant. We
apply themodification in design of controller (14) for the later
numerical simulation studies.

4. Numerical Simulations

To illustrate the effectiveness of the above given scheme,
we consider the following design example to verify TSMC
with adaptive law in this section. A second-order nonlinear
system with unmodeled dynamics and external disturbances
is considered:

�̇�
1
= 𝑥
2
,

�̇�
2
= cos𝑥

1
+ 0.2 sin (𝑥

2
⋅ 𝑡)

+ (𝑥
2

1
+ 1 + 0.1 cos (5𝜋𝑡)) 𝑢

+ 0.02 sin (2𝜋𝑡) ,

(29)

where 𝑓
0
(𝑥) = cos𝑥

1
, Δ𝑓 = 0.2 sin(𝑥

2
⋅ 𝑡), 𝑔

0
(𝑥) = 𝑥

2

1
+ 1,

Δ𝑔 = 0.1 cos(5𝜋𝑡),𝑑(𝑡) = 0.02 sin(2𝜋𝑡), and the initial state of
system (29) is [0.5, 0.1]. We apply the terminal sliding mode
control with adaptive law (9)–(12) and choose the related
parameters as follows: 𝛽 = 5, 𝑞 = 3, 𝑝 = 5, 𝛾

1
= 3,

and 𝛾
2
= 5. Figure 1 shows the states of system (29). The

control input signals for system (29) based on controller (12)
are demonstrated in Figure 2. The nonsingular TSM surface
is designed in Figure 3. Some valuable facts are obviously
seen; for example, the problem of singularity does not occur
at all times of NTSM control and the states of system (29)
can converge to zero in finite time in Figures 1–3, 6, and 7.
Figures 1–3, 6, and 7 display that the controller design (12)–
(15) is effective in spite of unknown uncertain boundaries.
The NTSM surface rapidly approaches zero in Figure 3. The
estimation value responses of control gain parameters 𝛾

1
, 𝛾
2

are, respectively, shown in Figures 4 and 5. Figures 4 and
5 show that the control gain parameters tend to a constant
value. By comparing Figures 1 and 2 with Figures 6 and
7, we can obtain that the chattering effect is reduced by
the modification in design of controller (12). The results of
simulations reveal that the proposed terminal sliding mode
control with adaptive law is indeed effective in practice in
spite of the existence of second-order system unmodeled
dynamics and external disturbances.

5. Conclusions

This work proposes TSMC based on adaptive lawmethod for
second-order nonlinear system with unmodeled dynamics
where external disturbances and the boundaries of the non-
linear dynamics and external disturbances are not required
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Figure 1: The states of system (29) based on control (12).
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Figure 2: Control input signal of (12).

in advance.The proposed terminal slidingmode control with
adaptive law method is proved to guarantee robustness and
adaptation by the Lyapunov stability method in finite time.
The control gain parameters are automatically adjusted by
adaptive law and the nonsingular TSM controller effectively
prevents the singularity problem from occurring. A numer-
ical simulation is demonstrated to verify the effectiveness of
robustness and adaptation using the presented nonsingular
TSMCwith adaptive lawmethod.The further research are the
extension of this paper to stochastic systems methods based
on fuzzy control and adaptive neural network control which
will bring big challenges for terminal sliding mode control
design [28–30].
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Figure 6: The states of system (29) based on the modified control
(12).
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